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Preface

Most mathematicians are familiar with the fact that any
finitely generated abelian group can be expressed as a direct
product of cyclic groups. However, the equally attractive
generalization of this to topological groups is known only
to a small group of specialists. This is a real pity, as
the theory is not only elegant, but also a very pleasant
combination of topology and algebra. (It is also related to
some problems of diophantine approximation.)

Our aim is to describe the structure of locally compact
abelian groups and to acquaint the reader with the Pontryagin-
van Kampen duality theorem. This theorem is a deep result
and the standard proofs assume a knowledge of measure theory
and Banach algebras. In order to make the material accessible
to as large an audience as possible I make no such assumption.
Indeed even the amount of group theory and topology required
is small. Taking the Peter-Weyl theorem as known, I give a
simple and, as far as I know, new proof of the duality
theorem for compact groups and discrete groups. I then use
an approach analogous to that of D. W. Roeder (Category theory
applied to Pontryagin duality, Pacific J. 52 (1974) 519-527)
to extend the duality theorem to all locally compact abelian
groups. One of the beauties of this approach is that the
structure theory is derived simultaneously.

These notes are based on courses given in 1974 at the
University College of North Wales and in 1975 at the University
of New South Wales. The former was twenty lectures given to
an audience of graduate students and staff while the author

was a United Kingdom Science Research Council Senior Visiting
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Fellow. The latter was twenty-eight lectures to a final
honours class. 1In 1976 these notes were used as a reading
course for final honours students at La Trobe University.
I am indebted to Ronald Brown for persuading me to give
my first course on duality theory, for encouraging me to
write the material for publication and for his helpful
comments. I am extremely grateful to John Loxton and
Rodney Nillsen for reading and criticizing the manuscript.
Numerous other colleagues, in particular Peter Donovan and
Peter Nickolas, made useful comments. I am also grateful
to the students in the courses for removal or errors. I
must record my thanks to Ian D. Macdonald for his moral
support over a number of years and to Edwin Hewitt and
Kenneth Ross for their willingness to answer by naive
questions. I wish to thank Mesdames Rita Walker, Ulrike
Bracken aud Olwyn Bradford for their meticulous typing.
These notes are dedicated to Shnookie.

S.A.M.

La Trobe University
Melbourne
1976
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1 - Introduction to topological
groups

Definition. Let G be a set that is a group and a topo-
logical space. Then G 1is said to be a topological group
if
(i) the mapping (x,y) *xy of G X G onto G is a
continuous mapping of the cartesian product G X G
(with the product topology) onto G ;

and (ii) the mapping x -~ x_1 of G onto G 1is continuous.

Examples:
(1) The additive group of real numbers with the "usual"
topology (i.e. that given by the metric d(x,y) = |x-y|).

It will be denoted by R .

(2) The multiplicative group of positive real numbers with
the "usual" topology.

(3) The additive group of rational numbers with the '"usual"
topology - denoted by Q .

(4) The group of integers with the discrete topology (i.e.
every set is an open set) - denoted by Z .

(5) Any group with the discrete topology.

(6) Any group with the indiscrete topology (i.e. the open
sets are ¢ and the whole space).

(7) The "circle group" consisting of the complex numbers of
modulus one (i.e. the set of numbers e21Tix , 0 £ x<1)
with the group operation being multiplication of complex
numbers and topology induced from that of the complex
plane. This topological group is denoted by T (or Sl).

(8) Linear groups. Let A = (ajk) be an n X n matrix,

where the coefficients ajk are complex numbers. The



transpose tA of the matrix A 1is the matrix (akj)
and the conjugate A of A 1is the matrix (gjk) y

where a.
ik
a., . The matrix A 1is said to be orthogonal if

jk _ _
A=A and Fa=a"l Lo t@)

is the complex conjugate of the number
and unitary if A

The set of all non-singular n x n matrices (with com-
plex number coefficients) is called the general linear group
(over the complex number field) and is denoted by GL(n,C)
The subgroup of GL(n,C) consisting of those matrices with
determinant one is the special linear group (over the com-
plex field) and is denoted by SL(n,C) . The unitary group
U(n) and the orthogonal group O(n) consist of all unit-
ary matrices and all orthogonal matrices, respectively;
they are subgroups of GL(n,C) . Finally we define the
special unitary group and the special orthogonal group as
SU(n) = SL(n,C) NU(n) and SO(n) = SL(n,C) NO(n) ,
respectively.

The group GL(n,C) and all its subgroups can be regarded
as subsets of an (where C denotes the complex number
plane). As such GL(n,C) and all its subgroups have in-
duced topologies and it is easily verified that, with these,

they are topological groups.

Remark. Of course not every topology on a group makes it
into a topological group; i.e. the group structure and the

topological structure need not be compatible.

Example. Let G be the group of integers. Define a top-
ology on G as follows: a subset U of G 1is open if
(a) O0&U or
(b) G\U is finite.
Clearly this is a (compact Hausdorff) topology but Proposi-

tion 1 will show that G 1is not a topological group.



Proposition 1. Let G be a topological group. For each
a €G , left and right translation by a are homeomorphisms

of G . Inversion is also a homeomorphism.

Proof.  The map L:G~>G given by g - ag 1is the product
of the two continuous maps

G~>Gx G given by g~ (a,g) where a 1is fixed
and

G x G~ G given by (x,y) - xy
and is therefore continuous. So left translation by any
a €G 1is continuous. Further, La has a continuous inverse,
namely La_l , Ssince La[La_l(g)] = La[a'lg] = a(alg) = g
and La_l[La(g)] = La_l[ag] = al(ag) = g . So left transla-
tion is a homeomorphism. Similarly right translation is a
homeomorphism.

1 is continuous, by

The map I: G+ G given by g~ g~
definition. Also I has a continuous inverse, namely I ,
itself, as I[I(g)] =1[g7!] = [g7]"' =g . So I is also

a homeomorphism. //

It is now clear that our example above is not a topological
group as left translation by 1 takes the open set {-1}
onto {0} , but {0} 1is not an open set. What we are really
saying is that any topological group is a homogeneous space

while the example is not.

Definition. A topological space X 1is said to be
homogeneous if it has the property that for each ordered pair
X,y of points of X , there exists a homeomorphism
f: X - X such that f(x) =y .

While every topological group is a homogeneous topological
space, we will see shortly that not every homogeneous space

can be made into a topological group.



Definition. A topological space is said to be a T;-space

if each point in the space is a closed set.

Definition. A topological space X is said to be Hausdorff
or a To-space if for each pair of distinct points a and b
in X , there exist open sets Ua and Ub , with a € Ua s
bEU and U NU =4

It is readily seen that any Hausdorff space is a Tj;-space

but that the converse is false.

Example. Let X be any infinite set with the cofinite
topology; that is, a subset U of X 1is open if and only
if U=X, U=¢ or X\U is finite.

Clearly this space is a T)-space, but it is not Hausdorff
as no (non-trivial) pair of open sets are disjoint.

We will see, however, that any topological group which is
a Ty-space is Hausdorff. Incidentally, this is not true, in
general, for homogeneous spaces - as the above example is
homogeneous. As a consequence we will then have that not
every homogeneous space can be made into a topological

group.

Proposition 2. Let G be any topological group and e
its identity element. If U 1is any neighbourhood of e ,
then there exists an open neighbourhood V of e such that

(1) Vv = V! (that is, V 1is symmetric)

(ii) vZcu.
(Here V-! = {v7l: v €V} and

V2 = {vivp: V] €EV and vy €V} (not the set
{vZ: vevh.)

Proof. Exercise.
(Use the continuity of x - x! at x=-e , and the conti-

nuity of (x,y) = xy at (x,y) = (e,e) )/



Proposition 3. any topological group G which is a Tp-

space is also a Hausdorff space.

Proof. ©Let x and y be distinct points of G . Then
x"ly # e . The set G \ {x"ly} is an open neighbourhood
of e and so, by Proposition 2, there exists an open
symmetric neighbourhood V of e such that V2 C G\
{x~ly} . Thus x7ly & v?2

Now xV and yV are open neighbourhoods of x and vy ,
respectively, Suppose xVNyV #¢ . Then =xv| = yvy ,
where v; and v, are in V ; that is, x'ly = v1v2'1€
v.v-1 =v2 - yhich is a contradiction. Hence xV N yV = ¢
and so G 1is Hausdorff.//

So to check that a topological group is Hausdorff it is
only necessary to verify that each point is a closed set.
Indeed, by Proposition 1, it suffices to show that {e} 1is

a closed set.

Remark. Virtually all serious work on topological groups
deals only with Hausdorff topological groups. (Indeed many
authors include "Hausdorff" in their definition of topo-
logical group.) We will see one reason for this shortly.
However, it is natural to ask: Does every group admit a
Hausdor ff topology which makes it into a topological group?
The answer is obviously "yes" - the discrete topology. But

we mention the following problem.

Question. Does every group admit a Hausdorff non-discrete
group topology which makes it into a topological group?
S.Shelah (On a Kurosh problem: Jonsson groups; Frattini
subgroups and untopologized groups) recently announced a
negative answer, under the assumption of the continuum
hypothesis. However in the special case that the group is

abelian (= commutative) the answer is "yes" and to show this



will be one of our earliest tasks.

EXERCISE SET ONE

1. Let G be a topological group, e 1its identity
element, and k any element of G . If U 1is any neigh-
bourhood of e , show that there exists an open neighbour-
hood V of e such that

Gy v=v!

and (ii) VvicCU

and (iii) k vkl cCU
(In fact, with more effort you can show that if K 1is a
compact subset of G then V can be chosen to also have

the property : (iv) for any k€ K , k V k_l cu.)

2. (i) Let G be any group and let N = {N} be a
family of normal subgroups of G . Show that the family of
all sets of the form gN , as g runs through G and N
runs through N is an open subbasis for a group topology
on G . Such a topology is called a subgroup topology.
(ii) Prove that every group topology on a finite
group is a subgroup topology with N consisting of pre-

cisely one normal subgroup.

3. A topological space X 1is said to be a To—space if

given any x and y in X , either there exists an open
set containing Xx but not y , or there exists an open set
containing y but not x . A topological space X 1is said
to be regular if for each x € X and each open neighbour-
hood U of x , there exists a closed neighbourhood V of
x such that V CU . Show that

(1) any T.-space is a To—space but that there exist T .-

1 0
spaces which are not Tl—spaces

(i1) every topological group is a regular space

(iii) any regular T -space is Hausdorff, and hence any

0



topological group which is a To—space is Hausdorff.

4., Let G be a topological group, A and B subsets
of G and g any element of G . Show that

(1) If A 1is open then gA 1is open.

(i1) If A 1is open and B 1is arbitrary, then AB 1is
open.

(iii) If A and B are compact then AB 1is compact,

(iv) If A 1s compact and B 1is closed then AB 1is
closed.

(v) If A and B are closed then AB need not be

closed.

5. Let S be a compact subset of a metrizable topologi-

cal group G , such that xy €S if x and y are in S

Show that for each x €S, xS =5 . (Let y be a cluster
point of the sequence x,x%,%3,... in S and show that

yS = nﬁl x"s ; deduce that yxS =yS .) Hence show that S
is a subgroup of G . (Cf. Hewitt and Ross, Abstract Har-

monic Analysis I, Theorem 9.16.)

* k k % k %k %k %k %

Definition. Let G; and G be topological groups. A
map f: G] - G, 1is said to be a continuous homomorphism if
it is both a homomorphism of groups and continuous. If f
is also a homeomorphism then it is said to be a topological
group isomorphism or a topological isomorphism and G; and

G, are said to be topologically isomorphic.

Example. Let R be the additive group of real numbers with
the usual topology and R'  the multiplicative group of posi-
tive real numbers with the usual topology. Then R and Rx

are topologically isomorphic, where the topological isomor-



X

phism R+ R is x - exp(x) . (Hence we need not mention
X

this group R  again since, as topological groups, R and

X
R are the same.)

Proposition 4. Let G be a topological group and H a
subgroup of G . With its relative topology as a subset
of G, H is a topological group.

Proof. The mapping (x,y) > xy of H x H onto H and
the mapping x -+ x~! of H onto H are continuous since
they are restrictions of the corresponding mappings of

GxXxG and G . //

Examples.
(1) Z s R.
(ii) Q<R .

