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Introduction

Our book “The Lie Theory of Connected Pro-Lie Groups” appeared in March 2007. It is a
research monograph, so the majority of the results were new. Obviously their proofs were new,
too. Every mathematician knows that the first proof of a theorem is usually neither the most
elegant nor the shortest. Also there are consequences of theorems which are not noticed until
a later date. In a new theory, as is ours, there are invariably unanswered questions. Finally,
and sadly there are almost always annoying typographical errors and some mathematical
errors which can be corrected.

The purpose of this file called “Enhancements” is precisely that—to address all the points
in the above paragraph. We begin by reproducing the Preface to our book in order to give
the reader at this point an impression of its motivation and emphasis. A report on some
interesting and annoying open questions follow. Subsequent sections discuss bibliographic
details of more recent publications in this area and introduce the reader to some shorter
proofs of key theorems due to Helge Glöckner. We conclude with Errata.

We hope that you will find this enhancement useful and that you will assist us in keeping
it up-to-date by sending us additional material relevant to our book. These remarks can be
sent to hofmann@mathematik.tu-darmstadt.de and/or s.morris@ballarat.edu.au
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0. Preface to our book

Sophus Marius Lie (184–1899) laid the foundation of the theory named Lie theory in honor
of its creator. Several mathematicians, likewise prominent in the history of modern mathe-
matics, contributed to its inception in the decades following 1873, which was the year in which
Lie started to occupy himself intensively in the study of what he called continuous groups,
notably: Friedrich Engel, Wilhelm Killing, Élie Cartan, Henri Poincaré, and
Hermann Weyl. From the beginning, however, the advance of Lie theory bifurcated into
two separate major highways, which is the reason why the words Lie Theory mean different
things to different people. Lie himself aimed at accomplishing for the solution of differential
equations (in the widest sense) what Évariste Galois and Lie’s countryman Niels Hen-
rik Abel achieved for the solution of algebraic equations: A profound understanding and,
to the best extent possible, a classification in terms of groups. Even though Lie considered
himself a “geometer,” he created a territory of analysis that is called “Lie Theory” by those
working in it, and that is represented by the well-known text by Peter J. Olver entitled
“Applications of Lie Groups to Differential Equations” [Springer-Verlag, Berlin, New York,
etc., 1986]. We should say in the beginning, that the project of Lie theory which we shall
discuss in this book, in philosophy and thrust, does not belong to this line.

A second highway was taken by Killing and Cartan. It led to a study of what soon became
known as Lie algebras, of the group and structure theory of Lie groups, and to the geometry
of homogeneous spaces. The latter notably yielded the classification of symmetric spaces by
Élie Cartan. At long last it merged into the encyclopedic attempt by Nicolas Bourbaki
of the nineteen hundred sixties and seventies, to summarize what had been achieved, and to
the emergence of an immense collection of textbooks at all levels. In 1976 Jean Dieudonné
quipped “Les groupes de Lie sont devenus le centre de mathématique. On ne peut rien faire
de sérieux sans eux. (Lie groups have moved to the center of mathematics. One cannot
seriously undertake anything without them.) By and large, in this line of “Lie theory” the
words meant the structure theory of Lie algebras and Lie groups, and in particular how the
latter is based on the former.

The term ‘Lie group’ originally meant ‘finite-dimensional Lie group’ and most people under-
stand the words in this sense today. However even Sophus Lie spoke of “unendliche Gruppen”
by which he meant something like infinite-dimensional Lie groups. But reasonable concepts
of dimension were not yet available in the 19th century before topology was on its way. And
indeed Lie’s attempts in this direction did not appear to have gotten off the ground.

The significance of Lie’s discoveries was emphasized by David Hilbert by raising the ques-
tion in 1900 whether (in later terminology) a locally euclidean topological group is in fact
an analytic group in the sense of Lie. This was the fifth of his famous 23 problems which
foreshadowed so much of the mathematical creativity of the 20th century. It required half a
century of effort on the part of several generations of eminent mathematicians until it was
settled in the affirmative. Partial solutions came along as the structure of topological groups
was understood better and better: Hermann Weyl and his student F. Peter in 1923
laid the foundations of the representation and structure theory of compact groups, and a
positive answer to Hilbert’s Fifth Problem for compact groups was a consequence, drawn by
John von Neumann in 1932. Lev Semyonovich Pontryagin and Egbert Rudolf van
Kampen developed in 1932, respectively, 1936, the duality theory of locally compact abelian
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groups laying the foundations for an abstract harmonic analysis flourishing throughout the
second half of the 20th century and providing the central method for attacking the structure
theory of compact abelian groups via duality. Again a positive response to Hilbert’s question
for locally euclidean abelian groups followed in the wash.
One of the most significant and seminal papers in topological group theory was published in
1949 by Kenkichi Iwasawa, some three years before Hilbert’s Problem was finally settled
by the concerted contribution of Andrew Mattei Gleason, Dean Montgomery, Leon
Zippin, and Hidehiko Yamabe. It was Iwasawa who clearly recognized for the first time
that the structure theory of locally compact groups reduced to that of compact groups and
finite-dimensional Lie groups provided one knew that they happen to be approximated by
finite-dimensional Lie groups in the sense of projective limits, in other words, if they were
pro-Lie groups in our parlance. And this is what Yamabe established in 1953 for all locally
compact groups which have a compact factor group modulo their identity component—almost
connected locally compact groups as we shall say. The most influential monograph collecting
these results was the book by Montgomery and Zippin of 1955 with the title ”Topological
Transformation Groups”. The theories of compact groups and of abelian locally compact
groups had introduced in the first half of the century classes of groups with an explicit
structure theory without the restriction of finite-dimensionality, and in the middle of the
century these results opened up an explicit development for numerous results on the structure
theory of locally compact groups.

What are the coordinates of our book in this historical thread?

It was recognized in 1957 by Richard Kenneth Lashof that any locally compact group G
has a Lie algebra g. If g is appropriately defined, then the exponential function exp: g→ G is
supplied along with the definition. Yet the fact that these observations are the nucleus of a
complete and rich, although infinite-dimensional Lie theory was never exploited. The present
book is devoted to the foundations, and the exploitation of such a Lie theory. At a point
in the overall historical development where infinite-dimensional Lie theories gain increasing
acceptance and attract much interest, this appears to be timely. The Lie theory we unfold is
based on projective limits, both on the group level and on the Lie algebra level. We shall find
it very helpful that category theory, as a tool for the “working mathematician” as Saunders
MacLane formulated it, is so well developed that we see immediately what we need, and we
shall exploit it. In our case, we need the theory of limits in a complete category, that is, in a
category in which all limits exist, and we need the theory of pairs of adjoint functors, which
is closely linked with limits.

The machinery of projective limits is familiar to mathematicians dealing with profinite groups
in their work on Galois theory and arithmetics, quite generally. But the apparatus of pro-
jective limits is also familiar to mathematicians dealing with compact groups, their represen-
tation theory and abstract harmonic analysis. Indeed all group theoreticians working on the
structure theory of locally compact groups encounter projective limits sooner or later. In this
book we shall call projective limits of projective systems (or, as some authors say, inverse
systems) of finite-dimensional Lie groups. That is, pro-Lie groups relate to finite-dimensional
Lie groups exactly as profinite groups relate to finite groups.
However, in the theory of locally compact groups, one encounters a special kind of projective
limit, namely, limit situations where limit maps and bonding maps are, that is, are closed
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continuous homomorphisms between locally compact groups having compact kernels. Some
authors call such maps perfect. This type of projective limit has a significant element of
compactness already built into its definition, and it is this type of limit that has shaped the
intuitions of group theoreticians for fifty years or more.

From the vantage point of category theory, however, such a restriction is entirely unnatural,
as is indeed the entire focus on locally compact pro-Lie groups: The class of locally compact
groups is not even closed under the formation of products—as the example of the groups
RN or ZN shows immediately. Mathematicians will be naturally attracted to the problem of
eliminating the focus on locally compact groups. As one proceeds in the direction of pro-Lie
groups in general, however, one comes to realize that the restriction to locally compact groups
is unnatural also for reasons that are entirely interior to the mathematics of topological groups
and Lie groups. For several years we have been engaged in the laying of the foundations of a
general theory of the category of pro-Lie groups. The results are presented in this book. On
the first 60 pages, the reader will find a panoramic overview of what is contained in its 14
chapters, and the user of the book should get a more compact overview by perusing its table
of contents.

The Lie theory of finite-dimensional Lie groups works because for a connected Lie group G,
its Lie algebra g and its exponential function exp: g → G largely determine the structure
of G. We hasten to add that, except for the case that G is simply connected, they do
not do so completely. As the title of our book indicates, we focus on a Lie theory for
connected pro-Lie groups. As a consequence, our structure theory is one that is mainly
concerned with connected pro-Lie groups, sometimes going a bit further, but rarely much
beyond almost connected groups. In view of Yamabe’s Theorem, the structure theory of
connected or almost connected pro-Lie groups applies at once to connected or even almost
connected locally compact groups.

There are several key elements to the structure theory of pro-Lie groups.

Firstly, a thorough understanding of the working of projective limits is needed without the
crutch of thinking in terms of proper maps all the time. Chapter 1 deals with many facets of
this issue. But only after Chapter 3 will we have understood all aspects of what this means
for the very definition of pro-Lie groups itself.

Secondly, the entire theory depends on our accepting that pro-Lie groups, even though not
being Lie groups, nevertheless have a working Lie theory, complete with the appropriate Lie
algebras which we shall call pro-Lie algebras and working exponential functions that mediate
between pro-Lie groups and their Lie algebras. Indeed we must become aware at an early
stage that there is a good Lie algebra functor from the category of pro-Lie groups to the
category of pro-Lie algebras. One of the very positive side effects of facing wider categories
than the conventional ones in developing a Lie theory is that this enlargement of scope
forces us to realize in great clarity that the Lie algebra functor is opposed by a Lie group
functor that encapsulates lucidly the contents of Lie’s Third Fundamental Theorem. This
applies to the classical situation as well, but it is not recognized there because the theory
of universal covering Lie groups, while providing topologically satisfying results in general,
tends to obscure the precise functorial set-up. Since for pro-Lie groups a classical covering
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theory is impossible as, one knows from the theory of compact connected abelian groups,
it is mandatory that one understands the functorial background of a more general universal
covering theory. We shall discuss this in Chapters 2, 4, 6 and 8.

