Errata and Addenda in "The Structure of Compact Groups" 3rd Edition of 2013

Version of May 20 , 2019

page xx page 23	Line 7 from below: Replace "Degree" by "Rank". Lines 6,7 of Exercise E1.12 read: (A subgroup of a topological group is called <i>characteristic</i> , if it is invariant under all (continuous and con- tinuously invertible!) automorphisms. It is called <i>fully characteristic</i> , if it is invariant under all (continuous!) endomorphisms.)
page 29	Line 4 below Table 1.2 read: "For \mathbb{Z}_p and $\mathbb{Z}(p^{\infty})$, see Example 1.38(i)."
page 29	Line 5 below Table 1.2 read: "For \mathbb{T}_p and $\frac{1}{p^{\infty}}\mathbb{Z}$, see Example 1.38(ii)."
page 49	Line 11 from below: Replace "geomestric" by "geometric".
page 55	Line 10: Replace " $C(G, K)$ " by " $C(G, \mathbb{K})$ ".
page 70	Line after Exercise E3.13: Replace "[Hint, Read]" by the follow-

page 70 Line after Exercise E3.13: Replace "[Hint. Read]" by the following:

[Hint: Let U_0 be an arbitrary closed neighborhood of 0 in V. It suffices to show that a finite union of translates of U_0 covers K. We find a closed convex neighborhood U of O such that $U + U \subseteq U_0$. Since P is precompact, there is a finite subset Q of P such that $P \subseteq Q + U$. The convex hull

$$X = \{\sum_{x \in Q} r_x \cdot x : 0 \le r_x, x \in Q, \text{ and } \sum_{x \in Q} r_x = 1\}$$

of Q is compact and X + U is closed and convex, and $P \subseteq Q + U \subseteq X + U$, hence X + U contains K. By the compactness of X there is a finite subset R of X such that $X \subseteq R + U$. Thus $K \subseteq X + U \subseteq R + U + U \subseteq R + U_0$.]

page 75	Line 3: Delete " X_{fix} ".
page 84	Line 6: Replace " $\kappa^2 = \kappa$ " by " $\kappa^2 = \mathrm{id}_{E_{\mathbb{C}}}$ ".
page 132	Line 6 above Theorem 5.27: Replace " $r\mathfrak{s}.x = \dots$ " by " $r \cdot x = \dots$ ".
page 163	Line 2 from below read: " $j = 1,, n$, form a basis" [insert comma].
page 164	Line 4: Replace " X_1 " by " X'_1 " and " X_n " by " X'_n "

page 164	Line 1 below displayformula (*): Replace "] $-\varepsilon_0, \varepsilon$ [" by "] $\varepsilon_0, \varepsilon_0$ ["".
page 167	Line 8: Replace " U_g " by " U_h ".
page 167	Lines 7 from below to last line: Replace these lines by the following

text: $f(\exp r_j \cdot X_j) \in W_H. \text{ Define a group homomorphism } \tau : \mathbb{R} \to H \text{ by } \tau(r) = f(\exp r \cdot X_j).$ If τ is constant, set $r_j = \frac{1}{2}$. In that case $f(\exp r_j \cdot X_j) = 1 \in W_H.$ Now assume that τ is nondegenerate. Then the subset $\tau(]0,1]$) of the compact space H is infinite and therefore has an accumulation point h. Let V be an identity neighborhood of H such that $VV^{-1} \subseteq W_H.$ Find two real numbers s and t such that $0 < s < t \le 1$, that $\tau(s) \neq \tau(t)$, and that $\tau(s), \tau(t) \in Vh.$ We set $r_j = t - s$. Then $0 < r_j \le 1$ and $f(\exp r_j \cdot X_j) = \tau(r_j) = \tau(t)\tau(s)^{-1} \in Vhh^{-1}V^{-1} = VV^{-1} \subseteq W_H.$ Thus r_j

page 180	Line 1 from below: Replace " F is a" by " Z is a".
page 199	Theorem 6.10: The text of the statement of Theorem 6.10 should be typeset in italics.
page 211	Line 15: replace " $N(G,T)$ " by " $N(T,G)$ ".
page 220	Line 8 from below: replace " Z " by " H ".
page 221	Line 19: replace " Z_0 " by " H ".
page 221	Line 20: replace " G' " by " N " and read "cofactor of N and"
page 237	Line 4 from below: Replace "Theorem 6.47 " by "Proposition 6.47 "
page 255	Lines 8, 9: delete " $Out(\mathfrak{g}) \cong O(3)/SO(3) \cong \mathbb{Z}(2)$."
page 273	Line 8 from below: delete "= $O(3)$ "
page 273	Line 5 from below: replace "with $O(3)$ " by "with $SO(3)$ "
page 273	Line 4 from below: Replace "diag $(\pm 1, \pm 1, \pm 1)$ " by "diag $(\pm 1, \pm 1, \pm 1)$ of determinant 1".
page 273	Line 3 from below: replace "diag $(\pm 1, 1, 1)$ " by "diag $(1, 1, 1)$, diag $(-1, -1, 1)$ ".