Proposition 5. Let H be a subgroup of a topological
group G . Then
(1) the closure H of H is a subgroup of G ;
(ii1) if H is a normal subgroup of G then H is a
normal subgroup of G ;
(iii) if G is Hausdorff and H 1is abelian, then H is

abelian.
Proof. Exercise.

Corollary. rLet G be a topological group. Then {e} is
a closed normal subgroup of G ; indeed, it is the smallest
closed subgroup of G . If g €G , then fg} is the co-
set gfg} = fg}g. (Of course if G 1is Hausdorff then

{e} = {e} u)

Proof. This follows immediately from Proposition 5 (ii) by



noting that {e} 1is a normal subgroup of G . //

Proposition 6. Any open subgroup H of a topological

group G is (also) closed.

Proof. Let X, i €1 be a set of right coset repre-

sentatives of H in G . So G = .U_ Hx. , where
1€l 1

Hxi N ij = ¢ , for any distinct i and j in the index
set I . Since H 1is open, so is Hxi open, for each
i€ I . Of course for some iO €1, Hxio = H , that is,
we have

G HU

U Hx.
i

, where J = I\ {io}
1€J

These two terms are disjoint and the second term, being the
union of open sets, is open. So H 1is the complement (in
G ) of an open set, and is therefore closed in G . //

Note that the converse of Proposition 6 is false. For
example, Z 1is a closed subgroup of R , but it is not an

open subgroup of R .

Proposition 7. Let H be a subgroup of a Hausdorff group
G . If H is locally compact, then H 1is closed in G .

In particular this is the case if H 1s discrete.

Proof. Let K be a compact neighbourhood in H of e
Then there exists a neighbourhood U in G of e such
that UNH =K . In particular, UNH 1is closed in G .
Let V be a neighbourhood in G of e such that V2 cu.
If x€H, then as H 1is a group (Proposition 5),
x“1 € H . So there exists an element y € v lnH . We
will show that yx €EH . As y € H , this will imply that
x € H and hence H 1is closed, as required.
To show that yx €H we verify that yx 1is a limit
point of UNH . As U NH is closed this will imply



that yx € UNH and so, in particular, yx €H .
Let O be an arbitrary neighbourhood of yx . Then

y~10 is a neighbourhood of x , and so y~l0 NxV is a
neighbourhood of x . As x € H , there is an element
he€(yloNxV) NH. So yh €0 . Also yh € (Vx~1)(xV)
V2C U, and yh €H ; that is, yh €0 N(UNH) . As

O 1is arbitrary, this says that yx 1is a limit point of
UNH , as required. //

Proposition 8. Let U be a symmetric neighbourhood of e
Lol
in a topological group G . Then H = ngl " is an open

(and closed) subgroup of G .

Proof. Clearly H is a subgroup of G . Let hE€H .
Then h € U™, for some n . So hehiC ™ lcH;

that is, H contains the neighbourhood hU of h . As h
was an arbitrary element of H , H 1is open in G . It is

also closed in G , by Proposition 6. //

Corollary 1. Let U be any neighbourhood of e in a
o0
connected topological group G . Then G = ngl Un; that is,

any connected group is generated by any neighbourhood of e .

Proof, Let V be a symmetric neighbourhood of e such
that VC U . By Proposition 8, H = n§1 V" is an open and
closed subgroup of G .

As G 1is connected, H = G ; that is G = n§1 V' . As
vcu, vt - " , for each n and so G = El Ut , as

n
required. //

Definition. A topological group G 1is said to be compactly

generated if there exists a compact subset X of G such

that G 1is the smallest subgroup (of G ) containing X .

10



Examples:
(i) R 1is compactly generated by [0,1] (or any other
non-trivial compact interval).

(ii) Of course, any compact group is compactly generated.

Corollary 2. Any connected locally compact group is

compactly generated.

Proof. Let K be any compact neighbourhood of e . Then
by Corollary 1, G = ngl K" ; that is, G 1is compactly
generated. //

Remark . An objective of this course of lectures is to
describe the structure of compactly generated locally compact
Hausdorff abelian groups. We now see that this class in-

cludes all connected locally compact Hausdorff abelian groups.

Notation: rLca-group £ 1locally compact Hausdorff abelian

topological group.

Proposition 9. The component of the identity (that is, the
largest connected subset containing e ) of a topological

group is a closed normal subgroup.

Proof. Let C be the component of the identity in a topo-
logical group G . As in any topological space components
are closed sets, C 1is closed. Let a €C . Then a~lc cc
as a~lC is conmected (being a homeomorphic image of C )
and contains e . So agC a~lc = ¢71¢ C C - which implies
that C 1is a subgroup. To see that C 1is a normal sub-

group, simply note that for each x in G , x~!Cx is a

connected set containing e and so x~lCx cc ./

11



Proposition 10. Let N be a normal subgroup of a topo-
logical group G . If the quotient group G/N 1is given
the quotient topology under the canonical homomorphism

p: G~ G/N (that is, U is open in G/N if and only if
p~1(U) is open in G ), then G/N becomes a topological
group. Further, the map p is not only continuous but
also open. (A map is said to be open if the image of

every open set is open.)

Proof. The verification that G/N with the quotient
topology is a topological group is routine. That the map
p 1s continuous is obvious (and true for all quotient maps
of topological spaces).

To see that p 1is an open map, let O be an open set
in G . Then p~!(p(0)) = NO CG . Since O 1is open, NO
is open. (See Exercise Set One, Problem 4.) So by the
definition of the quotient topology on G/N , p(0) 1is open

in G/N ; that is, p is an open map. //

Remarks.

(1) Note that quotient maps of topological spaces are not
necessarily open maps.

(ii) Quotient maps of topological groups are not necessarily
closed maps. For example, if RZ denotes the product
group R x R with the usual topology, and p 1is the
projection of R? onto its first factor R , then the
set S = {(x, i): X ER, x # 0} 1is closed in R?
and p 1is a quotient map with p(S) not closed in

R .

Proposition 11, If G is a topological group and N is
a compact normal subgroup of G then the canonical homo-
morphism p: G -+ G/N 1is a closed map. The homomorphism p

is also an open map.

12



Proof. If S is a closed subset of G , then p~1(p(S))
= NS - the product in G of a compact set and a closed
set, which by Exercise Set One, Problem 4, is a closed set.
So p(S) 1is closed in G/N and p 1is a closed map. As

p 1s a quotient mapping, Proposition 10 implies that it is

an open map. //

Definition. A topological space is said to be totally dis-

connected if the component of each point is the point itself.

Proposition 12. If G 1is any topological group and C 1is
the component of the identity, then G/C is a totally dis-

connected topological group.

Proof. Note that C 1is a normal subgroup of G and so
G/C 1is a topological group.
The proof that G/C is totally disconnected is left as

an exercise.

Proposition 13. If G/N is any quotient group of a
locally compact group G , then G/N is locally compact.

Proof. Simply observe that any open continuous image of a

locally compact space is locally compact. [/

Proposition 14. Let G be a topological group and N a
normal subgroup. Then G/N is discrete if and only if N
is open. Also G/N is Hausdorff if and only if N is

closed.

Proof. Obvious (noting that a Ty-group is Hausdorff). //

13



EXERCISE SET TWO
1. Let G and H be topological groups and f: G + H

a homomorphism. Show that f 1is continuous if and only if
it is continuous at the identity; that is, if and only if
for each neighbourhood U in H of e , there exists a

neighbourhood V in G of e such that f(V) C U.

2., Show that the circle group T 1is topologically iso-
morphic to the quotient group R/Z .

3. Let By and B, be (real) Banach spaces. Verify

that

(1) By and B, , with the topologies determined by their
norms, are topological groups.

(ii) If T: By » B, 1is a continuous homomorphism (of topo-

logical groups) then T 1is a continuous linear trans-
formation. (So if B; and B, are "isomorphic as
topological groups'" then they are "isomorphic as
topological vector spaces" but not necessarily "iso-

morphic as Banach spaces'".)

4., Let H be a subgroup of topological group G . Show
that H 1is open in G if and only if H has non-empty
interior (that is, if and only if H contains an open subset

of G).

5. Let H be a subgroup of a topological group G .
Show that
(i) H is a subgroup of G .
(ii) If H 1is a normal subgroup of G , then H 1is a
normal subgroup of G .

(iii) If G 1is Hausdorff and H 1is abelian, then H is

abelian.

14



6. Let Y be a dense subspace of a Hausdorff space X .
If Y 1is locally compact show that Y 1is open in X .
Hence show that a locally compact subgroup of a Hausdorff

group is closed.

7. Let C be the component of the identity in a topo-
logical group G . Show that G/C is a Hausdorff totally
disconnected topological group. Further show that if f 1is
any continuous homomorphism of G into any totally dis-
connected topological group H , then there exists a con-
tinuous homomorphism g: G/C -~ H such that gp = f , where

p 1is the projection p: G - G/C .

8. Show that the commutator subgroup C of a connected

topological group G 1is connected. ( C 1is generated by

{g1'e2'g182: £1,82 €6G} )

9. If H 1is a totally disconnected normal subgroup of
a connected Hausdorff group G , show that H 1lies in the
centre of G (that is, gh = hg , for all g € G and
hE€H).
(Hint: Fix h € H and observe that the map g - ghg~! takes
G into H .)

10. (1) Let G be any topological group. Verify that
G/cl{e} 1is a Hausdorff topological group,
where cl{e} denotes the closure in G of
the identity. Show that if H 1is any Haus-
dorff group and f: G~ H 1is a continuous
homomorphism, then there exists a continuous
homomorphism g: G/cl{e} - H such that
gp = f , where p 1is the canonical map
p: G -~ G/cl{e} .

(This result is the usual reason given for
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studying Hausdorff topological groups rather
than arbitrary topological groups. However,
the following result which says in effect
that all of the topology of a topological
group lies in its "Hausdorffization'" (namely
G/cl{e}) 1is perhaps a better reason.)

(ii) Let Gi denote the group G with the indis-
crete topology and i: G -+ Gi the identity
map. Verify that the map p x i: G = G/cl{e}
% Gi , given by p x i(g) = (p(g),i(g)) , is
a topological group isomorphism of G onto

its image p x 1i(G)

11. Show that every Hausdorff group H 1is topologically
isomorphic to a closed subgroup of an arcwise connected,
locally arcwise connected Hausdorff group G . (Consider
the set G of all functions f: [0,1) +~ H such that there
is a sequence O = a5 <a; <a, < ... < a = 1 with f
being constant on each [ak’ak—l) . Define a group structure
on G by fg(t) = f(t)g(t) and f£-1(t) = (£(t))"! , where
f and g€ G and t € B),l) . The identity of G 1is the
function identically equal to e in G . For € > 0O and
any neighbourhood V of e in G 1let U(V,e) be the set
of all f such that A({t € B),l): f(t) € V}) < ¢ , where
A 1is Lebesgue measure on [0,1) . The set of all U(V,¢)
is an open basis for a group topology on G . The constant
functions form a closed subgroup of G topologically iso-

morphic to H .)

* k k k k k k % %

Remarks on Products. Let {Gi: i €1} be a family of
sets, for some index set I ., The direct product (cartesian

product) of the family {Gi: i € 1} is the set which con-
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sists of elements g > with each 8; € Gi , and is

N
1el
by I g, . i i
denoted by i1 G1 If each G1 is a topological space
then the product topology (Tychonoff topology) is that

topology which has as a basis for its open sets the

collection of all _II_ U. , where each U, 1is open in
1€l "1 1

Gi , and all but a finite number of Ui = Gi . (Note that
the product topology is quite different from the topology
which at first sight seems more natural - the box topology,
which has as a basis for its open sets the collection of all

]'[ . .
el Ui , Where Ui 1s open in Gi .) Observe that the

product topology is the coarsest topology on igl Gi for
hich each of the canonic jectio | . > G, i
w ft 1cal projections Pt ier G1 G1 1s
continuous. The most important result on product topologies

is the following:

Tychonoff Theorem. If {Gi: i € 1} is a family of compact

topological spaces then igl Gi , with the product topology,
is compact.
. . il > . . . 1
Since each P, i€l Gi Gi 1s continuous, if ie1 Gi
(with the product topology) is compact then each Gi is

compact.
Note that the Tychonoff theorem would be false if
"product topology" were replaced by "box topology". (For

example, if each Gi is a finite discrete space then
I
i€l
compact, if I 1is infinite!)