Thirdly, the success of the structure theory of pro-Lie groups depends in a large measure on
our success in dealing with the structure theory of pro-Lie algebras. This pervades the whole
book, but most of this is done in our rather long Chapter 7. The point is that the topological
vector spaces underlying pro-Lie algebras are what we call weakly complete topological vector
spaces, because they are exactly the duals of real vector spaces given the weak ∗-topology,
that is, the topology of pointwise convergence of linear functionals. Since the vector space
duality is crucial for this class of topological vector spaces and hence for the structure theory
of pro-Lie algebras we present the essential features of the linear algebra of weakly complete
topological vector spaces in an appendix, namely, Appendix 2. The relevance of weakly
complete topological vector spaces in the structure theory of pro-Lie groups themselves is
evidenced in that chapter in which we discuss the structure of commutative pro-Lie groups,
and that is Chapter 5.

With all of these foundations done, the Lie and structure theory of pro-Lie groups can proceed,
as it does in Chapters 9 through 13. This preface is not the place to go into the details, but
we shall present to our readers in the beginning of the book, in our panoramic overview, the
results which we obtain. One of the lead motives of our structure theory is to reduce the
structure of connected pro-Lie groups in the optimal extent possible to the structure theory of
compact connected groups, weakly complete topological vector spaces, and finite-dimensional
Lie groups. We will prove some major structure theorems which expose that we, in essence,
achieve this goal.

1. Open problems on pro-Lie groups
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The following list of open questions is grouped into subject matter within the theory of
pro-Lie groups. Various comments are intended as a guidance.

1. Foundations of Pro-Lie Groups

Despite the amount of information provided in Chapter 3 of our book [0] the papers [1.1–1.4]
above and the additional material presented in Sections 2 and 3 below, a definitive answer to
the following question is not known:
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Problem 1.1.1. Let G be a pro-Lie group and G0 the connected component of the identity.
Is the component factor group G/G0 complete?

In [0], 3.31, p. 154 it was shown that the open normal subgroups of G/G0 form a basis of
the filter of identity neighborhoods. In [0], Theorem 4.1 it was shown that the property of
having arbitrarily small normal subgroups N such that G/N is a Lie group passes down to
quotient groups. In [0], Corollary 4.11 we saw that there are indeed pro-Lie groups with
incomplete quotient groups. There are sufficient conditions on G0 for Problem 1.1.1 to have
an affirmative answer: (i) G0 is locally compact or is isomorphic to a product of first countable
groups (see [0] Theorem 4.28 and subsequent discussion on p. 204), (ii) G0 is abelian (first
factor the maximal compact connected subgroup C, notethat (G/C)0

∼= RJ by [0], Theorem
5.20, then apply (i). (iii) G0 is simply connected reductive (see [0], p. 204). The significance
of an affirmative answer to Problem 1.1.1 is that [0], Theorem 4.28(i) would simply read the
quotient group of a pro-Lie group modulo an almost connected closed normal subgroup is a
pro-Lie group.

A basic ingredient of the foundations of pro-Lie group theory is the set N (G) of normal
subgroups such that G/N is a Lie group. Indeed if G is a complete group and N (G) has
arbitrarily small elements, then G is a pro-Lie group. The good news about N (G) is that
it is completely canonically attached to a topological group G, containing at least G itself.
It contains {1} iff G is a Lie group. The bad news is that in many cases, even the simplest
ones, N (G) is much too large for most intents and purposes. If G is a Lie group, then N (G)
contains all closed normal subgroups; If G is an abelian Lie group, N (G) is the set of all
closed subgroups. For G = R or G = Z, this means that N (G) contains all subgroups of the
form r·Z, r ∈ G while it would be good enough consider the set of the singleton subgroup if
G is a Lie group itself. If G is a simply connected pro-Lie group, the set N0(G) of all identity
components N0 of the members N of N (G) is a filter basis that is cofinal in N (G).

In [0], Chapter 6 in Definition 6.1 on p. 249 we introduced the filter basis NS(G) of closed
normal subgroups such that G/N is simply connected.

In our discussion of the completeness of quotients beginning with 4.24 on p. 195 we started a
process of “thinning out” N (G), deriving the subsetM(G) which, in [0], 4.25 we found to be
cofinal in N (G) if G is almost connected. More on this is to be found in [0], Corollary 9.45.
In Definition 4.26 we use the set M(G) to define what we call the Z-topology, a tool we use
in showing the at least certain quotients of pro-Lie groups are again pro-Lie groups. There is
a need for consolidation of a theory of various relevant subsets of N (G); the information we
have is currently dispersed over various parts of [0] even though the issue as such belongs to
the foundations of the theory of pro-Lie groups.

Problem 1.1.2. Let G be a pro-Lie group. Is there a coherent and systematic theory of
the sets N (G), NS(G), M(G), N0(G). Particular emphasis is to be given the case that G is
almost connected, that is, that G/G0 is compact.
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2. Compact Generation

A topological group G is compactly generated if there is a compact subset C ⊆ G such that
G = 〈C〉, that is, that G is algebraically generated by C.
In [1.3] above we have the following result, arising in the context of [0], Corollary 12.87.

Proposition. Let G be a connected pro-Lie group and C one of its maximal compact sub-
groups. Then the following statements are equivalent:

(i) G is compactly generated.
(ii) G is σ-compact.
(iii) G/C is σ-compact.
(iv) G/C is locally compact.
(v) rank(G) = dimG/C <∞.

(vi) G is locally compact.

This suggests the following question:

Problem 1.2.1 Is a compactly generated pro-Lie group locally compact?

For connected pro-Lie groups, the preceding Proposition gives an affirmative answer. In [0],
Chapter 5, Theorem 5.20(v), p. 230, it was shown that in every abelian pro-Lie group G, the
identity componentG0 and the union of all compact subgroups generate a closed characteristic
subgroup G1 and that G/G1 is a pro-discrete group without nontrivial compact subgroups.
Theorem 5.32 proves that in a compactly generated abelian pro-Lie group G, the subgroup
G1 is locally compact and G/G1 is a compactly generated prodiscrete abelian group without
compact nonsingleton subgroups.
Thus even the following question has not been answered.

Problem 1.2.1.1. Is an abelian prodiscrete compactly generated group without nondegen-
erate compact subgroups discrete?

If the answer is yes here then it would follow that a compactly generated abelian pro-Lie
group G is locally compact and then would be isomorphic to Rn × C × Zn for the unique
maximal compact subgroup C of G.

3. Abelian Pro-Lie Groups

Despite a full chapter on the structure theory of abelian pro-Lie group presented in [0], such
a theory is far from complete. Partial results are found in [0] from 5.33, p. 238 to 5.41 on
p. 241, followed by additional structural result until 5.47 on p. 245.
Therefore we formulate:

Problem 1.3.1. Is there a convincing structure and character theory of prodiscrete abelian
groups?

Problem 1.3.1.1. Treat the special case of compact-free prodiscrete groups. As a typical
example, the kernel F = Hom(ZN,Z) of the morphism is a closed and nondiscrete subgroup
of Hom(ZN,R) ∼= RR and is algebraically isomorphic to Z(N). Investigate the character group
and bicharacter group of F . (See [0], pp. 173ff.)

Problem 1.3.1.2. Treat the special case of prodiscrete groups consisting of compact
elements.
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A relevant example is as follows: Let Z(2) = Z/2Z be the group of 2 elements. The group
Z(2)(ℵ1) has a nondiscrete group topology making it a prodiscrete (hence pro-Lie) group T .

This is a torsion group, hence T is the union of all compact subgroups. The bidual
̂̂
T is

discrete; the evaluation morphism T → ̂̂
T is bijective and open but not continuous. (See [0],

Example 14.15)

4. Topological Splitting of Maximal Compact Subgroups

In [0], 12.81–12.86 we proved the following result:

Theorem. Let G be a connected pro-Lie group. Then there is a closed subset M ⊆ G and
a compact subgroup C ⊆ G such that

(i) there is a homeomorphism φ:RJ →M for a set J .
(ii) Every compact subgroup has a conjugate contained in C.
(iii) (v, c) 7→ φ(v)c:RJ × C → G is a homeomorphism.

This theorem has formidable consequences some of which are discussed in [0] and in [1.3].
For instance, together with Theorem 6 of [5.2] in Section 5 below it implies that connected
pro-Lie groups are Baire spaces. It is reasonable to expect that the answer to the following
question is positive.

Problem 4.1. Does the theorem above remain valid if G is an almost connected pro-Lie
group?

Similarly, it is not unreasonable that the answer to the following question is yes:

Problem 4.2. Let G be an almost connected pro-Lie group. Does there exist a profinite
subgroup P such that G = G0P?

The answer is yes if G is locally compact G (see [1.4]). The authors shall deal with Problems
4.1 and 4.2 in a forthcoming publication.
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2. The Closed Subgroup Theorem and
Glöckner’s Shorter Alternative Proof

of the Pro-Lie Group Theorem
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Recall that a pro-Lie group is a complete topological group G in which every identity neigh-
borhood contains a normal subgroup N such that G/N is a Lie group ([0], Definition 3.25,
p. 149). The Pro-Lie Group Theorem is fundamental and states ([0], Theorem 3.34, p. 157)

2.1. Every projective limit of Lie groups is a pro-Lie group.

An alternative (but not self-contained) proof was given by Adel George Michael in [2.3]).
A proof that is very much in the spirit of our book [0] was recently given by Helge Göckner.
It takes off at the point of p. 148 of [0] from the end of the section called Weakly Complete
Topological Vector Spaces and Lie Algebras (pp. 143–148) and from there provides in [2.1] a
very elegant and short proof of 2.1 above. As a second very valuable observation he provides
the insight, that in this very section provides the basis for a very short proof of the One
Parameter Subgroup Lifting Lemma ([0], Lemma 4.19, p. 184; see also [0], Definition 2.6 on
p. 110 and Theorem 2.19 on p. 120):

2.2. Let f :G → H be a quotient morphism of topological groups and assume that G is a
pro-Lie group. Then L(f):L(G)→ L(H) is surjective.