satisfies our requirements.

page 329	Line 4: replace "By (iv)" by "By (iii)".
page 366	Line 1 of Corollary 7.68: Replace "charactergroup" by "character group".
page 383	Line 9: replace "set X" by "set $X \neq \emptyset$ ".
page 383	Line 11: replace "is a compact" by "is a nonsingleton compact".
page 388	Line 16: replace "dim $_Q$ " by "dim $_Q$ ".
page 401 For more Components	above Section headline "Local Connectivity" insert: information on arc components see Part 6 of this Chapter under "Arc and Borel Sets". (Numbers 8.86–8.99, pp. 445–449.)
page 446	Line 2 of the proof of Lemma 8.89: replace "S8.2" by "8.87".
page 448	Lines 13, 14 read: Thus Theorem 8:30 and Proposition 8.97 motivate us to formulate the following statement:
page 448	Line 8 from below: Replace " $\operatorname{Ext}(A, Z)$ " by " $\operatorname{Ext}(A, \mathbb{Z})$ ".
page 449	Line 6 from below: Remove period between "set" and "and".
page 449	Line 5 from below: Remove period between "l" and "d".
page 450	Line 3: Replace "G" by " \widehat{G} ".
page 450	Line 6: Replace the entire line by: "Therefore $\mathfrak{L}(G)/\mathfrak{K}(G) \cong G_a$ where $\mathfrak{K}(G) = \ker \exp \cong \pi_1(G)$, and this also provides"
page 473	Line 1 from below (and p. 474 line 1) read: " i.e. each of them is mapped into itself by all continuous endomorphisms."
page 477	Lines 12, 15, 16 (counting headline): replace " $N(G,T)$ " by " $N(T,G)$ ".
page 501	Line 5 from below: Line should begin "(ii) If dim $G < \infty$ "
page 506	Line 13: replace " \subseteq =" by " \subseteq ".
page 520	Line 7: replace \mathbb{Q} by $\widehat{\mathbb{Q}}$.

4	
page 532	Line 3 of proposition 9.85 read: "the subgroup $Aut(A)$ of $P(A)$ by the topology of $D(A)$." [Insert "by".]
page 533	Item (iii) of Theorem 9.86, read: Aut $(S_{[\mathfrak{s}]})^{X_{\mathfrak{s}}}$
page 533	Item (iv) of Theorem 9.86, line 1 read: $\left[\operatorname{Aut}\left(S_{ \mathfrak{s} }\right)\right]_{0}D_{\mathfrak{s}}$ [Delete (.]
page 533 $N(T_{[\mathfrak{s}]}, \operatorname{Au}$	Item (iv) of Theorem 9.86, line 2 read: t($S_{[\mathfrak{s}]}$) = { $\alpha \in \text{Aut}(S_{ \mathfrak{s} }) \dots$ } [Insert one), delete one).]
page 536	Line 3 of the proof of Theorem 9.90 read: "small closed normal sub- groups $N \in \mathcal{N}(G)$. It follows that G must be a Lie group."
page 536	Line 4 from below read: "and this proves $N = G$ which" (delete isolated "s").
page 568	Line 9: Replace "(see 2.71)" by "(see 2.17)".
page 568	Line 11: Replace "sense of 6.77(ii)" by "sense of 10.29".
page 575	Line 4 of the proof of 10.41 read: "in particular for the case that $G/N\ldots$ "
page 600	Line 12 from below read: $p(x)$ (not $\mathfrak{p}(x)$).
page 600	Line 6 from below read: $p \circ \tilde{f} = f$ (not $p \circ F = f$).
page 600	Line 4 from below read: "Skljarenko" (not "Sklarjenk").
page 644	Line 1 of the proof of 11.58: Replace "N compact" by "N the compact"
page 652	Line 3 (headline): Replace "Degree" by "Rank".
page 654	Line 5: Replace "degree" by "rank".
page 654	Line 8: Replace "A1.20" by "A1.21".
page 656	Line 8: Replace "degree" by "rank".
page 659	Line 7 from below: Replace "degree" by "rank".
page 660	Line 13: Replace "degree" by "rank".

page 661	Line 5: Replace	"degree"	by "rank"	

page 667	Lines 5 ,	18	after	the	headline	"Postscript":	Replace	"degree"	by
	"rank".								

page 686 Line 17 from below: Replace " $\dots \in A$ " by " $\dots \in \nabla$ ".

page 686 Line 4 from below: Read

(iv) ker $ptor(\nabla)$. That is, $0 \to tor(\nabla) \to \nabla \xrightarrow{p} \mathbb{Q} \to 0$ is exact.

page 687 before *Proof* insert:

(x) $tor(\nabla) \cong \bigoplus_{n=2}^{\infty} \mathbb{Z}(n)$, and there is an exact sequence

$$0 \to \bigoplus_{n=2}^{\infty} \mathbb{Z}(n) \to \nabla \xrightarrow{p} \mathbb{Q} \to 0.$$

page 687	Line 1 of <i>Proof</i> : Replace " $Z^{(\mathbb{N})}$ " by " $\mathbb{Z}^{(\mathbb{N})}$ ".
page 688	Line 6: Replace " $K =$ " by " $S =$ ".

page 688 Line following first displayline, read:

Since there is an isomorphism $\kappa: \bigoplus_{n=2}^{\infty} \mathbb{Z}(n) \to \nabla/\mathbb{Z} \cdot g_1$ by (v), the first assertion follows if we define $K \stackrel{\text{def}}{=} \kappa^{-1}(\nabla_1/\mathbb{Z} \cdot g_1).$

In order to prove

page 688	Lines 11 and 10 from below: Replace " $\mathbb{N}_0^{\mathbb{N}}$ " by " $\mathbb{N}_0^{(\mathbb{N})}$ ".
page 688	Lines 1 from below: Replace " $p^N \mathbb{Z}$ " by " $p^n \mathbb{Z}$ ".

page 689 Before the end-of-proof box insert:

(x) The second part follows from the first through (ii) and (iv). For proving the first part, we show that there is an injective endomorphism $\eta: S \to S$ with image K.

For this purpose we invoke (ix) to see that it is sufficient to show that for each prime p, there is an exact sequence

(E)
$$0 \to \bigoplus_{n=1}^{\infty} \mathbb{Z}(p^n) \xrightarrow{\eta_p} \bigoplus_{n=1}^{\infty} \mathbb{Z}(p^n) \to \mathbb{Z}(p^\infty) \to 0$$

Indeed we define $\eta_p(\varepsilon_n) = p \cdot \varepsilon_{n+1} - \varepsilon_n$, $n = 1, 2, \dots$ Since clearly $p \cdot \varepsilon_{n+1} - \varepsilon_n$ has order p^n , we have to show that η_p is injective. For a proof let $a = \sum_{n=1}^{\infty} z_n \cdot \varepsilon_n$

with a finite support sequence of elements $z_n \in \mathbb{Z}$ such that $\eta_p(a) = 0$. Then $0 = \sum_{n=1}^{\infty} z_n \cdot \varepsilon_n - \sum_{n=1}^{\infty} p z_n \cdot \varepsilon_{n+1} = \sum_{n=1}^{\infty} z_n \cdot \varepsilon_n - \sum_{n=2}^{\infty} p z_{n-1} \cdot \varepsilon_n = z_1 \cdot \varepsilon_1 + \sum_{n=2}^{\infty} (z_n - p z_{n-1}) \cdot \varepsilon_n$. In the direct sum of the subgroups $\mathbb{Z}(p^n)$, this implies, successively, $z_1 = 0$ (modulo p), $z_2 - p z_1 = 0$ (modulo p^2), $z_3 - p z_2 = 0$ (modulo p^3), and so on. Inductively, this shows $z_n = 0$ (modulo p^n), n=1,2,..., and so a = 0. This completes the proof of the injectivity of η_p , and the remaining statements involved in the exactness of the sequence (E) are routine.

page 689	In the diagram replace the leftmost letter "Z" by "Z".
page 694	Item (ii) of Corollary A1.43 read: $\cdots \mathbb{R}/\mathbb{Z} \cong \mathbb{Q}^{(\mathfrak{c})} \oplus \cdots$ (replace "=" by " \cong ").
page 705	Line 8 of proof of A1.61: Replace " \dim_Q " by " \dim_Q ".
page 777	Lines 1, 2, 3 of Proposition A3.38 read as follows:

Proposition A3.38. Assume that $F: \mathcal{A} \to \mathcal{B}$ and $U: \mathcal{B} \to \mathcal{A}$ are functors and $\eta: id_{\mathcal{A}} \to UF$ and $\varepsilon: FU \to id_{\mathcal{B}}$ are natural transformations. Then the following statements are equivalent:

(1) F is left adjoint to U and η and ε are the front adjunction and the back adjunction, respectively.

page 782	Line 3 from below: Replace "SAS" by " \mathcal{A} ".
page 782	Line 3 from below through page 783, line 3: Replace bold face type by roman type.
page 787	Headline "Commutative: Replace "its" by "their".
page 794 object".	Line 8 above Definition A3.66: Replace "group element" by "group
page 817	Line 13: Replace "3.91" by "A3.91".
page 853	line 853: Replace "measure" by "probability measure".
page 858	Line 5 from below: Insert space between "of" and " X ".
page 864	Line 16 (counting headline) read: "compact" (not "coompact").
page 878	Entry [219]: Delete one of two periods at the end of the line.
page 886	Second column after X^{α} : Insert entry X_{fix} , 74.

page 900 Second column: Remove entry "generating degree"; in entry "generating rank" add "654, 658" after "**652**".

page 909 Second column: delete line "O(3), **255**".