Gi with the box topology is discrete - hence not

. ]'[ .
If each Gi 1s a group t;en se1 ;i has the obvious
II . =
group structure (ieI g; ier hi el (gihi) , where g;
and h, € G, ).
1 i

If {Gi: i € 1} 1is a family of groups then the

restricted direct product (weak direct product), denoted

]-[r . 1 . .
1 Gi , 1s the subgroup of el Gi consisting of elements
T . - .

et g » with g: e , for all but a finite number of
1E€TI.
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From now on, if {Gi: i € I} 1is a family of topological
groups then igl Gi will denote the direct product with
r
the product topology. Further igl Gi will denote the
restricted direct product with the topology induced as a
II
subspace of seT Gi
Proposition 15. If each Gi , 1 €1 is a topological
r
Il i i i
group then ie1 Gi is a ;opologlcal group. Furthez"ﬂEIGi
is a dense subgroup of €T Gi .
Proposition 16. Let {Gi: i €1} be a family of topological
groups. Then
(1) igl Gi is locally compact if and only if each Gi is
locally compact and all but a finite number of Gi
are compact.
r
(i1) igl Gi is locally compact Hausdorff if and only if
each G, is locally compact Hausdorff and Gi = {e}

for all but a finite number of Gi .

Proof. Exercise.
To prove the result we promised - every infinite abelian
group admits a non-discrete Hausdorff group topology - we

need some basic group theory.

Definition. A group D is said to be divisible if for
n=1,2,..., {xn: X €D} =D ; that is, every element of D

has an nth root.

Examples: R, T but not Z .

Proposition 17. Let H be a subgroup of an abelian group
G . If ¢ is any homomorphism of H into a divisible
abelian group D , then ¢ can be extended to a homomorphism

of G into D .

18



Proof. By Zorn's lemma it suffices to show that if x € H ,
¢ can be extended to the group HO ={xh: heH,neEz}.

Case (1). X" ¢H,n=1,2,... Then define
¢(xnh) = ¢(h) . Clearly ¢ 1is well-defined, a homomorphism,
and extends ¢ on H .

Case (ii). Let k > 2 be the least positive integer n
such that x' € H . So ¢(xk) =dE€D. As D 1is divisible,
there is a 2 €D such that z =d . Define ¢(xn h) =
¢(h)zn . Clearly ¢ 1is well-defined, a homomorphism and

extends ¢ on H . /

Corollary. If G is an abelian group then for any g and
h in G, with g # h, there exists a homomorphism ¢: G » T

such that ¢(g) # ¢(h) ; that is, ¢ separates points of G .

Proof. Clearly it suffices to show that for each g # e
in G there exists a homomorphism ¢: G + T such that
¢(g) # e

Case (1i). gn = e , and gk #e for 0<k<n . Let
H={g" m=0,£1,£2,...} . Define ¢: H-+T by ¢(g) =
an nth root of unity = r , say, (r # e) , and ¢(gm) =",
for each m . Now extend ¢ to G by Proposition 17.

Case (1ii). gn # e , for any n . Define ¢(g) =z ,
for any z #e in T . Extend ¢ to H and then, by
Proposition 17, to G . //

For later use we also record the following corollary of

Proposition 17.
Proposition 18. rLet H be an open divisible subgroup of
an abelian topological group G . Then G 1s topologically

isomorphic to H x G/H . (Of course, G/H is a discrete

topological group.)
Proof. Exercise.

19



Theorem 1. If G 1is any infinite abelian group, then G

admits a non-discrete Hausdorff group topology.

Proof. Let {¢i: i € I} be the family of distinct homo-

morphisms of G into T . Put H = 121 T. , where each
= 1 . =1 :

Ti T . Define a map f:G -~ H ie1 T1 by putting

f(g) = 1GI ¢ (g) . Since each ¢i is a homomorphism, f

is also a homomorphism. By the Corollary of Proposition 17,
f 1s also one-one; that is, G 1s isomorphic to the sub-
group f(G) of H .

As H 1is a Hausdorff topological group, f(G) , with the
topology induced from H , is also a Hausdorff topological
group. It only remains to show that f(G) 1s not discrete.

If f(G) were discrete then, by Proposition 7 it would
be a closed subgroup of H . But by the Tychonoff theorem
H 1is compact and so f(G) would be compact; that is, f(G)
would be an infinite discrete compact space — which is

impossible, So f(G) 1is not discrete, //

Remark, The Corollary of Proposition 17 was essential to
the proof of Theorem 1, The Corollary is a special case of

the following theorem, which shall be discussed in Chapter 6,

Theorem, If G 1is any LCA-group, then for any g and h
in G , with g # h , there exists a continuous homomorphism

¢: G+~ T such that ¢(g) # ¢(h) .

EXERCISE SET THREE
1, 1If {Gi: i € 1} is a family of topological groups,

show that
. ]'[ . .
(1) el G is a topological group,

33 ]"[ . ]'[
(i1) ie1 G is a dense subgroup of i1 Gi .
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(iii) igl G, is locally compact if and only if each Gi
is locally compact and all but a finite number of Gi
are compact,

(iv) igi Gi is locally compact Hausdorff if and only if
each Gi is locally compact Hausdorff and Gi = {e}

for all but a finite number of Gi .

2, Show that if G 1is an abelian topological group with
an open divisible subgroup H , then G 1is topologically

isomorphic to H x G/H ,

3, Let G be a torsion-free abelian group (that is,
gn # e for each g #e in G , and each positive integer
n ), Show that if g and h are in G with g # h , then
there exists a homomorphism ¢ of G into R such that

¢(g) # ¢(h) .

4. Let G be a locally compact totally disconnected
topological group,

(1) Show that there is a neighbourhood base of the
identity consisting of compact open subgroups. (You
may assume that any locally compact Hausdorff totally
disconnected topological space has a base for its
topology consisting of compact open sets.)

(i1) If G 1is compact, show that the "subgroups" in (i)
can be chosen to be normal.

(iii) Hence show that any compact totally disconnected
topological group is topologically isomorphic to a
closed subgroup of a product of finite discrete groups.
(Let {Ai: i €1} be a base of neighbourhoods of the
identity consisting of open normal subgroups. Let
¢i: G~ G/Ai , 1 €1, be the canonical homomorphisms,
and define &: G ~> igl (G/Ai) by putting
og) = .1 ¢.(s) )
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5. Let f: R+ T be the canonical map and 6 any
irrational number. On the topological space G = RZ x T2
we define an operation

(xp5%p, £1589) * (Xp,%p, 87,85

= (x1 +x! »X, +xé,t1 + ti + f(xzxi) sty * té + f(exzxi))
Show that, with this operation, G 1is a topological,

group and that the commutator subgroup of G 1is not closed

in G .

6, Let I be a set directed by a partial ordering < .
For each 1 € I , let there be given a Hausdorff topological
group Gi . Suppose that for each i and j in I such
that 1 < j , there is an open continuous homomorphism f'i
of Gj into Gi . Suppose further that if i < j < k then

f.=f..f . The object consisting of I , the groups Gi

ki ji'kj
and the mappings fji , 1s called an inverse mapping system.
The subset H of the product group G = ﬁgl Gi consisting
of all (x.) such that if i < j then x. = f..(x.) 1is

1 1 Jj1 7]
called the projective limit of the inverse mapping system.

Show that H 1is a closed subgroup of G .

k % k *k % %k k % %

Theorem 2 (Baire Category Theorem). If X is a locally
compact regular space then X is not the union of a

countable collection of closed sets all having empty interior.

o

Proof. Suppose that X = ngl A, where each A is closed
and Int.(An) =¢ , for each n . Put Dn = X\An . Then
eich Dn is open and dense in X . We will sgow that
o D # ¢ , contradicting the equality X = ngl A -

Let UO be a non-empty open subset of X such that UO
is compact. As D1 is dense in X , UO N D1 is a non-
empty open subset of X . Using the regularity of X we
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can choose a non-empty open set U1 such that Glg UO r"lD1 .

Inductively define Un so that each U is a

non-empty open set_and Un - Un—l N Dn : flnce UO 1s
compact and each U_ is non-empty, N U #¢ . This
© n n= n
. 3 n .
implies LA N ¢ ./
Remark. The above Theorem remains valid if "locally compact

regular" is replaced by "complete metric" or "locally compact

Hausdorff".

Corollary. rLet G be any countable locally compact Haus-

dorff topological group. Then G has the discrete topology.
Proof. Exercise.

Theorem 3 (Open Mapping Theorem). Let G be a locally
compact group which is o-compact; that is, G = n§1 An ,
where each An is compact. Let f be any continuous homo-
morphism of G onto a locally compact Hausdorff group H .

Then f 1is an open mapping.

Proof. Let U be the family of all symmetric neighbour-
hoods of e in G and U' the family of all neighbourhoods
of e in H . It suffices to show that for every U €U
there is a U' € U' such that U'C £f(U) .

Let U €U . Then there exists a V€U having the
property that V is compact and (V)~lV CU . The family
of sets {xV: x € G} 1is then an open cover of G and hence
also of each compact set An . So a finite collection of
these sets will cover any given An . Thus there is a
countable collection {xpV: n = 1,2,...} which covers G .

so w= 0 fxw = 8 £ ® = 0 £ )e@® . mis
expresses H as a countable union of closed sets, and by

the Baire Category Theorem, one of them must have non-empty
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interior; that is, f(xm)f(e) contains an open set, Then
f(V) contains an open subset V' of H ,

To complete the proof select any point x' of V' and
put U' = (x")71V' , Then we have

Ut = (XD C )TV C (S THEY) = £((MTIM CE)

as required. [/

EXERCISE SET FOUR

1. Prove the Baire Category Theorem for complete metric

spaces.

2. Show that any countable locally compact Hausdorff

group has the discrete topology.

3. Show that the Open Mapping Theorem does not remain
valid if either of the conditions "¢-compact" or "onto" is

deleted.

4, Show that any continuous homomorphism of a compact

group onto a Hausdorff group is open.

P . n .
5. Show that for any positive integer n , T 1s topo-

logically isomorphic to RY/z" .

6. (1) Let ¢ be a homomorphism of a topological
group G 1into a topological group H . If X
is a non-empty subset of G such that the
restriction ¢: X - H 1is an open map, show that
¢: G+ H 1is also an open map.
(Hint: For any subset U of G,
$(U) = ggG (U N gX) .)
(ii) Hence show that if G and H are locally

compact Hausdorff groups with ¢ a continuous
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homomorphism : G > H such that for some
compact subset K of G , ¢(K) generates

H algebraically, then ¢ 1is an open map.
(Hint: Show that there is a compact neighbour=-
hood U of e such that UDK . Put X =
the subgroup generated algebraically by U .)

7. Let G and H be topological groups, and let n be
a homomorphism of H onto the group of automorphisms of G .

We define a group structure on the set G x H by putting
(8,50 * (gysh,) = (gyn(h))(g,) b h,)

Further, let (g,h) - n(h)(g) be a continuous map of G x H
onto G . Show that
(i) Each n(h) is a homeomorphism of G onto itself
and (i1) With the product topology and this group
structure G x H 1is a topological group. (It
is called the semidirect product of G by H
that is determined by n and is denoted by
G x H.)
8. (1) Let G be a o-compact locally compact Hausdorff
topological group with N a closed normal sub-
group of G and H a closed subgroup of G
such that G = NI and NNH = {e} . Show
that G 1s topologically isomorphic to an
appropriately defined semidirect product
N Xn H .
(Hint: Let n(¢h)(n) = h™lnh , h€Hand n €N .)
(ii) If H 1is also nmormal, show that G 1is topo-
logically isomorphic to N x H .
(iii) If A and B are closed compactly generated

subgroups of a locally compact Hausdorff abelian
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topological group G such that AN B = {e}
and G = AB , show that G 1is topologically

isomorphic to A x B .

9. Let G and H be Hausdorff topological groups and

f a continuous homomorphism of G into H . If G has a

neighbourhood U of e such that U 1is compact and £(U)

is a neighbourhood of e in H , show that f 1is an open

map.