In Chapter 4 of our book [0], the consequences of this result are discussed in 4.20ff., pp. 188ff.
The significance of Glöckner’s observation regarding the One-Parameter Subgroup Lifting
Lemma is that it obviates the rather lengthy proof of [0], Lemma 4.19, p. 184ff.

Another good use of the very same section (pp. 143–148) was made by us in [2.2], where we
prove the following result:

2.3. (a) Let H be an almost connected closed subgroup of a pro-Lie group G and let
M ∈ N (G). Then there is a closed normal subgroup N of HM such that N ⊆ M and the
standard bijection

fN :H/(H ∩N)→ HN/N, fN (h(H ∩N)) = hN,

is an isomorphism of Lie groups.
(b) If H is normal in G, then N is constructed to be normal in G, that is, N ∈ N (G).

Theorem 2.3 above secures another instance of the validity of the so-called Second Isomorphy
Theorem H/(H ∩N) ∼= HN/N in the category of topological groups. Usually, if it is true at
all in the sense that the isomorphism holds algebraically and topologically, some application
of the Open Mapping Theorem is involved (see e.g. [0], Corollary 9.62, p. 413) which is not
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the case in this instance. Theorem 2.3 pertains to the theory of projective limits. Normally,
hypotheses on the projective system lead to conclusions on the limit. It is rare that, as in
Theorem 2.3, assumptions on the limit entail conclusions on the projective system.

In the general context of our book [0], the significance of Theorem 2.3 lies in its pertaining
to the so-called “Closed Subgroup Theorems”. Our book contains one such theorem on
topological groups which are given as projective limits in the category of complete topological
groups (see [0], Theorem 1.34, p. 96f.), and it contains another one for the category of pro-Lie
groups (see [0], Theorem 3.35, p. 158). We need to go into some detail at this point.
In the course of his study [2.1], Helge Glöckner discovered that in our Closed Subgroup
Theorem [0], 1.34, the statements (iii), and (iv) on p. 97 are false and need to be withdrawn
(see Section “Errata” below). Statement (iii) was never used with the exception of deriving
(iv), but (iv) was used in a number of places in the book and these have to be discussed. It
is here where Theorem 2.3 above comes in as a partial replacement of statement [0] 1.34(iv).
It is partial for two reasons: Firstly, in 1.34(iv), the isomorphism H/(H ∩N) ∼= HN/N was
asserted for all N ∈ N (G) whereas in 2.3 it was proved only for a cofinal subset of subgroups
N . Secondly, in 1.34, statement (iv) was asserted for all complete G which are projective
limits of complete quotients G/N , while 2.3 above is asserted for pro-Lie groups G only. The
full analogy between the abandoned statement 1.34(iv) and Theorem 2.3 above is attained
for normal subgroups H.
In as much as Theorem 2.3 above corrects [0], Theorem 1.34 (iii,iv), it cannot be inserted in
the vicinity of [0], 1.34, since it deals with pro-Lie groups and is based on material introduced
in [0], Chapter 3. The precise coordinates involved in dealing with the rectification of the
omission of 1.34 (iii,iv) are described in [2.2] and in the List of Errata below.
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3. Glöckner’s and Neeb’s Locally Convex Lie Groups
versus Pro-Lie Groups
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Calculus on manifolds which are modeled on Banach spaces is rather well known and thus one
is reasonably familiar with Lie groups having an identity neighborhood that is diffeomeorphic
to an open subset of a Banach space. Doing calculus on manifolds which are modelled on
locally convex topological vector spaces is considerably harder, and, accordingly, a smooth
Lie group theory for Lie groups on such locally convex manifolds is much harder to come by;
in short, one refers to a group G as a locally convex Lie group if it supports a group structure
in the category of smooth locally convex manifolds. A comprehensive source will become
available in the form of the multivolume work [3.1]. Meanwhile, Karl-Hermann Neeb’s
booksize survey paper [3.3] is an excellent introduction.
In our book [0], we provide a Lie theory for the class of pro-Lie groups in terms of topololgical
groups and without reference to calculus. It is, therefore, a natural question, whether there
are pro-Lie groups that are locally convex Lie groups in the sense of Glöckner and Neeb,
and indeed if that is the case, how they are to be characterized and whether the pro-Lie
group Lie theory (that is, associated Lie algebras and exponential functions) agree with the
smooth Lie theory attached to a locally convex Lie group via smooth calculus.
This is where reference [3.2] above comes in and answers all of these questions.
Let us record here some of the most crucial results which connect the Lie theory of pro-Lie
groups and smooth Lie theory of locally convex Lie groups.

We shall call a topological group G locally contractible if G has an identity neighborhood U
which is contractible to a point in G, that is, there is a homotopy F : [0, 1]×U → G such that
F (0,−) is the inclusion U → G and F (1,−) is the constant function U → G taking the value
1. Of course, a group is locally contractible if it has a contractible identity neighborhood.

Theorem 3.1. A pro-Lie group G carries a locally convex Lie group structure compatible
with its topology if and only if it is locally contractible.

Let us call a pro-Lie algebra smooth, if it occurs as the Lie algebra of some locally contractible
pro-Lie group. The following theorem now classifies smooth pro-Lie algebras: But first recall
from [0], Corollary 7.29 on p. 283, Theorem 7.48, p. 292, Theorem 7.52, p. 7.52 that every pro-
Lie algebra g is a semidirect algebraic and topological sum of a prosolvable radical r(g) and a
product

∏
j∈J sj for a family of finite dimensional simple real Lie algebras sj . The universal

simply connected pro-Lie group Γ(g) attached to a pro-Lie algebra was constructed in [0] in
Chapters 2,6, and 8. Recall that there is a categorical equivalence between the categories
of pro-Lie algebras and simply connected pro-Lie groups via g 7→ L(g) and G 7→ L(G).
A compact connected group G is nearly abelian if its commutator group [G,G] is finite
dimensional.

11



Theorem 3.2. For a pro-Lie algebra g, the following are equivalent:
(1) g is the Lie algebra of a locally convex Lie group G with smooth exponential function.
(2) g has a Levi decomposition g ∼= r(g)×s, where only finitely many factors in s ∼=

∏
j∈J sj

are not isomorphic to sl2(R).
(3) The corresponding simply connected universal group Γ(g) is locally contractible.
(4) The maximal compact subgroups of Γ(g) are nearly abelian.
(5) There exists a locally contractible pro-Lie group G with L(G) ∼= g.

In locally convex smooth Lie group theory, the issue of the existence of a smooth exponential
function is by no means trivial. A Lie group G is called regular if for each smooth curve
ξ: [0, 1]→ g, the initial value problem

γ(0) = 1, γ′(t) = γ(t) · ξ(t) = T1(λγ(t)) · ξ(t)

has a smooth solution γξ: [0, 1]→ G, and the map

ev:C∞([0, 1], g)→ G, ξ 7→ γξ(1)

is smooth. Then expG(x) := ev(x), where x ∈ g is identified with a constant function
[0, 1]→ g, yields an exponential function of G.
In the context of smooth pro-Lie groups we do get results like the following:

Theorem 3.3. For a pro-Lie algebra g, the following assertions hold:
(1) If G is a Lie group with a smooth exponential function and L(G) = g, then g is smooth.
(2) If g is smooth, then there exists a unique simply connected connected regular Lie group,

which is isomorphic to Γ(g) as a topological group.
(3) If G is any connected regular Lie group for which g = L(G), then G is a quotient of

Γ(g) by a discrete central subgroup. A subgroup D ⊆ Z(Γ(g)) is discrete if and only if it
is finitely generated and its intersection with the identity component Z(Γ(g))0

∼= z(g) is
discrete.

A Lie group G is called locally exponential if it has a smooth exponential function expG:
L(G) → G mapping some open 0-neighborhood in L(G) diffeomorphically onto an open
identity neighborhood in G.
A pro-Lie algebra g is locally exponential if and only if the set of exp-regular points, that
is, the set of all x ∈ g for which Spec(adx) ∩ 2πiZ = {0}, is a 0-neighborhood. Now we are
ready for

Theorem 3.4. A pro-Lie group G is locally exponential if and only if it is locally con-
tractible and L(G) is a locally exponential Lie algebra. A pro-Lie algebra g is locally expo-
nential if and only if the set of exp-regular points, that is, the set of all x ∈ g for which

Spec(adx) ∩ 2πiZ = {0},

is a 0-neighborhood.