* k k k k k k Kk X%
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2 - Subgroups and quotient
groups of R"

In this chapter we expose the structure of the closed

subgroups and Hausdorff quotient groups of R" , 021

Notation. Henceforth we shall focus our attention on abelian
groups which will in future be written additively. However,
we shall still refer to the product of two groups A and B
(and denote it by A X B ) rather than the sum of.the two
groups. We shall also use A" to denote the product of n
copies of A and igl Ai for the product of the groups Ai’
i €I . The identity of an abelian group will be denoted

by O .

Proposition 19. Every non-discrete subgroup G of R 1is

dense.

Proof. We have to show that for each x € R and each
€ > 0 , there exists an element g€ G N [x—e,x+e] .

As G 1is not discrete, O 1is not an isolated point. So
there exists an element x_€ (G \{0o}) N [0,e] . Then the
intervals [nxe,(n+1)x€] , 01 =0,¥1,+2,,,, cover R and

are of length < € . So for some n, nx. € [x—e,x+e] and

€
of course nx. € G . //

Proposition 20. 1ILet G be a closed subgroup of R . Then
G=1{0} ,G=R, or G is a discrete group of the form
az = {0,a,-a,2a,-2a,...} , for some a > O .

Proof. Assume G #R . As G 1is closed, and hence not

27



dense in R, G must be discrete. If G # {0} , then G
contains some positive real number b . So Bhb] NG 1is
a closed non-empty subset of the compact set [O,b] . Thus
[O,b] N G is compact and discrete. Hence [0,b] N G is

finite, and so there exists a least element a >0 in G .

|4

For each x € G , let
Then x - E a€G and O

denote the integer part of
- [E]a <a. So x - E]a

a a
€ Z , as required. //

a
<

LY

X 0;
that is, X = na , for some n

Corollary 1. 1f a,b € R then gpla,b} , the subgroup of

R generated by {a,b} , is closed if and only if a and b

are rationally dependent.
Proof. Exercise.
Examples. gp{1,v¥2} and gp{v2,/3} are dense in R .

Corollary 2. Every proper Hausdorff quotient group of R

is topologically isomorphic to T .

Proof. If R/G 1is a proper Hausdorff quotient group of

R , then, by Proposition 14, G 1is a closed subgroup of R.
By Proposition 20, G 1is of the form aZ , a > 0 . Noting
that the map x - % X 1s a topological group isomorphism of
R onto itself such that aZ maps to Z , we see that R/aZ
is topologically isomorphic to R/Z which, we know, is topo-

logically isomorphic to T . //
Corollary 3. Every proper closed subgroup of T 1is finite.

Proof. Identify T with the quotient group R/Z and let
p: R >~ R/Z be the canonical quotient homomorphism. If G
is any proper closed subgroup of R/Z then p 1(G) is a
proper closed subgroup of R . So p~1(G) is discrete. By
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Proposition 10, the restriction p: p~}(G) >~ G is an open
map, so we see that G 1is discrete. As G 1is also compact,
it is finite. //

We now proceed to the investigation of closed subgroups
of R" , for n 2 1 . Here we use the fact that R" is a

vector space over the real field.

Notation: If A is a subset of R" we denote by spgr(A)
the subgroup {a1a1+...+amam: @, €R, a, €A, i=1,...,m,
m a positive integer} ; and by spQ(A) the subgroup
{a1a1+...+amam: a; € Q, a; €A,i=1,...,m, m a positive
integer} ; and by gp(A) the subgroup of R" generated by
A .

Clearly gp(A) C spQ(A) C spr(A) . We define rank (A)

to be the dimension of the vector space spr(4)

Proposition 21. 1f {al,...,am} is a linearly independent

subset of R" , then gp{al,...,am} is topologically iso-

morphic to z"

Proof. Choose elements a 412-c-08, SO that {al,...,am ,
am+1,...,an} is a basis for R" . It is clear that if

. , . n
{cl,...,cn} is the canonical basis for R , then

gp{cl,...,cm} is topologically isomorphic to A By

Problem 2 of Exercise Set Five, every linear transformation

of R" onto itself is a homeomorphism. So the linear map
taking a, to c,, i=1,...,n, yields a topological

group isomorphism of gp{al,...,am} onto gp{cl,...,cm}
=z" ./

Proposition 22. rLet G be a discrete subgroup of R" or

rank p , and al,...,ap € G a basis for spR(G) . Let P

be the closed parallelotope with centre O and basis

vectors, a

1°°°

. 5 i -=.E .a,: -1l ¢r, ¢
,ap 3 that is, P {1=1 r.a, 1 T, 1,
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i=1l,...,p}. Then GNP is finite and gp(G N P)
Further, every point in G 1is a linear combination of
{al,...,ap} with rational coefficients; that is

G C spQ{al,...,ap}

Proof. As P 1is compact and G 1is discrete (and closed
in R"), GNP is discrete and compact, and hence finite,

Now G C spR{al,...,ap} implies that each x € G can

be written as x = | t,a, , t, € R . For each positive
1=1 11 1
integer m , the point
P
Zp T TE igl [me;Ja; = ;& @me; - [me;]ay
where [ ] denotes "integer part of", belongs to G . As

0 < mti - [mti] <1, zm € P . Hence x = z) + Z [t ]a ,
which says that gp(GNP) =G .

Further, as GNP 1is finite there exist integers h
and k such that z =z . So (h-k)t, = [ht.] - [kti] ,
i=1,.00,p . So ts €EQ,1i=1,...,p - Thus

x € spQ{al,...,ap} N/

Corollary. rLet {al,...,gp} be a linearly independent
subset of R" ,and b = .,y t.a, , t, € R . Then
i®l i1 1

gp{al,...,ap,b} is discrete if and only if t .5t are

10 p
rational numbers,

Proof. Exercise.

Theorem 4. Every discrete subgroup G of R" of rank p
is generated by p linearly independent vectors, and hence

is topologically isomorphic to zP .

Proof. Since G is of rank p , G C spR{al,...,ap} ,

where a

1,...,ap are linearly independent elements of G .
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By Proposition 22, G = gp{gl,...,gr} where each g; €
spQ{al,...,ap} . So there exists a d € Z such that
8; Ggp{ 1,...,Eap} , 1 =100, .
Now 1f {b,,...,b } is a linearly independent subset of
1 P
G, then b.: = ZBijaj , where the determinant, det(Bij) #0,

and B YA So det(B ) € 1 Z . So out of all such

i

1

H 4P
{bl"' bp} there exists one with |det(B )| minimal.
Let this set be denoted by {bl""’bp} . We claim that
G = gp{bl,...,bp} and hence is topologically isomorphic

P
to Z% .

Suppose G # gp{b bp} . Then there exists an element

ye ey
g €G with g = E 1>\ (b, and not all A, € Z . Suppose
that Al = g- ; and s >1 . Since b1 € G we can
assume that |A1| <1 (by subtracting multiples of b1 s
if necessary). Then putting bi =g, b{ = bi , 1 =2,...,p
and b{ = ZB{jaj we see that

A
det(B!.) = det | *2 1 det(B..) = A. det(..) .
ij ) i 1 i
O,
AP

As |A1| < 1 this means that |det(8£j)| < |det(8ij)| ,

which is a contradiction. //

Proposition 23. Every non-discrete closed subgroup H of

n . .
R, nx1, contains a line through zero.

Proof. As H 1is non-discrete there exists a sequence

hyshy,e. -

hn #0 . Let C be an open cube with centre O containing

of points in H converging to O , with each
all the hn . Let m denote the largest integer m > O
such that mhn € C . The points mnhn , n=1,2,,,, lie in

a compact set C and therefore have a cluster point
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a€CNH.

If ||mnhn - a|| £ ¢ we have ||(mn + 1)hn -all s e+ ”hn”’
where || || denotes the usual norm in R" . Since hn +0
as n -+« it follows that a 1is also a cluster point of
the sequence (mn + 1)hn , n=1,2,..., whose points belong
to the closed set R™C . Hence a €C N (Rn\C) - the
boundary of C , which implies a # O .

Let t be any real number. Since |tmn - [tmn]| <1,
the relation ”mnhn - al|| £ ¢ implies that ||[tmn]hn - tal|
< |tle + th||; since hn +0 as n-~+«° , ta is a limit
point of the sequence [tmn]hn ,n=1,2... But the
points of this sequence belong to H and so ta €H ,
since H 1is closed. So H contains the line through

a#0 and O . //

Theorem 5. Let G be a closed subgroup of R" , 21
Then there are (closed) vector subspaces U , V and W

of R" such that
n

(1) RO =UxVxW

(ii) 6 NU =1

(iii) G NV 1is discrete
(iv) 6nw={o}

(v) G=(GNU) x (6GNYV)

Proof. ©Let U be the union of all lines through O lying

entirely in G . We claim that U is a vector subspace
of R® . To see this let x and y be in U and X,u
and 8§ €R . Then 6Ax 1is in U and hence also in G .

Similarly Suy €G . So 6S(Ax + uy) = 8Aix + Suyy € G . As
this is true for all & € R, we have that Ax + uy € U .
So U 1is a vector subspace of R" ,and GNU=1U.

Let U' be any complementary subspace of U ; that is,
R"=UxU'". Soif g€G, then g=h +k , h €U,

k €U'. As 6DU, hE€G so k=g-he&G . Hence
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G=Ux(Nu"

Put V = spp(G NyU') and W = a complementary subspace
in U' of V. So 6NW= {0} . Clearly G NV contains
no lines through O , which by Proposition 23, implies that
G r Vv is discrete, //

Theorem 6. Let G be a closed subgroup of R* , n 3 1 .
If r equals the rank of G (that is, spR(G) has dimension

<.sa of Rn such that

r ) then there exists a basis a,- 0

G = spR{al,...,ap} % gp{ap+1,...,ar}
So G 1is topologically isomorphic to RP x z'P and the
quotient group Rn/G is topologically isomorphic to
TP« gMT
Before stating the next theorem let us record some facts

about free abelian groups.

Definition. A group F 1is said to be a free abelian
group if it is the restricted direct product of a finite or
infinite number of infinite cyclic groups. Each of these
infinite cyclic groups has a single generator and the set S

of these generators is said to be a basis of F .

Remarks.

(1) It can be shown that an abelian group F 1is a free
abelian group with basis S 1if and only if S 1is a
subset of F with the property that every map f of
S into any abelian group G can be extended uniquely
to a homomorphism of F 1into G .

(i1i) One consequence of (i) is that any abelian group G
is a quotient group of some free abelian group. (Let
F be the free abelian group with basis S of the

same cardinality as G . Then there is a bijection
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¢ of S onto G . Extend this map to a homomorphism
® of F onto G .)
(iii) Proposition 21 together with Theorem 4 show that any
subgroup of AT isomorphic to z™ , for some m .
In other words, any subgroup of a free abelian group
with finite basis is a free abelian group with finite
basis. It can be shown that any subgroup of a free
abelian group is a free abelian group. For details
see A.G. Kurosh, "The theory of groups I", pp.l42-144,
(iv) Finally, we record that if the abelian group G ad-
mits a homomorphism ¢ onto a free abelian group F
then G 1is isomorphic to F x A , where A 1is the
kernel of ¢ . (Note that it suffices to produce a
homomorphism 6 of F into G such that ¢6 1is
the identity map of F . To produce 6 , let S be
a basis of F and for each s € S choose a g €6
such that ¢(gs) =s . As F 1is a free abelian
group the map s —+ g of S into G can be extended
to a homomorphism 6 of F into G . Clearly ¢6

acts identically on F .)

Theorem 7. Let H =V x F , where V 1is a divisible
abelian Hausdorff group and F 1is a discrete free abelian
group. If G 1is a closed subgroup of H , then there
exists a discrete free abelian subgroup F' of H iso-
morphic to F such that
(1) H=VxF'
and (11) G =(GNV) x (GNF")

Proof. Let m: H~>V and M, H>F be the projections.

The restriction of m, to G 1is a homomorphism from G to
F with kernel GNV . Since F 1is a free abelian group,
and every subgroup of a free abelian group is a free abelian

group, G/(G NV) 1is free abelian, and therefore, by the
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above Remark (iv), G 1is algebraically isomorphic to

(GNV) x C , where C 1is a free abelian subgroup of G .
Let Py and P, be the restrictions of ™ and T,

to C , respectively. Then Py is one-one as C NV =

cNeNv = {0}

p]. g

v<T

We can define a homomorphism 6: p2(C) + V by putting
e(pz(c)) = pl(c) and then use Proposition 17 to extend 6
to a homomorphism of F into the divisible group V . So
ep2 =py - If we now define a homomorphism ¢: F - H by
¢(x) = 8(x) + x and put F' = ¢(F) we have that

H =V x F' , algebraically; the decomposition being given by

v+f=[v-06(f)] +[6(f) +£f] , vEV ad fEF .
Also C CF' , since for each ¢ in C we have
¢ =py(c) +p,(c) = 8(p,(c)) +p,(c) = ¢(p,(c)) € ¢(F) = F'

So (i) and (ii) are satisfied algebraically.

Now ¢: F~ F' is an algebraic isomorphism and since ¢!
is induced by Ty s -1 1is continuous. But F 1is discrete,
so ¢ 1s a homeomorphism and F' 1is a discrete free abelian
group,

To show that H has the product topology with respect to
the decomposition H =V x F' , it suffices to show that the
corresponding projections ni: H -+ YV and né: H - F' are
continuous. But this is clearly the case since ni(h) =

nl(h) - e(nz(h)) and né(h) = nz(h) + e(nz(h)) , for each

35



h € H . Hence the decomposition G = (GNV) x (GNF')
also has the product topology. //

Corollary 1. ILet G be a closed subgroup of R" x Z% .
Then G 1Is topologically isomorphic to Ra % Zb , where
asn and a+b<n+m. Further (R® x Z%/C is topo-
logically isomorphic to RS x Td x D , where D is a
discrete finitely generated abelian group (with f <m

generators) and c¢ +d < n .

Corollary 2. ILet G be a closed subgroup of R® x T" x D,
where D is a discrete abelian group. Then G 1is topo-
logically isomorphic to Ra X Tb x D' |, where D' is a
discrete group a + b < n +m . Further (Rn x TN x D) /G

d

is topologically isomorphic to RS x T¢ x D" , where D" is

a discrete group and ¢ +d < n +m .

Proof. ©Let F be a discrete free abelian group with D
as a quotient group. (See the Remarks preceding Theorem 7.)
Then there is a natural quotient homomorphism p of RV ™ x
onto R® x T" x D . Then G is a quotient group of

p~l(6) < R"™™ x F . Now Theorem 7 together with Theorem 6
describe both p~!(G) and the kernel of the map of p~l(G)

onto G , and yield the result. //

Remark. In Corollary 2 we have not said that a < n ,
bs<m and ¢ £ n . These inequalities are indeed true.
They will follow from the above once we have the Pontryagin-

van Kampen duality theorem.

Corollary 3. Let G be a closed subgroup of T" . Then
G 1is topologically isomorphic to ™ % D where D is a

finite discrete group and a < n .
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Proof. Exercise.

Definition. The topological groups G and H are said to
be locally isomorphic if there are neighbourhoods V of e
in G and U of e in H and a homeomorphism f of V
onto U such that if x , y and xy all belong to V
then f(xy) = £(x)f(y) .

Example. R and T are locally isomorphic.

Proposition 24. If D is a discrete normal subgroup of a
topological group G , then G and G/D are locally iso-

morphic.
Proof. Exercise.

Lemma. Let U be a neighbourhood of O 1in an abelian
topological group G and V be a neighbourhood of 0O in

R" , n3 1. If thete is amap f of V onto U such

that x €V, y €V and x+y €V implies f(x+y) = f(x)

+ f(y) , then f can be extended to a continuous homomorphism

of R onto the open subgroup of G generated by U .
Proof. Exercise.

Theorem 8. Let G be a Hausdorff abelian topological group
locally isomorphic to Rn , N3 1. Then G 1is topologically
isomorphic to R? x Tb Xx D , where D is a discrete group

and a+b =n .

Proof. By the above Lemma there is a continuous homomorphism
f of R® onto an open subgroup H of G . As G 1is locally
isomorphic to R" , it has a compact neighbourhood of O and

so 1s locally compact. Hence H 1is locally compact and the
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Open Mapping Theorem (Theorem 3) says that f 1is an open
map; that is, H 1s a quotient group of R" . Further
the kernel K of f 1is discrete since otherwise there
would be elements x # 0 of K arbitrarily close to O
such that f(x) = 0 , which is false as f maps a neighbour-
hood of O homeomorphically into G . So Theorem 6 tells
us that H 1is topologically isomorphic to R? x Tb , with
a+b =n ,

Now H 1is an open divisible subgroup of G which, by
Proposition 18, implies that G 1s topologically isomorphic
to Hx D, where D = G/H 1is discrete. Thus G 1is topo-

logically isomorphic to R? x ™ x D , as required. //

Corollary. Any connected topological group locally iso-
morphic to R" , n 21, is topologically isomorphic to

R? x Tb , where a+b =n ,

Remark. We conclude this chapter by noting that some of the
results presented here can be extended from finite to infinite
products of copies of R . For example, it is known that any
closed subgroup of a countable product iﬁl Ri of isomorphic
copies Ri of R 1is topologically isomorphic to a countable
product of isomorphic copies of R and Z . However, this
result does not extend to uncountable products. For details,
see R. Brown, P.J. Higgins and S.A. Morris, '"Countable pro-
ducts and sums of lines and circles: their closed subgroups,
quotients and duality properties'", Math. Proc. Camb. Philos.
Soc. 78 (1975), 19-32; and H. Leptin, "Zur Dualititstheorie
projectiver Limites abelscher Gruppen", Abh. Math. Sem. Univ.

Hamburg 19 (1955), 264-268.

EXERCISE SET FIVE
1. If a,b €R show that the subgroup of R generated
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by {a,b}

rationally dependent.

2.

space

3.

4.

is closed if and only if a and b are

Prove that any linear transformation of the vector

R" ,

(i)

(ii)

nz 1l, onto itself is a homeomorphism .

Let {al,...,ap} be a linearly independent

subset of R® , n 31, and b= .2 t.,a.
i=l 11

t; €ER . Show that gp{al,...,ap,b} is dis-

b

crete if and only if t.,...,t_ are rational
1’ ’ p

numbers.

Hence prove the following (diophantine approx-

imation) result: Let 61,...,6 be n real

n
numbers. In order that for each € > O there
exist an integer q and n 1integers P; »

i=1,...,n such that

where the left hand side of at least one of
these inequalities does not vanish, it is
necessary and sufficient that at least one of

the ei be irrational.

Show that if G and H are locally isomorphic topo-

logical groups then there exists a neighbourhood V' of e

in G

and U' of e in H and a homeomorphism f of V'

U' such that if x, y and xy all belong to V'

onto

then f(xy)

belong to
5. (i)

Ul

= f(x)f(y) and if x', y' and x'y' all

then £ l(x'y") = f71(x")f I(y") .
Verify that any topological group locally iso-
morphic to a Hausdorff topological group is

Hausdorff.
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(ii) Verify that any connected topological group
locally isomorphic to an abelian topological
group is abelian.

(ii1) Deduce that any connected topological group
locally isomorphic to R" , n2 1, is topo-
logically isomorphic to R? x Tb , Where

a+b =n .

6. Show that if D 1is a discrete normal subgroup of a
topological group G , then G and G/D are locally iso-

morphic.

7. Let U be a neighbourhood of O in an abelian topo-
logical group and V a neighbourhood of O in ", n31.
If there is amap f of V onto U such that x €V ,

y €V and x+y €V implies f(x+y) = f(x) +£f(y) , show
that f can be extended to a continuous homomorphism of R"

onto the open subgroup of G generated by U .

k % k %k % k %k %k %
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3 Uniform spaces and dual groups

Uniform Spaces. We now say a very few words about uniform
spaces. For further discussion, see Kelley [General Topologyj
and Bourbaki.
We introduce some notation convenient for this discussion.
Let X be a set and X x X = X2 the product of X with
itself. If V 1is a subset of X2 then V™! denotes the
set {(y,x): (x,y) € V} C X2 . If U and V are subsets
of X2 then UV denotes the set of all pairs (x,z) , such
that for some y € X, (x,y) €U and (y,2z) €V . Putting
V =7U defines U? , The set {(x,x): x €X} 1is called the

diagonal.

Definition. A uniformity on a set X 1is a non-void family
U of subsets of X x X such that
(a) Each member of U contains the diagomnal
(b) veU=ulel
(¢) if U €U then there is a V€& U such that V2 cCu
(&) if v €U and veEU, then UNvel
(e) if Ue€lU and UCVC X2 , then VEU .

The pair (X,U) 1is called a uniform space.

Examples. If R is the set of real numbers then the ''usual
uniformity” for R 1is the family U of all subsets U of
R x R such that {(x,y): |x-y]| < r} C U, for some positive
real number r .

Indeed if (X,d) 1is any metric space then we can define
a uniformity U on X by putting U equal to the collection
of all subsets U of X x X such that {(x,y): d(x,y) <rlCU,
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for some positive real number r .

Let (G,T) be a topological group and for each neigh-
bourhood U of e let UL = {(x,y): x"ly €U} and
UR = {(x,y): xy‘1 € U} . Then the left uniformity L on
G consists of all sets VC G x G such that VD U s
for some U . Similarly we define the right uniformity.
The two-sided uniformity consists of all sets W such that

w2 UL or WDU for some U .

>
Given any unifﬁrmity U on a set X we can define a
corresponding topology on X . For each x €X , let
Ux = {y €X: (x,y) €U} . Then as U runs over U, the
system Ux defines a base of neighbourhoods at x for a
topology; that is, a subset T of X 1is open in the topo-
logy if and only if for each x € T there is a U &€ U such
that Ux CT.
It is easily verified that if (G,t) 1is a topological
group then the topologies arising from the left uniformity,

the right uniformity and the two-sided uniformity all

agree with the given topology.

Definition. TLet E and F be topological spaces and M
any collection of subsets M of E and {V} a base of
open sets in F . Let PM,V) = {f: f € FE and f(M) C V} .
( FE denotes the collection of functions f: E ~+ F .) The
family {P(M,V)} , where M runs over M and V runs over
{v} , is a subbase for a topology on e .

If F 1is a Hausdorff space and M 1is a covering of E
then it is easily verified that this topology is Hausdorff.
Two important special cases of this topology are when

(a) M 1is the collection of all finite subsets of E

- the topology 1s then the p-topology or the topology
of pointwise convergence, and

(b) when M 1is the collection of all compact subsets

of E - the k-topology or the compact open topology.
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Since every finite set is compact, k Dp . Therefore a
subset of FE which is k-compact is also p-compact, but the
converse 1s false.

Observe that FE with the p-topology is simply xgE Fx s
with the product topology, where each Fx is a homeomorphic
copy of F .

We are interested in C(E,F) the subset of FE consisting

of all continuous functions from E to F , and we shall want

to find conditions which guarantee that a subset of C(E,F)

is k-compact.

Definition., Let E and F be topological spaces and G
a subset of FE . A topology on G 1is said to be jointly
continuous if the map © from the product space G x E to

F , given by 6(g,x) = g(x) , is continuous,

Proposition 25. Fach topology on G C FE which is jointly

continuous is finer than the k-topology.

Proof. Let T be a jointly continuous topology on G ,

U an open subset of F , K a compact subset of E and

6 the map taking (g,x) to g(x) , g €G and x €E .

We want to show that for each f € P(K,U) = {g: g € G and

g(K) C U} there is a set W € 1 such that f € W C P(K,U) .
As 6 1is jointly continuous the set V = (GxK) N 8-l (V)

is open in G x K . If f €P(K,U) then {f} x KCV and

since {f} x K 1is compact, there is a W € T such that

fEW and W xKC 6~1(U) . Hence W - P(K,U) as

required. //

Proposition 26. rLet E and F be topological spaces and
G C C(E,F) . Then G is k-compact if

(a) G is k-closed in C(E,F)

(b) the closure of the set {g(x): g € G} is compact,
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for each x € E
and (c) the p-topology for the p-closure of G in FE is

jointly continuous.