For additional details the reader should consult reference [3.2] above.
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4. Errata

In counting lines, headlines do not count.

page 11, line 7 read: “the underlying topological vector space”.
page 13, line 7 read: “Hom(Ĝ,R),”
page 22, line 17 read: “cardα ≤ cardg” via”
page 22, line -16 read: “γ ≤ ω, then”
page 23, line -1 read :“· · · ∩ r(g) = · · ·”
page 25, line 16 replace “an inner” by “a special”
page 26, line 1 read: “denote its nilradical or”
page 28, line 2 read: “of pro-Lie algebras translates”
page 28, line 3 read: “to simply connected pro-Lie groups.”
page 28, line -17 read: “immersed connected submanifold.”
page 29: line 6 read: if and only if there“
page 30, line 4 read: bijection onto the set of closed subalgebras of L(G) with
page 33, line 7 of Theorem 42 replace ker(ρ1)N by ker(ρ).
page 36, line 6 drop the word “Lie”.
page 36, line 10 delete “g = L(G) and”.
page 36, lines 11 and -14 replace “card g” by cardG.
page 36, line 18 read: “γ ≤ ω” instead of “γ ≤ ω”.
page 38, line 2 delete “transfinitely”
page 41, line -4 read: “N×ιG” not “G×ιN”.
page 42, line 2 of Theorem 63 replace “semisimple” by “reductive”.
page 42, line 3 of Theorem 63 replace “〈expG g〉” by “〈expG s〉”.
page 43, line 7 replace “z ∈ Z” by “z ∈ Z(G)0”.
page 46, part (iv) of Theorem 72 omit.
page 46, line 2 of Theorem 73 replace “semisimple” by “reductive”.
page 46, line-9 read “g-module as”.
page 47, line 1: read “x ∈ L” instead of “x ∈ g”.
page 48, Part (v) of Theorem 76 delete Part (H) and rename (I) into (H).
page 48, line -15 read z(g) + k without overbar (cf. A2.12(c)!)
page 49, line 11 from below: read the remainder of the page as follows:

We shall prove the following fact:
Proposition 79 (7.87). If a closed pronilpotent subalgebra h of a pro-Lie algebra g is its own
normalizer, then g0(h) = h, but simple examples show that the converse implication fails.
This situation causes the definition of a Cartan algebra to deviate from the finite dimensional
case:
Definition 80b (7.88). A subalgebra h of a pro-Lie algebra g is called a Cartan subalgebra
if it is closed and pronilpotent and if it satisfies g0(h) = h.

page 52, line -20 read expΓ(g) g.
page 54, line -2 replace “maximal potentially compact connected”

by “maximal compactly embbedded connected”.
page 55, line -17 replace “zc” by “vzc”.
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page 56, line 17 delete “Lie”.
page 59, line -5 read “group G is homeomorphic”.
page 61, lines -9,-5 replace “N (G) by “nilcore(G)”.
page 67, line 2 read “and q = prB e.”
page 70, line 3 delete the word “full”.
page 72, line 12 delete “that”.
page 89, line 9 the north-east corner of the diagram should

read limP∈N G/P
page 89, line 1 of 1.27(iv) read “be the morphisms induced”.
page 89, lines -14to-10 remove.
page 90, line 3 insert comma before “i.e.,” and

replace “i.e” by “that is”.
page 90, line 8 read: there is a k ∈ J , j ≤ k, and
page 90, lines 21,22,23 omit.
page 90, line -5 after “onto its image” insert:

“, and so, while the Gj may come from a desirable class, such as the class of Lie groups, the
quotients G/N may not be in that class”

page 94, line 1 of Theorem 1.30 replace “filter” by “filter basis”.
page 96, line 2 of 1.33(ii) omit “and η is an isomorphism inverting γG.
page 96, lines -2,-1 of the proof of 1.33omit “It is straightforward. . .η−1 = γG.”
page 96, after the proof of 1.33 insert the following paragraph:

It is straightforward that ηγG = idG, and since γG is an isomorphism by Theorem 1.33(i),
this shows once more that η−1 = γG as we proved in Theorem 1.27(ii) without completeness
hypothesis.

page 97 lines 1–4 replace by the following:

(iii) The limit maps µM : limN∈N HN/N → HM/M , M ∈ N , are surjective morphisms.
(iv) The standard morphisms H/(H ∩N)→ HN/N are bijective morphisms of topological
groups.

page 99, line 3 The assertion that µMN is a quotient mor-
phism is false. Therefore, conclusions (iii) and
(iv) of the Theorem had to be replaced.

page 98, from line -2 until
page 99, line 11 not counting the diagram, replace by

(iii) We must show that the limit morphisms µM : limN∈N HN/N → HM/M are surjective:
An element ξ of HM/M is a coset kM for some k ∈ H. After (ii) we know that h 7→
(hN)N∈N : H → limN∈N HN/N is an isomorphism. Then µM (k) = kM = ξ.

14



(iv) We recall that

η:H/(H ∩N)→ HN/N, η
(
h(H ∩N)

)
= hN,

is algebraically an isomorphism and that it is the unique morphism of topological groups
induced by the continuous morphism h 7→ hN : H → HN/N whose kernel is H ∩N .

page 99, line -13 replace “Ga” by “Gα”.
page 127, line 2 read “πA:F (U(A))→ A such that”.
page 136, lines -6, -5 reformulate as follows:

It follows immediately from Proposition 3.2 that LieProGr is also closed under passing to
closed subgroups. In Theorem 3.35 this will be corroborated in a different fashion.

page 139, line -4 Deline entire line.
page 139, line -3 read “Let L be a complete topological”
page 140, line 3 After “of ideals” insert “converging to 0 and”
page 143, line 5 of 3.18 read γjkj (gkj ) ⊆ γj(g).
page 144, line 13 read “. . .Limits 1.27(iv) to. . .”.
page 144, line 15 read (Appendix 2, Theorem A2.12(b)).
page 144, line -1 line starts with “exp aj”, not with “aj”.
page 146, line -5 line starts with “L(G0)”, not with “L(B)”.
page 147, bottom display diagrams read rightmost down arrow:

HyincA ◦ε

G0

page 148, line 1 read:

βj
def
= f jkj ◦ fkj |G

0 : G0 → Hj

page 148, line 4 read H = limj∈J Hj

page 149, line 3 of 3.25 read “normal subgroup N such that”.
page 151, line -3 Replace “Example 3.28. All” by

Exercise E3.7. Show that all
page 151, line -2 From “This is” to the end of the

page, read:
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[Hint. This is an easy exercise from Definition 3.25 of a pro-Lie group and the discussion of
3.4 in Exercise E3.2.]

page 151, line -1 At the bottom of the page insert the following text:

We now prove a result which belongs to the context of the Closed Subgroup Theorem 1.34.

Theorem 3.28. (a) Let H be an almost connected closed subgroup of a pro-Lie group G
and let M ∈ N (G). Then there is a closed normal subgroup N of HM such that N ⊆M and
the standard bijection

fN :H/(H ∩N)→ HN/N. fN (h(H ∩N)) = hN,

is an isomorphism of Lie groups.
(b) If H is normal in G, then N is constructed to be normal in G, that is, N ∈ N (G).

We shall prove this theorem in several steps through a sequence of lemmas. We are given the
pro-Lie group G with its filter base N (G) of closed normal subgroups N such that G/N is a
Lie group. Then G may be identified with the projective limit of the system

{pMN :G/N → G/M : N ⊆M, m,n ∈ N (G)}.

By Theorem 1.34, a closed subgroup H of G gives rise to three projective systems of topo-
logical groups:

{qMN :HN/N → HM/M : N ⊆M, M,N ∈ N (G)},
{rMN :HN/N → HM/M : N ⊆M, M,N ∈ N (G)},
{sMN :H/(H ∩N)→ H/(H ∩M) : N ⊆M, M,N ∈ N (G)},

and all of them have H as limit by Theorem 1.34, as is illustrated in the following diagram:

H
H∩M

sMN←−− H
H∩N

sN←−− H ∼= limP∈N (G)
H

H∩P
fM

y fN

y ylimP∈N(N) fP

HM
M

rMN←−− HN
N

rN←−− H = limP∈N (G)
HP
P

inc

y inc

y yidH

HM
M ←−−

qMN

HN
N ←−−

qN
H = limP∈N (G)

HP
P

inc

y inc

y yinc

G
M ←−−

pMN

G
N ←−−

pN
G = limP∈N (G)

G
P .

We note, in particular, that qN (H) = HN
N . For the Lie algebras L(G) we write g, etc.

Lemma A. Assume H to be connected. For each N ∈ N (G), the quotient H/(H ∩N) is
a Lie group with Lie algebra h/(h ∩ n).
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Proof. For N ∈ G the morphism f :H → G/N , f(h) = hN has kernel H∩N . The Lie group

G/N has an identity neighborhood V in which {1} is the only subgroup. Then U
def
= f−1(V )

is an identity neighborhood of H in which every subgroup is contained in H ∩ N . Since H
is assumed to be connected, this follows from Proposition 3.27 and Lemmas 3.23 and 3.24,
Since limN (H) = 1, there is a P ∈ N (H) such that P ⊆ U , and thus P ⊆ H ∩ N . Then
H/(H ∩ N) ∼= (H/P )/((H ∩ N)/P ) is a Lie group as a quotient of a Lie group. (Compare
the proof of 3.29(ii).)
We have L(H∩N) = h∩n since L preserves limits, hence intersections (cf. Theorem 2.25(ii)).
Let q:H → H/(H∩N) be the quotient morphism. We claim that L(q):L(H)→ L(H/(H∩N))
is surjective; once this is shown we know L(H/(H ∩N)) ∼= h/(h ∩ n) and this will complete
the proof of Lemma A.
So let us prove in general the following

Fact. Let q:H → K be a quotient morphism of topological groups and assume that H is a
connected pro-Lie group. Then L(q):L(H)→ L(K) is surjective.

Indeed, for a proof, let X ∈ L(K) and let β:R → K be defined by β(r) = expK r·X. Set
P = {(h, r) ∈ H × R : q(h) = β(r)}. Then P is a pull-back of pro-Lie groups and thus is
a pro-Lie group such that α:P → R, α(h, r) = r is a quotient. If we can show that this
morphism induces a surjective morphism L(α):L(P )→ L(R) = R then X is shown to be in
the image of L(q) and the claim will be proved. (These matters will be discussed in greated
detain in 4.16–4.18 below.)
By Lemmas 3.22 through 3.24 applied to P , we know that P0 = 〈expK L(P )〉. Thus
〈expR L(α)(L(P ))〉 == α(〈expP L(P )〉) is dense in α(P0) ⊆ R. As a connected subgroup
of R, the image α(P0) is either {0} or R; in the second case we are done. In the first we
obtain a quotient morphism P/P0 → R. By 3.30 and 3.31 below, which will be proved with
the information we have provided up to this point, we know that every identity neighborhood
U of P/P0 contains an open closed normal subgroup. Thus R. as a quotient of P/P0, would
have to have arbitrarily small open subgroups which is not the case. Thus α(P0) = R and
the proof of the fact and then of Lemma A is complete. ut

For the next step we accept the following facts: An arcwise connected subgroup of a Lie
group is an analytic subgroup by the Theorem of Yamabe-Gotô (see [70]). If A is an analytic
subgroup of a Lie group G, then there is a unique connected Lie group topology on A,
possibly finer than the topology induced from G, making it into a Lie group ALie such that
the inclusion map A→ G induces an injective morphism of topological groups f :ALie → G,
where L(f):L(ALie) → L(G) is an injection of Lie algebras and imL(f) = L(A). See for
instance [102], Theorem 5.52. The topology of ALie is the arc component topology of A (see
[102], A4.1ff.).