Proof. Let G be the p-closure in FE of G . By
condition (b), xgE (fé??f?_g—éfai) is a p-compact set, and
since G 1is a p-closed subset of this set, G 1is p-compact.
By condition (c), the p-topology on G is jointly con-
tinuous - so G C C(E,F) . Also by Proposition 25, the p-
topology on G 1is finer than the k-topology and hence they
coincide. Thus G is k-compact. As G is k-closed in
C(E,F) and G 1is k-compact and a subset of C(E,F) , we

have that G is k-compact. //

Definition. Let E be a topological space and F a
uniform space. A subset G of C(E,F) 1is said to be egui-
continuous at the point x € E if for each U 1in the
uniformity U of F , there exists a neighbourhood V of

x such that (g(y),g(x)) €U, for all y €V and g €G .
The family G 1is said to be equicontinuous if it is equi-

continuous at every x € E .

Proposition 27. Let G be a subset of C(E,F) which is

equicontinuous at x € E . Then the p-closure G in FE

of G 1is also equicontinuous at x .
Proof. Exercise.

Proposition 28. Let G be an eguicontinuous subset of

C(E,F) . Then the p-topology on G 1is jointly continuous.
Proof. Exercise.
By combining Propositions 26, 27 and 28 we obtain the
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following:

Theorem 9 (Ascoli's Theorem). ILet E be a topological
space and F a uniform space. A subset G of C(E,F) is
k-compact if
(a) G is k-closed in C(E,F)
(b) the closure of the set {g(x): g € G} is compact,
for each x € E

and (¢) G 1is equicontinuous.

Remark. If E 1is a locally compact Hausdorff space and

F 1is a Hausdorff uniform space then the converse of Theorem
9 is valid; that is, any k-compact subset G of C(E,F)
satisfies conditions (a), (b) and (c). (See Kelley, General

Topology.)

EXERCISE SET SIX
1. Let (X,U) be any uniform space and (X,t) the
associated topological space. Show that (X,t) 1s a regular

space.

2. If (G,t) 1is a topological group show that the topo-
logies associated with the left uniformity on G , the right
uniformity on G , and the two-sided uniformity on G co-

incide with T .

3. (1) Let G be a topological group and {Un: n =

1,2,...} a base for the left uniformity on G

such that

n = 1
(a) a=l Un diagonal of G % G
(®) Un+1Un+1Un+1 < Un
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and G

and

46

(ii)

4. Let

(1)

(ii)

= 11-1
(c) Un Un , for each n ,
Show that there exists a metric d on G such
that U C {(x,y): d(x,y) < 2™ ¢ U _

each n>1 .

10 for

(Hint: Define a real-valued function f on

T

G X G by letting f£(x,y) =2 = 1if (x,y)€

Un—l\Un and f(x,y) =0 if (x,y) belongs to
each Un . The desired metric d 1is constructed
from its "first approximation', f , by a chaining
argument. For each x and y in G let

. . n
d(x,y) be the infimum of {iéo f(xi,xi+1)}

over all finite sequences X _,X.,...,X such
q O’ 1’ ’ n+1

.)

that x = X and y = x
Prove that a topological group is metrizable if
and only if it satisfies the first axiom of
countability at the identity; that is, there is
a countable base of neighbourhoods at the

identity.

E be a topological space, F a uniform space

a subset of C(E,F) . Show that

if G 1s equicontinuous at x € E , then the
p—closure in FE of G 1is also equicontinuous
at x

if G 1is an equicontinuous subset of C(E,F) ,

then the p-topology on G 1is jointly continuous.

* k% k k k k k %k %

We are now ready to begin our study of duality.



Definitions. If G is an abelian topological group then
a continuous homomorphism Y: G+ T 1is said to be a
character. The collection of all characters is called the
character group or dual group of G , and is denoted by G*
or T .

Observe that G* is an abelian group if for each Y,

*
and Y, in G we define
(Yl + Yz)(g) = Yl(g) + yz(g) , for all ge&€G .

Instead of writing y(g) , YET and g € G we shall
generally write (g,Yy)

Example 1. Consider the group Z . Each character Yy of

Z 1is determined by y(1) , as y(n) = ny(l) , for each

n € Z . Of course Y(l) can be any element of T . For
each a €T, let Ya denote the character Y of Z with
Y(1) = a . Then the mapping a - Y, is clearly an algebraic
isomorphism of T onto the character group of Z . So the

*
dual group Z of Z 1s algebraically isomorphic to T .

Example 2. Consider the group T . We claim that every
character Y of T can be expressed in the form vy(x) =mx,
where m 1is an integer characterizing the homomorphism Yy .
To see this. let K denote the kernel of Yy . Then by
Corollary 3 of Proposition 20, K =T or K is a finite
cyclic group. If K =T, then y 1is the trivial character
and y(x) =0.x, X€E€T. If K 1is a finite cyclic group
of order r then, by Corollary 2 of Proposition 20, T/K
is topologically isomorphic to T . Indeed, if p 1is the
canonical map of T onto T/K then the topological iso-
morphism 6: T/K - T is such that 6p(x) = rx . Let a

the continuous one-one homomorphism of T into T induced

by ¥y .
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7
P[ v
//
T/K /7
7/
e
el Y
7/
//
T/
Problem 1 of Exercise Set Seven implies that o(x) = x , for

all x €T, or a(x) = -x, for all x €T . So y(x) = rx
or -rx , for each x €T .

Hence each character y of T 1is of the form y = Ym
for some m € Z , where Ym(x) =mx for all x €T . Of

*
course Y + Y, =Y Thus the dual group T of T 1is

m+n
algebraically isomorphic to Z , with the isomorphism being

m - .
Ym

Example 3. Consider the group R . We claim that every
character y of R can be expressed in the form vy(x) =
exp(2midx) , X €R , where d 1is a fixed real number

defining vy : y = Yd . Further, we have Ya + Yb = Ya+b
Thus the dual group of R 1s algebraically isomorphic to
R 1itself, under the isomorphism d - Yq

To prove the claim, let K denote the kernel of Yy . If
K=R then y = Yo If K # R then Proposition 20 says
that K 1is isomorphic to Z . Further by Corollary 2 of
Proposition 20 the quotient group R/K 1is topologically
isomorphic to T . As in Example 2 there are only two
possibilities for the induced algebraic isomorphism
R/K + T ; these give rise to the cases Yy = Yl/a and
Y = Y(—l/a) , where a 1is the least element of K . So
every Y 1s of the form Yd for some d € R , and hence

R 1is algebraically isomorphic to its dual group.

*
We now topologize G
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*
Remark. Note that G is a p-closed subset of C(G,T) .

Proposition 29. Let G be any abelian topological group.
*

Then G endowed with the p-topology or the k-topology is

a Hausdorff abelian topological group.

Proof. Exercise.

*
Theorem 10. If G is any LCA-group then G , endowed
with the k-topology, is an LCA-group.

Proof. To show that G , with the k-topology, is locally
compact, let U be any compact neighbourhood of 0 in G
and Va = {t: t = exp(27ixX) €ET and 1 > x > l-a or
a>x 30}, where a is a positive real number < } .
Then v, is an open neighbouihood of 0 in T .

Let Na = P(U’Va) ={yec: (g,v) E v, o for each
g €Ul . By the definitio: of the k-topology, N_ is a
neighbourhood of 0 in G . We shall show that the k-
closure of Na , Clk(Na) , 1s k-compact. To do this we use
Theorem 9.

Firstly we show that Na is equicontinuous. Let € > O
be given. We wish to show that there exists a neighbourhood
U1 of 0 in G such that for all y € Na and g, h and
g-h in U, (g-h,y) = (g,v) - (h,y) € V. , where
Ve = {t: t = exp(2mix) €T and 1> x> 1-¢ or € > x % O}.

Suppose that there is no such U Without loss of

1
generality assume € < i and let n be a positive integer
such that 4 > ne > a . Further, let W be a neighbourhood

of O in G such that
3
(1) (L Wi C U, where each Wi =W .

1

By assumption, then, for some g and h in W with
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g-h €W and some Y € Na » (g-h,y) € V. . So without
loss of generality (g-h,y) = exp(2mix) with a > x » ¢
Let j be a positive integer < n such that §} > jk > a .
So (j(g-h),y) & v, - But as jg , jh and j(g-h) all
belong to U , by (1), (j(g-h),y) € v, - which is a
contradiction. Hence Na is equicontinuous.

By Proposition 27, the p-closure of Na is equicontinuous.
As any subset of an equicontinuous set is equicontinuous, and
Clk(Na) is a subset of the p-closure of Na , we have that
Clk(Na) is equicontinuous.

As T 1is compact, condition (b) of Theorem 9 is also
satisfied :nd hence Clk(Na) is a compact neighbourhood of
O. So G with the k-topology is locally compact. //

As a corollary to the proof of Theorem 10 we have

Theorem 11. Let G be any LCA-group, T its dual group
endowed with the k-topology, K a compact neighbourhood of
O in G and v, = {t: t = exp(27ix) €ET with 1 > x > l-a
or a>x 3 0} , for some positive real number a < } .

Then P(K,Va) is a compact neighbourhood of 0O in T .

. * ,
Notation. From now on G and T will denote the dual

group of G with the k-topology.

Theorem 12. Let G be an LCA-group and T its dual group.
If G 1is compact then T 1is discrete. If G 1is discrete

then T 1is compact.

Proof. Let G be compact and Va be as in Theorem 11.
Then P(G,Va) is a neighbourhood of O in T . As Va
contains no subgroup other than {0} , we must have
P(G,Va) = {0} . So T has the discrete topology.

Let G be discrete. Then by Theorem 11, P({O},Va) is

a compact subset of T . But P({O},Va) clearly equals T ,
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and hence T 1is compact. [/

*
Corollary. The dual group T of T 1is topologically

isomorphic to Z ,

EXERCISE SET SEVEN

1. Show that if Y 1is a continuous 1 -1 homomorphism
of T 1into itself then either y(x) = x , for all x €T
or vy(x) = -x, for all x €T . (Hint: Firstly show that
Y must be onto. Next, observe that T has only one

element of order 2 .)

2. Show that if G 1is any abelian topological group,
then G* endowed with the p-topology or the k-topology is
a Hausdorff topological group. (Hint: Let Y;-Y, € P(K,0) .
Let W be an open symmetric neighbourhood of o in T

such that 2W + (yl —yz)(K) C U . Observe that
[y, +P&,®] - [y, +P(K,W] C P&, .)

3. Show that the dual group of Z 1is topologically iso-

morphic to T .

4. Show that R 1is topologically isomorphic to its

dual group.

5. Find the dual groups of the discrete finite cyclic

groups.

*

6. Let G be any abelian topological group and G
its dual group. Show that the family of all sets P(K,Ve) s
as K ranges over all compact subsets of G containing O

and € ranges over all positive numbers less than one, is
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a base of open neighbourhoods of O for the k-topology
*
on G .

* k% k k k k k %k %
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4 - Introduction to the
Pontryagin — van Kampen
duality theorem

We begin with a statement of the duality theorem.

Theorem. Let G be an LCA-group and T its dual group.
For fixed g€ G , let g' be the function : T - T given
by g'(y) =y(g) , forall ye€T . If o is the mapping
given by a(g) = g' , then a is a topological group iso-

*
morphism of G onto T .,

Remarks.

(1) Roughly speaking this says that every LCA-group is
the dual group of its dual group.

(i1) This theorem says that every piece of information
about an LCA-group is contained in some piece of
information about its dual group. In particular all
information about a compact Hausdorff abelian group
is contained in information about its dual group - a
discrete abelian group. So any compact Hausdorff
abelian group can be completely described by the
purely algebraic properties of its dual group; for
example, if G 1is a compact Hausdorff abelian group
then we shall see that
(a) G 1is metrizable if and only if T 1is countable.

(b) G 1is connected if and only if T 1is torsion-free.

Lemma. In the notation of the above Theorem, a 1is a con-

*
tinuous homomorphism of G into T .
*
Proof. Firstly we have to show that a(g) €T ; that is,
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a(g) = g' 1is a continuous homomorphism of T into T . As
alg) (Y; +v,) = (v; +v)(8) = v (8) +7,(g) = a(g)(y;) +
a(g)(yz) , for each Yl and Y2 in T, a(g) 1is a homo-
morphism : T - T , To see that a(g) 1s continuous it
suffices to note that a(g)(y) € Ve whenever y € P({g},Ve),
where v, is an e-neighbourhood of* O in T as in Theorem
10, So a is amap of G into T .

That o 1s a homomorphism follows by observing a(g1-+g2)(y)
= v(gy * 8y = v(g) +v(gy) = alg)(y) +alg)(y) , for
all y €T, implies that a(g, +g,) = a(gl)'*a(gz) , for
all 8, and g, in G .

To show that o 1is continuous, it suffices to verify
continuity at 0 € G . Let W be any neighbourhood of O
in F* . Without loss of generality we can assume
W= P(K,Ve) , for some compact subset K of T . We have
to find a neighbourhood of O in G which maps into W .

Let U be any open neighbourhood of O 1in G such
that U 1is compact and consider the neighbourhood

P(U,V of 0 in T . The collection {Y+P(I_J,V€

/2 /20"

Yy €T} covers the compact set K and so there exist
YooYy in T such that K C [Y1+P(U,V€/2)] U ...
U[Ym+P(U,V€/2)] . Let U
G such that U, C U and Yi(g) eV

be a neighbourhood of O in

for all g €U

1 /2’ 1
and 1 =1l,...,m . (This 1s possible since the Y; are
continuous.) We claim that U1 is the required neighbour-
hood. To see this let g €U and consider a(g)(y)

1
where Yy €K . Then y € Yi-FP(U,Ve/z) , for some

ie{l,...,m} . So Y—YiGP(U,Ve/z). Thus (v -v,)(g)
S Ve/2 for g € U1

that vy(g) € Ve/Z.FVe/Z - Ve . So a(g(y) € Ve , as

CU. As Yi(g) € Ve/2 , this implies

required. //
We continue the proof of the duality theorem in the next
two chapters. In the first of these, the duality theorem

is proved for compact groups and discrete groups. In the
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second it is extended to all LCA-groups.

There are a number of proofs of the duality theorem
in the literature. The most elegant appears in Rudin
(Fourier analysis on groups). Hewitt and Ross (Abstract
harmonic analysis) present the more classical approach of
first deriving the structure theory of LCA-groups and then
using it in the proof of duality. A fashionable proof is
given by D.W. Roeder, Category theory applied to Pontryagin
duality, Pacific J. 52 (1974), 519-527. Other references
include A. Weil (L'integration dans les groupes topologiques
et ses applications, Actualités Sci. et Ind., Hermann &
Cie., 1951); H. Cartan and R. Godement, Théorie de la
dualité et analyse harmonique dans les groupes abéliens
localement compacta, Ann. Sci. Ecole Norm. Sup. (3) 64
(1947), 79-99; D.A. Raikov, Harmonic analysis on commutative
groups with Haar measure and the theory of characters
(Russian), Trudy Mat. Inst. Steklov 14 (1945), German trans-
lation in Sowjetische Arbeiten zur Functionalanalysis 11-87,
Berlin: Kultur u. Fortschritt, 1954; M.A. Naimark (Normed
Rings, Nordhoff, 1959); and of course, L.S. Pontryagin
(Topological Groups).

EXERCISE SET EIGHT
1. Show that Z satisfies the duality theorem. (Note.

*k
This requires more than just showing that Z i1s topolo-
gically isomorphic to Z . You must prove that the map a
in the duality theorem is a topological isomorphism. (Hint,

See Examples 1 and 2 in Chapter 3.)
2. Show that T satisfies the duality theorem. (Hint.

Firstly show that o 1s 1-1 and onto. Then use the Open

Mapping Theorem.)
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3. Prove that every discrete finite cyclic group

satisfies the duality theorem.
4, Prove that R satisfies the duality theorem.

k % %k k % kx %k %k %

In the remainder of this chapter we make some observations
which are needed in the proof of the duality theorem, but

which are also of interest in themselves.

Theorem 13. 1f G »+++,G  are LCA-groups with dual groups

1
Fl,...,Fn , respectively, then T = Fl % F2 X .. % Fn is
the dual group of G1 X G2 X cee X% Gn .
Proof. It suffices to prove this for the case n =2, If

g =8 *8g, is the unique representation of g € G as a sum
of elements of G1 and G2 , then the pair Yy S Fl and

Y2 c F2 determine a character Yy €T by the formula

(1) (g,v) = (gl,Yl) +(g2,Y2)

Since every Yy €T 1is completely determined by its action

on the subgroups G, and G, , (1) shows that T 1is alge-

1 2
braically the direct sum of ry and F2 .
To see that T has the product topology T. X T simply

1 2
note that
(a) P(K,Ve) o) P(Kl,Ve/z)-+P(K2,V€/2) , where K is
any compact subset of G =G, xG, , K =p (K ,
K2 = pz(K) and Py and p, are the projections

of G onto G1 and G2 , respectively,

and (b) if K1 is a compact subset of G1 containing O
and K2 is a compact subset of G2 containing O,
then
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P(K1><K2,V€) g P(Kl,Ve) +P(K2,V€) .
[See Problem 6 of Exercise Set Seven.J //

Corollary 1. For each n 31, R" is topologically iso-
morphic to its dual group.
Corollary 2. Foreach n: 1, T' and z" are dual

groups of each other.

Corollary 3. 1z1r Gl""’Gn are LCA-groups which satisfy
the duality theorem, then G1 X G2 X eee X Gn satisfies the
duality theorem. Hence R? x T° x G satisfies the duality
theorem, where G 1is a discrete finitely generated abelian

group, and a and b are non-negative integers.
Proof. Exercise.

Theorem 13 shows that the dual group of a product is the
product of the dual groups. We shall see, in due course,
that the dual of a subgroup is a quotient group, and the
dual of a quotient group is a subgroup. As a first step

towards this we have Proposition 30.

Proposition 30. Let f be a continuous homomorphism of an
LCA-group A into an LCA-group B . Let a map f*: B* -+ A*
be defined by putting f*(y)(a) = yf(a) , for each Yy € B*

and a € A . Then f* is a continuous homomorphism of B*
into A* . If f 1is onto then f* is one-one. If f 1is

*
both an open mapping and one-one then f is onto.
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Proof. The verification that f* 1s a homomorphism of B*
into A* is routine. To see that f* is continuous, let
P(K,U) be a subbasic open set in A* , where U 1s an open
subset of T and K 1is a compact subset of A . The con-
tinuity of f* follows from the fact that (f*)_l(P(K,U)) =
P(f(K),U) 1is an open subset of B* .

Assume f 1is onto and supzose that f:(yl) = f*(Iz) s
where Y, and Y, are in B . Then f (Yl(a)) =f (Yz(a)),
for all a € A ; that is, Ylf(a) = Yzf(a) , for all a €A .
As f 1is onto this says that Il(b) = Yz(b) , for all

b€ B . Hence ¥ and f is one-omne.

1 "2
Assume that f is both an open mapping and one-one. Let
§ € A* . As f 1is one-one, Proposition 17 tells us that
there is a (not necessarily continuous) homomorphism vy: B~ T
such that 6 = yf . As § 1is continuous and f 1is an open
mapping, Y 1s indeed continuous; that is, y € B* . As

f*(y) = § , we have that f* is onto. //

Corollary 1. 1f B is a quotient group of A , where A

and B are either both compact Hausdorff abelian groups or
discrete abelian groups, then B* is topologically isomorphic
to a subgroup of A* .

Proof. Exercise.

Corollary 2. If A is a subgroup of B , where A and B

are discrete abelian groups, then A* is a quotient group
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of B .

Proof. Exercise.

Remark. As noted earlier we shall see in due course that
Corollary 1 and Corollary 2 remain true if the hypotheses
"compact Hausdorff" and "discrete" are replaced by "locally

compact Hausdorff'.

The next lemma indicates that, before proving the duality
theorem, we shall have to see that LCA-groups have enough

characters to separate points.

Lemma . In the notation of the duality theorem, the map «
is one-one if and only if G has enough characters to
separate points; that is, for each g and h in G , with

g # h , there is a y € T such that y(g) # y(h) .

Proof. Assume that o 1is one-one. Suppose that there
exist g and h in G, with g # h , such that y(g) =vy(h)
for all y €T . Then a(g)(y) = a(h)(y) , for all Yy €T .
So a(g) = a(h) , which implies that g =h , a contradiction.
Hence G has enough characters to separate points.

Assume now that G has enough characters to separate
points. Let g and h be in G , with g # h . Then there
is a y €T such that vy(g) # y(h) . So a(g)(y) #a(h)(y) ,
which implies that a(g) # a(h) . So o 1is one-one. //

The final proposition in this chapter should remind the

reader of the Stone-Weierstrass Theorem.

Proposition 31. Let G be an LCA-group and T its dual

group. Let G satisfy the duality theorem and also have
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the property that every non-trivial Hausdorff quotient
group T/B of T has a non-trivial character. If A is
a subgroup of T which separates points of G then A 1is

dense in T .

Proof. Suppose A 1is not demse in T . If B 1is the
closure of A in T then T/B 1is a non-trivial LCA-group.
So there exists a non-trivial continuous homomorphism ¢:
T'/B~T . Let f be the canonical homomorphism : T - T'/B .
Then ¢f 1is a continuous homomorphism : T - T . Further-
more, ¢f(T) # O but ¢£f(B) =0 . As G satisfies the
duality theorem, there is a g € G such that ¢£f(y) =v(g) ,
for all y&€T . So y(g) =0 for all y in A . But
since A separates points in G , this implies g =0 . So
¢f(T) = 0 , which is a contradiction. Hence A 1is dense

in T . //

Of course the second sentence in the statement of

Proposition 31 will, in due course, be seen to be redundant.

EXERCISE SET NINE
1. (1) Show that if Gl,...,Gn are LCA-groups which

satisfy the duality theorem, then Glx G2x cee
X G satisfies the duality theorem.

(ii) Deduce that every discrete finitely generated
abelian group satisfies the duality theorem.
(Hint: Use the fact that every finitely genera-
ted abelian group is a direct product of a
finite number of cyclic groups.)

(ii1i) Hence show that r? x Tb x G satisfies the
duality theorem, where G 1is a discrete
finitely generated abelian group, and a and

b are non-negative integers.
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2, Show that if B 1is a quotient group of A , where
A and B are either both compact Hausdorff abelian groups
*
or discrete abelian groups, then B 1is topologically iso-

*
morphic to a subgroup of A .
3, Show that if A 1is a subgroup of B , where A and
*
B are discrete abelian groups, then A 1is a quotient group

%*
of B .

4, Show that if G 1is any LCA-group and T 1is its dual

group, then T has enough characters to separate points.

% k% * Kk % % X %
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5 - Duality for compact and
discrete groups

In the last chapter (see the Lemma preceding Proposition
31) we saw that a necessary condition for a topological
group to satisfy duality is that it have enough characters
to separate points. That discrete abelian groups have this
property has been indicated already in the Corollary of
Proposition 17. For compact groups we must borrow a result
from the representation theory of topological groups. [For
a brief outline of this theory, see Higgins (An Introduction
to Topological Groups). Fuller discussions appear in Adams
(Lectures on Lie Groups), Hewitt and Ross (Abstract Harmonic
Analysis I), Pontryagin (Topological Groups) and Hotmann,

Proc.cCamb.Philos.Soc. 65 (1969) 47-52.]

Theorem (Peter, Weyl, van Kampen) rLet G be a compact
Hausdorff group. Then G has sufficiently many irreducible
continuous representations by unitary matrices. In other
words, for each g €G , g # e , there is a continuous homo-
morphism ¢ of G into the unitary group U(n) , for some
n , such that ¢(g) # e

If G 1is abelian then, without loss of generality, it
can be assumed that n =1 . As U(l) =T we obtain the

following theorem.

Theorem 14.  Every compact Hausdorff abelian topological
group has enough characters to separate points.

Theorem 14 was first proved by John von Neumann for com-
pact metrizable abelian groups. A derivation of Theorem 14

from von Neumann's result is outlined in Problems 2 and 3
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of Exercise Set Ten.

Corollary 1. Let G be any compact Hausdorff abelian
group. Then G 1is topologically isomorphic to a closed
subgroup of the product igl Ti , where each Ti is topo-

logically isomorphic to T, and 1 1is some index set.
Proof. Exercise.

Corollary 2. Let G be a compact Hausdorff abelian group.
Then every neighbourhood U of O contains a closed sub-
group H such that G/H 1is topologically isomorphic to

™ x D , for some finite discrete group D and n 2 O .

Proof. Exercise.

EXERCISE SET TEN

1. Using Problem 4(iii) of Exercise Set Three, show
that every compact totally disconnected abelian topological

group has enough characters to separate points.