Lemma B. Assume that H is a connected closed subgroup of the pro-Lie group G. Then
for each N ∈ N (G), the group HN

N is an analytic subgroup of the Lie group G/N , and its

Lie algebra is h+n
n . The Lie group

(
HN
N

)
Lie

is isomorphic to H
H∩N ; indeed it is the image of

H
H∩N under the standard bijective morphism fN : H

H∩N →
HN
N , fN (h(H ∩ N)) = hN , given

the topology making fN a homeomorphism.
Proof. Let us write L = H/(H ∩N), whence we may write l = h/(h∩ n) by Lemma A. Set

17



a
def
= L(fN )(l) and A

def
= HN/N . By Lemma A, L is a Lie group, and since H is connected,

it is connected. Then L = 〈expL(l)〉 and we have

A = fN (〈expL(l)〉) = 〈fN (expL(l)〉) = 〈expG L(fN )(l)〉 = 〈expG a〉.

This means that A is the unique analytic subgroup of G generated by the (closed) subalgebra
a of L(G/N). By [102], Theorem 5.52(iii), a = L(HN/N). ut

We recall that fN : h/(h∩n)→ (h+n)/n is an isomorphism of pro-Lie algebras (more generally,
cf. Theorem A2.12(c).).
We abbreviate L(HN) by hN and note L(HN/N) = hN/n (see Corollary 4.21(i)). Our
passing to the Lie Algebras in our big commutative diagram yields

h
h∩m

sMN←−− h
h∩n

sN←−− h ∼= limP∈N (G)
h

h∩p

fM

y fN

y ylimP∈N(G) fP

h+m
m ←−−

rMN

h+n
n

rN←−− h = limP∈N (G)
h+p
py y yidh

hM

m ←−−
qMN

hN

n ←−−
qN

h = limP∈N (G)
hP

p

inc

y inc

y yinc

g
m ←−−

pMN

g
n ←−−

pN

g = limP∈N (G)
g
p .

Again we observe that qN (h) = h+n
n .

Lemma C. For each M ∈ N (G) there is an N = NM ∈ N (G) contained in M such that
hN

n = h+n
n + hN∩m

n .

Proof. Applying Lemma 3.18= Theorem A2.12 we find that for each M ∈ N (G) there is
an N = NM ∈ N (G) such that qMN (hN

n ) ⊆ qM (h) = h+m
m . Let X + n ∈ hN

n . Then we find
an element Y ∈ h such that X ∈ X + m = pMN (X + n) = qMN (X + n) = qM (Y ) = Y + m.
Thus there is a U ∈ m such that X − Y = U . Now U + n ⊆ hN ∩ m since h + n ⊆ hN . So
X + n = Y + U + n ∈ h+n

n + hN∩m
n . This implies the claim. ut

Now we let M∗ be that subgroup of HN ∩M ⊆M containing N for which M∗

N =
(
HM∩M

N

)
0

in the Lie group G/N . Then M∗ is normal in HN .
As a consequence of Lemma 2.5, we get

Lemma D. For each M ∈ N (G) there is an N = NM ∈ N (G) contained in M such that

HN

N
=
HN

N
·
(
HN ∩M

N

)
0

=
HN

N
·M
∗

N
=
HM∗

N
.

Proof. We have HN
N = 〈expG/N hN/n〉, further HN

N = 〈expG/N
h+n
n 〉 by Lemma C. Finally

hN
n
∩ m

n
= ker qMN and

HN

N
∩ M
N

= ker qMN ,

18



whence
(
HN∩M
N

)
0

= 〈expG/N (hN∩m
n )〉. Therefore, HN

N = 〈expG/N hN/n〉 =

〈expG/N

(
h+n
n +hN∩m

n

)
=〈expG/N

h+n
n 〉〈expG/N

hN∩m
n 〉=HN

N ·
(
HN∩M
N

)
0

=HN
N ·

M∗

N =HM∗

N .

This completes the proof. ut

Main Lemma E Let H be a closed connected subgroup of the pro-Lie group G. Then for
each M ∈ N (G) there is an NM ∈ N (G) such that NM ⊆ M and that, for the subgroup

M∗ ≤ HNM ∩M ⊆ HNM such that M∗

N =
(
HNM∩M

N

)
0

the following statements are true:

(i) NM ⊆M∗ ⊆M and HNM

M∗ = HM∗

M∗ is a Lie group.

(ii) The analytic subgroup HM∗

M∗ of the Lie group HM∗

M∗ is closed.

(iii) The natural morphism H
H∩M∗ →

HM∗

M∗ is an isomorphism of Lie groups.

Proof. We choose NM ∈ N (G) as in Lemma D.

Proof of (i). Trivially, NM ⊆ HNM and by the choice of NM we have NM ⊆ M . Hence
NM ⊆ HNM ∩M . The inclusion M∗ ⊆M is trivial. We note HM∗ ⊆ HNM ⊆ HM∗. Since

NM ∈ N (G), the quotient G/NM is a Lie group and thus the quotient HNM

M∗
∼= HNM/NM

M∗/NM
is

a Lie group as a quotient of a Lie group.

Proof of (ii). The quotient group HNM

NM
is an analytic subgroup of the Lie group G/NM

by Lemma B. The group HM∗/M∗ is a continuous image of this arcwise connected group
under the morphism hNM 7→ hM∗ and therefore, as an arcwise connected group, an analytic

subgroup. By Lemma D we have HNM

NM
= HM∗

NM
. Passing to the quotient modulo M∗/NM

on both sides yields HNM/NM

M∗/NM
= HM∗/NM

M∗/NM
, which is equivalent to HNM

M∗ = HM∗

M∗ ; this implies

that HM∗

M∗ is closed and is, therefore, a Lie group.

Proof of (iii). The natural bijective morphism of topological groups

h(H ∩M∗) 7→ hM∗ :
H

H ∩M∗
→ HM∗

M∗

between two connected Lie groups is an isomorphism by the Open Mapping Theorem for
Locally Compact Groups. ut

The situation is illustrated by the following diagram:

HM
M ←−− HM∗

M∗ ←−− HNM

NM
←−− H = limP∈N (G)

HP
P

inc

y =

y yinc

yidH

HM
M ←−− HM∗

M∗ ←−− HNM

NM

qN←−− H = limP∈N (G)
HP
P

inc

y yinc

yinc

G
M ←−−

pMN

G
NM

←−−
=

G
NM

←−−
pN

G = limP∈N (G)
G
P .

We observe that M∗ need not be a member of N (G). If H is a normal subgroup, then

HNM ∩M is normal in G, and since M∗

NM
=
(
HNM∩M
NM

)
0

is characteristic in G
NM

, the group
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M∗ is invariant under all automorphisms of G leaving NM invariant, and so certainly under
all inner automorphisms of G; and thus M∗ is a member of N (G). Therefore we have the

Lemma F. Let H be a closed connected normal subgroup of the pro-Lie group G. Then
for each M ∈ N (G) there is an M∗ ∈ N (G) such that M∗ ⊆ M and that the following
statements are true:
(i) The analytic subgroup HM∗

M∗ of the Lie group G
M∗ is closed.

(ii) h(H ∩M∗) 7→ hM∗ : H
H∩M∗→

HM∗

M∗ is an isomorphism of Lie groups.
ut

At this time we have proved the theorem for connected closed subgroups H. We now complete
its proof by showing that the results Lemma E remain intact for an almost connected closed
subgroup H of a pro-Lie group G.
Thus let H be a closed almost connected subgroup of the pro-Lie group G and let M ∈ N (G).
We apply Lemma D to H0 in place of H and find that there is a closed normal subgroup M∗

of H0M contained in M such that H0M
∗/M∗ is a connected Lie group. In particular, H0M

∗

is a closed subgroup of G. We must show that HM∗/M∗ is a Lie group; the remainder of
the theorem then follows. Now H/H0 is assumed to be compact. The continuous morphism

hH0 7→ hH0M
∗ : H/H0 → HM∗/H0M∗

is surjective. Hence HM∗/H0M
∗ is a compact group. Thus HM∗/M∗ is a locally compact

group as an extension of the Lie group H0M
∗/M∗ by the compact group HM∗/H0M

∗. The
morphism

h(H ∩NM ) 7→ hM∗:H/(H ∩NM )→ HM∗/M∗

is a surjective morphism from a σ-compact group onto a locally compact group and is therefore
open. The group H/(H∩NM ) is a Lie group. Thus HM∗/M∗ is a Lie group. This completes
the proof of the theorem.

page 152, 3.29(iii) replace by the following:

(iii) The set I = {j ∈ J : G0/(G0 ∩Kj) → (G0Kj)/Kj is an isomorphism of topological
groups} is cofinal in J . For j ∈ I, the group G0Kj is a Lie group and a closed subgroup
of G/Kj , and G0 = limj∈J(G0Kj)/Kj .

page 152, line 2 of 3.29(iv) read: G0/M into a Lie group.
page 152, lines -7,-6 replace “In particular, . . . (iii).” by the following:

Theorem 3.28 shows that the set I is cofinal in J , and it establishes the other statements of
(iii) as well.

page 152, lines -4 read: of the form M = G0 ∩ ker fj
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page 152, lines -2,-1 replace by the following:

an injective morphism G0/M → G0Kj/Kj → G/Kj
Fj→ Gj where Fj :G/Kj → Gj is the

unique morphism such that fj = Fj ◦ qj for the quotient map qj :G→ G/Kj .

page 154, line 2 replace “π′j” by πj′”.
page 156, line 1 replace “= δvN” by = δvM”.
page 156, line 5 replace “B/M” by “B/N”.
page 156, line -12(not counting diagr.)replace “4.3(b)” by “3.30(b)”.
page 157, line -7(not counting box) replace “Lemma 4.5” by “Lemma 3.32(i)”.
page 160 Example 3.38 add period at the end of the paragraph.
page 169, line 2 replace “morphism” by “monic”.
page 169, lines 4,5,6 replace by the following text:

then a has a unique factorisation a = a′ ◦ ε. We mention in passing that categories in which
every morphism φ has such a factorisation φ = µ◦ε are said to have epic-monic factorisation.

page 169, line -12 replace “qf” by “qφ.
page 169, line -12 replace “qf” by “qφ.
page 171, line 15 read “Let G be a proto-Lie group”
page 174, lines 3, 5 replace “P” by “G”.
page 182, line 6 read “of nonzero Hausdorff topological”.

page 182, line 7 read “Then E
def
= . . .”.

page 182, line 1 of Exercise E4.1 add period at the end of the line .
page 182, line -8 read “Theorem 7.30(iv)]); in particular, the”.
page 183: line 1 read “ Assume that f is a quotient morphism and”.
page 183, 4.16(i) insert before period: “and open”.
page 183 Exchange the order of 4.16 and 4.17.
page 188, line-10 not counting box before “Also recall” insert the following:

A short sequence of topological groups N
e−−→G f−−→H is called strict exact if e is a strict

morphism and im e = ker f . An exact sequence

1→ N
e−−→G f−−→H → 1

is called strict exact if the sequence of the middle three terms is strict exact.

page 189, diagram (*) the label of the right downarrow reads “L(νN )”.
page 189, line -8 replace “Theorem 1.20(i)” by “Theorem 1.29(i)”.
page 190, line -5: replace “L(f)(X)” by “L(q)(X)”.
page 193, lines 4–14 replace by the following:
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(b) (H. Glöckner) By Theorem A2.12(b)of Appendix 2, the map L(f) will be surjective
if it has dense image. As a consequence of Corollary 4.21 (ii), the latter is the case if
L(νN ◦ f):L(G) → L(H/N) is surjective for each N ∈ N (H), where νN :H → H/N is the
quotient morphism. We may therefore assume that H is a Lie group. But then f factors
through a surjective morphism g:G/M → H for some M ∈ N (G). Since G/M is an almost
connected Lie group and hence is σ-compact, g is a quotient morphism by the Open Mapping
Theorem for Locally Compact Groups. Hence L(g) (and thus L(f)) is surjective.

page 198, line 16 read “. . .and locally compact, and G/M is locally
compact.”.

page 199, line -13 replace “gJ\EB
” by “g(B)J\EB

”.
page 202, line 7 replace the sentence starting “But Z fails to. . .”

by the following:

The topology on Z having as a subbasis for its closed sets the collection of cosets modulo
nonsingleton subgroups of Z fails to be compact.

page 203, lines 3, 10, 11 replace N (G) by M(G).
page 203, line 11 from below replace “Lemma” by “Corollary”.
page 204, line 7 replace by the following:

If (ii∗) implies the conclusion of 4.28, then so does (ii), and (ii∗) is implied by

page 205, line -5 add period at the end of the line.
page 206, line -17 At the end of the line add “]”.
page 207, line 12 After “Then” insert “for each topological group H,”
page 209, line 7 read “N ∈ N (G), then”.
page 210, Exercise E4.8 replace “[Hint. . . .]” and the subsequent paragraph

by the following:

[Hint. A metric space is completely regular. The real valued functions on a completely regular
space separate the points. The continuous image of a connected completely regular space C
in R is an interval; the cardinality of an interval in R is 1 or that of the continuum and so
card(C) is 1 or ≥ 2ℵ0 .]
There are countable connected Hausdorff spaces. (See for instance [52], pp. 352, 353.)

page 226, lines 3,4,5 replace by the following:

. . . G1 ∩ U . Now let M ∈ N (G) be contained in U . Then M ∩ G1 ⊆ U ∩ G1 = {0}. Let

N
def
= M∗ ⊆ M be the subgroup attached to M by Theorem 3.28. Since G is abelian, N is

normal. Then G/N is a Lie group and (G1 + N)/N is isomorphic to G/(G1 ∩ N) ∼= G1 by
Theorem 3.28. So (G1 +N)/N . . .
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page 226, lines 4,5,6 of 5.18 Omit lines 4 and 5 and read (∗) as follows:

(∗) F +
⋂
F =

⋂
H∈F

(F +H).

page 235, line 9 read: prodiscrete abelian group
page 236, line-8 read: · · · ∼= Rm × comp(G)× Zn.
page 238, line 10 read: also Chapter 14, Example 14.15.) Therefore. . .
page 242, line 13 read: that is, a nonsingleton product of circles
page 242, line-10 at the end of the line insert:

the following definition, for which we recall that a torus is always nonsingleton by definition:

page 242, line-7 read: L(G)→ L(G/D)
page 242, line -5 add period at the end of the line.
page 243, line 1 read: G with G0 6= {0} always
page 243, line 7 read: and L(G) ∼= RI∪J with I ∪ J 6= ∅.
page 243, line-3 above the Corollary replace “L(G)” by “L(G)”.
page 243, line 1 of the Corollary read:

If G is an abelian pro-Lie group, then it is either prodiscrete or there is a quotient morphism

page 243, line-10 remove the period after the diagram and add below it:

such that L(q) is an isomorphism.

page 244, line -6 replace x by X except in “exp”,
i.e., read “{X, exp−X): expX ∈ D}”

page 249, line-7 Prior to line 7 from below insert a paragraph as fol-
lows:

We shall show later in Theorem 8.15 on p. 344 that a pro-Lie group is prosimply connected
iff it is simply connected.

page 250, line-2,-1 above 6.3 replace “and the one . . . π1(G).” by the following:

and implies the one expressed by the vanishing of the fundamental group π1(G) while not
being implied by it.

page 252, bottom diagram southeast corner should read “Gi”.
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page 254, bottom diagram northwest corner should read “L(Γ(g))”.
page 260, line 2 replace “Γ(h)” by “Γ(h)”.
page 261, line -9 replace “Γ(h)” by “Γ(h)”.
page 261, line -6 after the period insert:

Define H̃ = Γ(L(H)) (cf. Theorem 4.20).

page 262, top diagram in the labels of all vertical arrows replace “p” by “π”.
page 262, line 2 below top diagram read “Let G be a prosimply”.
page 263, line 8 Replace “g̃” by “G̃”.
page 264, line-1 replace the line by the following:

If (i) is satisfied, then H and K may be taken to be φ(G), and σ the corestriction of φ.

page 265, line 9 replace the line by the following:

If (i) is satisfied, then h and k may be taken to be Φ(g), and ρ the corestriction of Φ.

page 271, line 5 replace “topological vector space” by
‘continuous L-module”.

page 272, line 9 read x·ω = −ω ◦ adx
page 273, line 9 replace “V̂ ? by “V̂ ?”.
page 273, line 22 replace “subset” by “vector subspace”.
page 273, line 23: after “submodule”, insert “of a continuous L-mod-

ule” and replace “an L-module” by “a continuous L-
module”.

page 275, line 2 replace “topological” by “continuous”.
page 276, line 19 insert comma after “equalizers”.
page 276, line 2 of Definition 7.13 “natural transformation” for “cone”.
page 280 7.20 and proof replace by the following:

Proposition 7.20. (i) Assume that E is a simple L-module. Then E agrees with E0 only
if it is zero or one-dimensional; if this is not the case, then E agrees with Eeff . In the latter
case, if 0 6= v ∈ E, then 〈v〉L = E.
(ii) If E is a semisimple locally finite-dimensional L-module, then E is the direct sum

∑
j∈J Ej

of a family of simple submodules Ej of E. Let J0 = {j ∈ J : Ej = (Ej)0} and J1 = {j ∈ J :
Ej = (Ej)eff}. Then

E0 =
∑
j∈J0

Ej ,(3)

Eeff =
∑
j∈J1

Ej .(4)
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In particular,

(5) E = E0 ⊕ Eeff .

Proof. (i) Let E be a simple L-module. Then E0 is either {0} or E. In the latter case,
every vector subspace being a submodule, its dimension is either 0 or 1. In the former case,
let 0 6= v ∈ E. Then L·v is a submodule. Since E0 = {0} it is nonzero. Hence L·v = E and
E = Eeff .
(ii) From 7.16 we deduce the direct sum representation E =

∑
j∈J Ej . Define F0 =

∑
j∈J0 Ej ,

and F1 =
∑
j∈J1 Ej . Let 0 6= vj ∈ Ej . Then

L·xj =

{
{0} if j ∈ J0,
Ej if j ∈ J1

by (i) above and thus F0 ⊆ E0, F1 ⊆ Eeff . Since J = J0 ∪ J1 and J0 ∩ J1 = ∅ we have
E = F0 ⊕ F1. Now let v ∈ E0. Then 0 = x·v =

∑
j∈J x·vj for all x ∈ L, and thus x·vj = 0

for all x ∈ L and j ∈ J . Hence vj 6= 0 implies vj ∈ Ej0, and that implies v ∈ F0 Therefore
F0 = E0.
But F0⊕F1 = E and F1 ⊆ Eeff imply Eeff = (F0∩Eeff)⊕F1. Now let v =

∑
j∈J0 vj ∈ F0∩Eeff .

Then v =
∑n
m=1 xm·wm with xm ∈ L, wm ∈ E. Now wm =

∑
j∈J wmj with wmj ∈ Ej , and

v =
∑

m=1,...,n
j∈J

xm·wmj =
∑

m=1,...,n
j∈J1

xm·wmj ∈ F1.

But then v ∈ F0 ∩ F1 = {0}, and therefore v = 0. It follows that F0 ∩ Eeff = {0}, and thus
that F1 = Eeff . ut

page 281 lines 3 of Theorem 7.22 remove “1 <”.
page 281 lines -6, -5 read:

7.20(ii), this module is a direct sum of simple finite dimensional modules. Thus Veff , by
duality, is a product of simple finite dimensional modules.

page 286, line 17 replace “card g” by “card g′′.
page 286, line -11 replace γ” by “γ”.
page 286, line -1 replace “= g(β)” by“⊇ g(β)”.
page 287, line 11 replace “card g” by “card g′′.
page 287, line 14 replace “= g(β)” by“⊇ g(β)”.
page 287, line 1 of Definition 7.39 replace “δ” by “δ.”
page 289, lines 3,4,5 of 7.43 omit lines 4 and 5 and read (∗) as follows:
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(∗) F +
⋂
F =

⋂
H∈F

(F +H).

page 289, line 3 of 7.44 read = (g((α)) + j)/j.
page 291, Regarding Lemma 7.47 Rafael Dahmen proposes the following counterexample:

Let g be the free Lie algebra over the vector space underlying sl(2,R) and endow g with the
finest locally convex topology. Consider the canonical quotient morphism of real algebras
f : g → sl(2,R). Define i = ker f . Then g/i ∼= sl(2, r) is simple and thus r(g/i) = {0}.
Since the topological Lie algebra g is countably nilpotent (see p. 287, line 6), it is countably
topologically solvable, since every vector subspace of g is closed. Hence r(g) = g. Then
r(g) + i/i = g/i ∼= sl(2,R) 6= {0} contradicting the first paragraph of Lemma 7.47.

Lemma 7.47 is correct if the words “a topological Lie algebra g” are replaced by “a pro-Lie
algebra g”.
The proof uses the statement of Lemma 7.44 (ii) saying that
every continuous homomrphic image of a transfinitely topologically solvable pro-Lie algebra
is transfinitely topologically solvable.
Dahmen’s example shows that this if false for topological Lie algebras in general. The authors
gratefully acknowledge Rafael Dahmen and Gábor Lukácz for locating the problem with
Lemma 7.47.

page 292 line 1 ff. replace the proof of Lemma 7.47 by the following:

Proof. By Lemma 7.44 (ii), the right side is a transfinitely topologically solvable ideal of g/i
and thus contained in the left by the definition of r(g/i). We define an ideal a of g as the
full inverse image of r(g/i) in r(g); thus r(g/i) = a/i. Then r(g) + i ⊆ a and we have to show
that a = r(g) + i. Firstly, a is closed by Lemma 3.17(b). As an ideal of the quotient algebra
g/r(g), the quotient a/r(g) is a product of simple finite-dimensional Lie algebras. By Lemma
7.44 (ii), the algebra a/r(g) + i is transfinitely topologically solvable as a homomorphic image
of a/i = r(g/i) and it is a product of simple finite-dimensional algebras as a homomorphic
image of a/r(g). Hence it is zero. Thus a = r(g) + i. ut

page 293, line 3 of Definition 7.49 replace “space” by “spaces”.
page 297, line 1 delete “finite-dimensional”.
page 297, line 13 read = (g[[α]] + j)/j.
page 298, line -4 replace “ideals” by “vector subspaces”.
page 300, line -3 above 7.59 replace “x ∈ E0” by “v ∈ E0”.
page 300, line 5 of 7.59 replace “g·E ⊆ F” by “g·x ⊆ F”.
page 301, line 3,l.2 of cases replace “

⋃
” by “

⋂
”.

page 301, line 10 replace “= V ” by “= {0}” twice.
page 301, line 12 replace “topological g-module” by

“continuous g-module”.
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page 302, line 2 replace “x ∈ g” by “x ∈ E”.
page 302, line -8 replace “almost” by “locally”.
page 303, line -2 above 7.66 replace “7.65” by “7.64”.
page 304, line 11 replace ”

⋂
” by “

⋃
”.

page 305, line -3 delete “x ∈ V and ω ∈ E.”
page 305, line -1 before the period insert “for x ∈ V and ω ∈ E.”
page 308, line -7 replace “derivation” by “linear self-map”.
page 310, line -17 replace “n(g)” by “ncored(g)” twice.
page 311, line -11 replace “ead c” by “ead c”.
page 312, line 10 replace “+” by “−” twice.
page 314, line 1 of 7.80 replace the 1st sentence by

“Assume that i is a closed ideal and
a a closed sublgebra of the pro-Lie algebra g.

page 314, line 2 of 7.80 read “g-module.”
page 314, line 3 of 7.80 replace “the annihilators in g” by “are the annihilators

of i, respectively, a in gcoad”.

page 314, line 4 of 7.80 read “g-submodule”.
page 314, line 10 of 7.80 read “is a retraction”.
page 316, line 3 replace “Exercise E7.16.” by “Exercise E7.16a.”.

In order to familiarize oneself with the present concepts an example is helpful which we
discuss in the following exercise. It was suggested to us by Rafael Dahmen and Gábor
Lukács (2016).

Exercise E7.16b. Let V = RN and σ:V → V the continuous unilateral shift endomorphism
defined by

σ(r1, r2, r3, . . .) = (0, r1, r2, . . .).

Set U0 = V and for n ∈ N let

Un = {0}× · · · ×︸ ︷︷ ︸
n times

{0} × R{n+1,n+2,...} ⊆ V for n ∈ N,

that is, Un = σn(V ). Write M(V ) = {U0, U1, U2, . . .}. For W ∈M(V ).
Further let h = R denote the one dimensional abelian Lie algebra and V = RN the h-module
defined by

r∗v = r·σ(v) = σ(r·v) for r ∈ h, v ∈ V,

The map qW is an h-module morphism for all W ∈ M(V ) and V is a profinite-dimensional
h-module. Then V0(h) = kerσ = {0}, and so

(1) V0(h) = {0}.

For h ∈ h, the element h is a real number and we have hnV ·v = h·σn(v). Thus Un = hnV ·V for
each h 6= 0. and thus by Definition 7.81, we have

(2) V 0(h) = V.
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page 318, line -12 close displayline with “}”.
page 318, line -11 replace “}” by “]”.
page 319, Lemma 7.83: Exercise E7.16b shows that Lemma 7.83 is incorrect

and therefore must be omitted.
page 319, line -1 read “to the adjoint action”.
page 322, Theorem 7.87: This Theorem is to be replaced

for the following reason:

The proof of the implication (iii)⇒(ii) uses implicitly the implication (g/h)0 = {0} ⇒
(g/h)0(h) = {0} which would have to be concluded from Lemma 7.83 on p. 319 which is
erroneous after Exercise E7.16b. Therefore, Theorem 7.87 has to be replaced by the follow-
ing:

Proposition 7.87. Consider the following statements for a closed pronilpotent subalgebra h
of a pro-Lie algebra g:

(i) g0(h) = h.
(i’) (g/h)0(h) = {0}.
(ii) h is its own normalizer.
(iii) (g/h)0(h) = {0}

Then (i)⇔ (i′)⇐ (ii)⇔ (iii) and (i′) 6⇐ (iii)
Proof. The equivalences (i)⇔(i’) and (ii)⇔(iii) follow from (‡) and (†), respectively.
Since h is pronilpotent and g0(h) = h, the subalgebra h is its own normalizer by Lemma 7.85.
We claim that the implication (i’)⇐(iii) fails. For a proof of this claim we consider the
following example:

Let V and h be as in Exercise E7.17b and form the semidirect sum g
def
= V ⊕ h with the

bracket operation [(v, r), (w, s)] = (r·σ(w) − s·σ(w), 0). We consider h as a vector subspace
of g and identify the h-modules g/h and V in the ovious fashion. Then V0(h) = (g/h)0(h)
and V 0(h) = (g/h)0(h). Now Exercise E7.16b shows (g/h)0(h) = {0} 6= (g/h)0(h) and this
establishes our claim. ut

page 322, Definition 7.88: Read this Definition as follows:

Definition 7.88. A subalgebra h of a pro-Lie algebra g is called a Cartan subalgebra if it is
closed and pronilpotent and satisfies g0(h) = h.

page 322, Exercise E7.17 replace “PropositionA.” by “Proposition A.”.
page 330, Display line (∗) replace “ead xn” by “ead xn”.
page 333, line 4 from below: read the remainder of the page as follows:

out that the working definition specifies a subalgebra h of a pro-Lie algebra g to be a Cartan
subalgebra, if it is closed and pronilpotent and if an element x ∈ g is in h provided that for
each h ∈ h and and each cofinite-dimensional ideal j of g there is a natural number n such
that (adh)n(x) ∈ j. Then every Cartan subalgebra is its own normalizer, but the converse
fails.
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page 342, line 2 of 8.13 replace “Lie radical” by “nilradical”.
page 342, line 3 of 8.13, ll.-6,-3 replace “reductive” by “coreductive”.
page 343, line 10 of 8.14 replace “isomorphism” by “homeomorphism”.
page 354 lines 17ff. displaylines (i)—(iv), replace by the following:

(i) G is prosimply connected;
(ii) each covering map f :E → G of topological spaces maps every connected component of

E homeomorphically onto G.
(iii) The “universal covering morphism” πG: G̃→ G is bijective.
These statements imply
(iv) G is connected and every loop based at the identity can be homotopically contracted,

that is, π1(G) = 0,
but are not implied by it; in fact there are compact connected abelian groups G with π1(G) =
0, while no compact abelian group is simply connected (see [102], Theorems 8.62, 9.29, and
also Example 6.2 above.)

page 355, line -7 replace “]. In” by “]). In”.
page 357, line 3 delete “dual with its”.
page 357, line 12 read “by a power series”.
page 357, line 14 replace “x ∈ F” by “ω ∈ F”.
page 358, line 4 of 9.1 read “filter basis F of ψ-invariant

closed vector subspaces”.
page 360 lines 7,8 omit “and. . .L(H)”.
page 360 line 9 Between 9.4 and 9.5 insert paragraph:

By Theorem A2.12(a), the image L(f)
(
L(G)

)
is a closed Lie subalgebra of L(G).

page 360 line 11 replace “a strict” by “an analytic”
page 360 line 12 replace “strict” by “analytic”
page 360 line 12, 13 replace “the paragraph. . . 4.20 ” by “Definition 9.4”
page 360 line 14 delete “and L(f)(L(C)) is closed”.
page 362 lines 5,6,-15,-14,-13,-12 replace formula letter “H” by “A”.
page 376, line-5 (without headline) delete “connected”.
page 377, line 9 of 9.25 After “(iii)” insert “Under the hypotheses of (ii),
page 385, line -12 replace “of T” by “of∆”.
page 385, line -6 After display line insert the sentence:

That is, δ is open onto its image and im δ = kerµ.

page 387, line -13 in the display formula, read:
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β :
∆× G̃
D

→ G1, . . .

page 389, line 6 replace “free group” by “free abelian group”.
page 389, diagram (∗), l.-9 replace ‘δ” by “θ”.
page 391, line-8 read: (. . . is dense).
page 397, line-19 read: . . .group L/N0 and. . .
page 397, line-11 read:. . .→ L(Nj/(Nj)0)→ . . .
page 402, line-18 at the beginning of the line, add “{”.
page 402, line-3 delete “finite dimensional”.
page 403, line 17 remove one period.
page 405 lines –20 through –14 replace by the following text

Fact. A compact group is divisible iff it is connected.

(See [102, Theorem 9.35]. For abelian compact groups see [102, Theorem 8.4]). The additive
group of the field

page 406, line 2 of 9.54 replace “G = CG” by “L = GC”.
page 406, lines -8,-7 Replace “By Theorem 1.34(iv). . .

as topological groups,” by
We know that C/(C ∩N) ∼= CN/N as groups,. . .

page 407, line -17 replace “Then G = CG” by “Then G = CG”.
page 413, line -13 Delete one period.
page 414 line -12 replace displayline by the following:

G
def
= {(h, ω(h)) : h ∈ H} ⊆ G def

= H ×G1

page 416, line 12 delete “but that” .
page 416, line -9 replace “a strict” by “an analytic”.
page 419, line -11 replace “Lie groups” by “pro-Lie groups”.
page 420, lines 14, 16 replace “{0}” by “{1}”.
page 421, line 10 read “is a terminating abelian sequence”.
page 421, lines -11, -9 replace “{0}” by “{1}”.
page 421, line -7 replace “The sequence” by “The sequence (Nα)α≤ρ”.
page 422, line -17, -5 replace “card g” by “cardG”.
page 422, line -8 replace “{0}” by “{1}”.
page 423, line 3 replace “G[∞] = {0}” by “G[[∞]] = {1}”.
page 423, line 6 replace “{0}” by “{1}”.
page 423, line 4 replace “δ” by “δ”.
page 434, line 1 replace “N” by “Z” (three times).
page 435, line -8, -7 delete “commutative”.
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page 438, line -17 read “and thus G/Z(G) is its own”.
page 443, line 1 of E10.7 add period at the end of line.
page 445, line 13 delete “transfinitely”.
page 447, lines -5, -4: Omit the sentence “From an observation. . .closed in g”.
page 453, line -1 replace “1 otherwise” by “0 otherwise”.
page 455, line -1 read (2,R) .
page 456, line 2 of P10.2 replace “any” by “every”.
page 456, line -4 replace “group L(G)” by “group G”.
page 456, line -3 delete one parenthesis “)” after “A(s, G)”.
page 457, line -9 replace “and G” by “and C”.
page 457, line -8 replace “and comp(G)” by “and comp(C)”.
page 458, line -1 above “Postscript” add period at the end of the line.
page 461, line 1 of 11.2 read “Every pro-Lie algebra g is”.
page 462, line -6 read “There is a subgroup A of G such that”.
page 464, line -20 replace “agree on D” by “agree on D = N ∩H”.
page 466, line 2 of 11.8 replace “〈expG g〉 by “〈expG s >〉”.
page 468, line -4 add period at the end of the line.
page 470, line 9 read exp′A:L(A)→ Aa.
page 473, line -5 read “an example of a connected pro-Lie group H”
page 475, lines 2,3 replace by the following:

so, since N is finite dimensional, there is a P ∈ N (G), such that N ∩ P = {1}. Now let
M = P ∗ ⊆ P be the member of N (G) attached to P according to Theorem 3.28. Then by
Theorem 3.28 n 7→ nM : N → NM/M is an isomorphism, and. . .

page 484, line 5 of 11.27 add period at the end of the line.
page 489, line 2 of 11.31 delete “there are”.
page 491, line 7 replace “ZJ” by “ZJ” and “A(s;G)” by “A(s, G)”.
page 495, Section (iv) of 12.4: omit.
page 496, line 7 omit, move ut up.
page 496, line 10 omit
page 496, line 11 replace “(c)” by “(b)”.
page 496, line 18 in “Hint” omit all of (b) and rename “(c)” as “(b)”.
page 497, line 7 Add: “Recall Definition 7.15(iii) of a reductive

profinite dimensiona L-modules”.
page 497, line2 of 12.6 replace “semisimple L-module” by “reductive

L-module.
page 497, line 4 of Definition 12.7 preceding the period add the phrase

and being such that the maps v 7→ g·v : E → E are linear for all g ∈ G

page 497, line -4 add period at the end of the line.
page 498, lines 1,2 replace by the following:
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The groups we consider in this book frequently fail to be locally compact. However, all
weakly complete topological vector spaces are Baire spaces: Indeed by Corollary A2.9 on
p. 638, weakly complete topological vector space is isomorphic as topological vector space to
RJ for some set J . But by [26], §5, Exercise 17, a product of completely metrizable spaces
is a Baire space. In particular, by Proposition 7.9, all profinite-dimensional L-modules are
Baire spaces. (See also Oxtoby, J. C., Cartesian products of Baire spaces. Fundamenta Math.
49 (1961), 157–166, Theorem 6. From this reference and Corollary 12.86 below it will follow
that every connected pro-Lie group is a Baire space.)

page 500, line 4 of Definition 12.10 add period after “algebra”.
page 508, line 3 of Lemma 12.21 replace “of G” by “of g”.
page 508, line 6 of Lemma 12.21 read “If t is a compactly”.
page 514, line -3 add a period at the end of the line.
page 518 line 1 of the pf. of 12.37 read: From the preceding Theorem 12.36
page 519, line -12 replace “AdG” by “Ad”.
page 521, line 15 replace semicolon by comma.
page 525, line 8 of the proof of 12.53 replace “12. By” by “12.27(i). By”.
page 532, line 2 delete the first occurence of “connected”.
page 535: line -16 add period at the end of the line.
page 542, line 5 of Lemma 12.73 replace the word “implements” by “is surjective and

implements”.

page 544 line -1 add period at the end of the line.
page 547 line 1 of 12.77 read: “of a connected pro-Lie group is”
page 550, line 2 read “N a closed normal subgroup, and”.
page 550, line 13 replace “p” by “p”.
page 550, line -6 replace “C ∗ exp . . . by C∗exp . . ..
page 551, lines 7,6 above box replace “µ∗” by “µ∗”.
page 551, line-11 replace “group C” by “subgroup C”.
page 556, line-7 replace “lemma” by “theorem”.
page 567, line 2 of 13.1(ii) read “induce isomorphisms L(πN×αG/N ),L(µ)”.

page 567, line 2 of 13.1(iii) remove “, φ: G̃/N → G,”.
page 569, line 3 At the end of the line insert “It helps to consider the

diagram”.

page 569, line-3,-2 replace “12.89” by “12.88” (4 times).
page 570, line 13 At the beginning of the line, insert:

“If G is connected, then” (N/N0 is locally. . .)
page 571, line 01 read “. . .Theorem 9.44, if G is connected,

the factor group G/N0 . . .”
page 571, line 10 delete “and is closed”.
page 571, line 11 after “is normal” add “in G0 = G”.
page 571, line-12 After the period add the following sentences:

A finite dimensional vector subspace of a (Hausdorff) topological vector space is locally
compact and therefore closed (see Proposition A2.2). Thus every complemented ideal is

32



automatically closed.

page 571, line-5 read well-complemented
page 573, line-2 delete the second f.
page 574, line 3 replace “∞ then” by “∞. Then”.
page 576, line 4 read n(g)/z(g) = n(g/z(g)).
page 577, line-9 read “cofinite-dimensional closed ideals”.
page 579, line -5 read “Let G be a connected pro-Lie group. . .”
page 579 line -4 replace “G0” by “G” (twice).
page 580, line 4 replace “g/n(g)” by “n(g)/z(g)”.
page 581, line 1 of 13.20 delete “pro-Lie”.
page 583, line-12 read “locally compact group is”.
page 583, line-11 replace “4.2” by “13.22”.
page 585, line 20 in “topological vector space” cancel “vector”.
page 586, line 8 replace “pro-Lie” by “Lie”.
page 595, line 2 read Nα = Z(2)({ν:α≤ν}), not ν < α.
page 624, line -8 after = read [(adx)y, z] + [y, (adx)z].
page 626, line 6 replace “are linear” by “are Q-linear”.
page 630, line 16 replace “in U” by “is U”.
page 634, line 4 of Lemma A2.6 add period at the end of the line.
page 639, line 9 delete “a” before “vector spaces”.
page 639, line 5 of A2.10 replace “. . . (gk) ⊆ . . .” by “. . . (gkj ) ⊆ . . .” .
page 641, lines-3,-2,-1 of A2.13 omit lines -2 and -1 and read (∗) as follows:
page 644 line 8 replace “RJ\I” by “RJ\I”.

(∗) F +
⋂
F =

⋂
H∈F

(F +H).

page 642, lines 13-17 omit.
page 652, line -2 replace “vector spaces” by “vector space”.
page 654, line -9 replace “into isotypic” by “into the isotypic”.
page 655, line -9 replace “[19, p. 75]” by “[19, p. 75])”.
page 657, entry [10] replace by the following:

[10] Borel, A., Limites projectives de groupes de Lie, C.R. Acad. Sci. Paris 230 (1950), 1127–
1128.

[We owe the new reference [10] to a hint by Helge Glöckner.]

page 659 entry Goto, M. replace “Gôto” by “Gotô”
page 664 entries [160], [161] replace by the following:
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[160] Onishchik, A. L., and E. B. Vinberg, eds., Lie groups and Lie algebras II, III Encyclopae-
dia Math. Sci. 21, resp., 41 Springer-Verlag, Berlin 2000, resp., 1994

[161] Oxtoby, J. C., Cartesian products of Baire spaces, Fundamenta Math. 49 (1961), 157–
166.
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