2. Show that every compactly generated locally compact
Hausdorff group G can be approximated by metrizable groups
in the following sense: For each neighbourhood U of e ,
there exists a compact normal subgroup H of G such that
HCU and G/H 1is metrizable.

(Hint: Let Vl,Vz,V be a sequence of symmetric compact

3oees
neighbourhoods of e such that (i) V1 cu, (ii) V§+1 - Vn’
for n 21, and (iii) g_lvng 95Vn—1 , for n 2 2 and

g € K, where K 1s a compact set which generates G . Put

H = ngl Vn and use Problem 3(ii) of Exercise Set Six.)
3. Using Problem 2 above, deduce statement B from
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statement A.
(a) Every compact metrizable abelian group has
enough characters to separate points.
(B) Every compact Hausdorff abelian group has

enough characters to separate points.

4. (1) Show that every compact Hausdorff abelian group

G 1s topologically isomorphic to a subgroup of
H .
i€l Ti of copies of T .
(Hint: See the proof of Theorem 1.)

a product

(ii) If G 1is also metrizable show that the index
set I can be chosen to be a countable set.
(Hint: Use Problem 3(i1) of Exercise Set Six.)

(iii) Using (i) show that if G 1is any compact
Hausdorff abelian group, then every neighbour-
hood U of O contains a closed subgroup H
such that G/H 1is topologically isomorphic to
T" x D, for some finite discrete group D and
nx0.

(Hint: Reread ""Remarks on products" in Chapter

1. Use Corollary 3 of Theorem 7.)

5. Show that every compact Hausdorff group is topologi-
cally isomorphic to a subgroup of a product of copies of U,
where U = Hl U(n) .

n=
* k k k k k k k %
The next proposition provides the last piece of information
we need in order to prove the duality theorem for compact

groups and discrete groups. (This proposition should be com-

pared with Proposition 31.)
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Proposition 32. Let G be a discrete abelian group and
I' its dual group. If A 1is a subgroup of T which

separates points of G , then A 1s dense in T

Proof. Noting how the topology on T 1is defined, it
suffices to show that each non-empty sub-basic open set
P(X,U) , where K 1is a compact subset of G and U 1is an
open subset of T , intersects A non-trivially.

As G 1is discrete, K 1is finite. Let H be the sub-
group of G generated by K and f*: r - H* the map
obtained by restricting the characters of G to H .
According to Proposition 30 and its Corollary 2, f* is an
open continuous homomorphism of T onto H* . As A
separates points of G , f*(A) separates points of H .
Observing that Corollary 3 of Theorem 13 says that H
satisfies the duality theorem, Proposition 31 then implies
that f*(A) 1s dense in H* . So f*(P(K,U)) N f*(A) ¢ .
In other words there is a Yy € A such that, when restricted
to H, y maps K into U . Of course this says that
YyEPEK,UVNA. /[

Theorem 15. Let G be a compact Hausdorff abelian group

and T its dual group. Then the canonical map a of G
*

into T is a topological group isomorphism of G onto

*
r.

Proof. By the two Lemmas in Chapter 4 together with
Theorem 14, o 1is a continuous one-one homomorphism of G
into F* . Clearly a(G) separates points of T . As T
is discrete, Proposition 32 then implies that a(G) is
dense in F* . However a(G) 1s compact and hence closed
in F* . Thus a(G) = F* s that is, the map o 1is onto.
Finally, the Open Mapping Theorem tells us that a 1is also

an open map. //
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Corollary 1. Let G be a compact Hausdorff abelian group
and T its dual group. If A 1is a subgroup of T which
separates points of G , then A =T .

Proof. This is an immediate consequence of Theorem 15,
Proposition 31, the Corollary of Proposition 17, and Theorem

12. //

Corollary 2. rLet & be an LCA-group with enough characters
to separate points and K a compact subgroup of G . Then

every character of K extends to a character of G .

Proof. The collection of characters of K which extend to
*

characters of G form a subgroup A of K . As G has

enough characters to separate points, A separates points

*
of K . So by Corollary 1 above, A=K ., /

Corollary 3. Let B be an LCA-group with enough characters

to separate points and f a continuous one-one homomorphism
* * *

of a compact group A into B . Then themap f : B —+ A ,

described in Proposition 30, is a quotient homomorphism.
Proof. Exercise.

Theorem 16, Let G be a discrete abelian group and T
its dual group. Then the canonical map o 1is a topological

*
group isomorphism of G onto T .

Proof. As in Theorem 15, o 1s a continuous one-one homo-
morphism of G into F* . As a(G) separates points of T
and T 1is compact, Corollary 1 above yields that a(G) =T .
As G and F* are discrete this completes the proof. //
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We conclude this chapter by showing how duality theory
yields a complete description of compact Hausdorff abelian
torsion groups. (Recall that a group G 1is said to be a
torsion group if each of its elements is of finite order.)

The first step is the following interesting result.

Theorem 17. If G 1is the direct product of any family
{Gi: i €1} of c:mpact Hausdorff abelian groups, then the
discrete group G is algebraically isomorphic to the
restricted directed product of the corresponding dual groups

{r.: i e} .
i

Proof. Each g € G may be thought of as a "string" g =
(...,gi,...) , the group operation being componentwise
addition. If y = (...,Yi,...) , where \ € Fi and only
finitely many Y; are non-zero, then Yy 1is a character on
G defined by (g,y) = iéI (gi,yi) , for each g €G .
(Observe that this is a finite sum!) Let us denote the
subgroup of G* consisting of all such y by A . Then
A 1is algebraically isomorphic to the restricted direct
product of {Fi: ie1t .

We claim that A separates points of G . To see this
let g6, g#0 . Then g = (...,gi,...) with some
8; # 0 . So there is a Y; € Fi such that yi(gi) #0 .
Putting y = (...,Yj,...) where Yj =0 unless j =1i ,
we see that y(g) = Yi(gi) #0. As YE€A, A separates
points of G . By Corollary 1 of Theorem 15, this implies

*
that A =G . //
Corollary. Every countable abelian group is algebraically
isomorphic to a quotient group of a countable restricted
direct product of copies of 2

Proof. Let G be a countable abelian group. Put the
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discrete topology on G and let T be its dual group. Of
course T 1is compact and by Problem 4(i) of Exercise Set

Ten, T 1is topologically isomorphic to a subgroup of a

product igl Ti of copies of T , where the cardinality of
%
the index set I equals the cardinality of T . By
%
Theorem 16, T is topologically isomorphic to G . So

I' is topologically isomorphic to a subgroup of a countable
product of copies of T . Taking dual groups and using
Theorem 17 and Corollary 3 of Theorem 15 we obtain the
required result. //

Of course the above corollary also follows from the fact
that the free abelian group on a countable set is a countable
restricted direct product of copies of Z , and that any
countable abelian group is a quotient group of the free

abelian group on a countable set.

Remark. S. Kaplan (Extensions of Pontryagin duality I and
I, Duke Math. J. 15 (1948), 649-658 and 17 (1950), 419-435)
has investigated generalizations of Theorem 17 to direct
products of non-compact groups. As a direct product of LCA-
groups is not, in general, an LCA-group we must first say
what we mean by the dual group of a non-LCA-group: If G
is any abelian topological group we define T to be the
group of continuous homomorphisms of G into T , with the
compact ‘open topology. Then T is an abelian topological
group and we can form F* in the same way. As in the
locally compact case there is a natural map o which takes
g €EG to a(g) a function from T into T . We can then
ask for which groups is a a topological group isomorphism
of G onto F* . Such groups will be called reflexive. A
satisfactory description of this class is not known, but it
includes not only all LCA-groups but also all Banach spaces
(considered as topological groups). (See M.F, Smith, The

Pontryagin duality theorem in linear spaces, Ann. of Math.
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(2) 56 (1952), 248-253.,) Kaplan showed that if {Gi: i €1}

iel
flexive group. Its dual group is algebraically isomorphic

is a family of reflexive groups then I Gi is also a re-

to the restricted direct product of the family {G:: ier1}.
The topology of the dual group is slightly complicated to
describe, but when I is countable it is simply the subspace
topology induced on ig; G: if igl G: is given the box
topology. In particular this is the case when each Gi is
an LCA-group - thus generalizing Theorem 17.

For further comments on reflexive groups see R. Brown,
P.J. Higgins and S.A. Morris, Countable products and sums of
lines and circles; their closed subgroups and duality proper-
ties, Math. Proc. Camb. Philos. Soc. 78 (1975), 19-32; R.
Venkataraman, Extensions of Pontryagin duality, Math. Z. 143
(1975), 105-112; N. Noble, k-groups and duality, Trans. Amer.
Math, Soc. 151 (1970), 551-561; N.Th., Varopoulos, Studies in
harmonic analysis, Proc. Camb. Philos. Soc. 60 (1964), 465-
516; N.Ya. Vilenkin, The theory of characters of topological
abelian groups with boundedness given, Izv. Akad. Nauk. SSSR.
Ser. Mat. 15 (1951), 439-462,

To prove the structure theorem of compact Hausdorff
abelian torsion groups we have to borrow the following result
of abelian group theory. (See L. Fuchs, Abelian groups,

Pergamon Press, 1960.)

Theorem. An abelian group all of whose elements are of
bounded order is algebraically isomorphic to a restricted
direct product igi Z(bi) , with only a finite number of the
bi distinct where Z(bi) is the discrete cyclic group

with bi elements.

Theorem 18. A compact Hausdorff abelian torsion group is
topologically isomorphic to igl Z(bi) , where 1 is some index

set and there exist only a finite number of distinct bi
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Proof. Exercise.

EXERCISE SET ELEVEN

1. If f 1is a continuous ome-one homomorphism of a
compact group A into an LCA-group B which has enough
* %k %
characters to separate points, show that the map f : B A ,

described in Proposition 30, is a quotient homomorphism.

2. Show that every compact Hausdorff abelian torsion
group G 1is topologically isomorphic to a product
igl Z(bi) , where Z(bi) is a discrete cyclic group with
bi elements, I 1is an index set, and where there are only
a finite number of distinct bi .
(Hint: Let G(n) = {x €6 : nx = 0} . Observe that

G = and using the Baire-Category Theorem show that

u

n=1 G(n)
one of the quotient groups G/G(n) is finite. Deduce that
the orders of all elements of G are bounded. Then use the

structure theorem of abelian groups of bounded order.)

* % % % & % % & %
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6 - The duality theorem and the
principal structure theorem

In Chapter 5 we proved the duality theorem for compact
groups and discrete groups. To extend the duality theorem
to all LCA-groups we will prove two special cases of the
following proposition: If G 1is an LCA-group with a sub-
group H such that both H and G/H satisfy the duality
theorem, then G satisfies the duality theorem. The two
cases we prove are when H is compact and when H is open.
The duality theorem for all LCA-groups then follows from the
fact that every LCA-group G has an open subgroup H which
in turn has a compact subgroup K such that H/K 1is an
"elementary group" which is known to satisfy the duality
theorem. By an "elementary group' we mean one which is of

b c . s .
x T x F , where F 1s a finite discrete

the form R? x Z
abelian group and a , b and c¢ are non-negative integers.
Once we have the duality theorem we use it, together with

the above structural result, to prove the Principal Structure
Theorem.

We begin with some structure theory.

Definition. A topological group is said to be monothetic

if it has a dense cyclic subgroup.
Examples. Z and T are monothetic.

Theorem 19. Let G be a monothetic LCA-group. Then either

G is compact or G 1is topologically isomorphic to Z .
Proof. If G is discrete then either G =2Z or G 1is a
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finite cyclic group and hence is compact. So we have to
prove that G 1s compact if it is not discrete.

Assume G 1is not discrete. Then the dense cyclic sub-

group {xn: n=20,t1,+2,...} , where X o+ X =X for
each n and m , is infinite. (If the cyclic subgroup were
finite it would be discrete and hence closed in G . As it

is also dense in G , this would mean that it would equal G
and G would be discrete.)

Let V be an open symmetric neighbourhood of O in G
with V compact. If g €G then V + g contains some
X - Then there is a symmetric neighbourhood W of O in
G such that (g-xk) +WCV. As G is not discrete, W
contains an infinite number of the xn's and as W 1is

symmetric x_ €W if X € W . Hence there exists a j < k

such that xj €W ., Putting i =k-j we have i > 0 and

g X, = g~ X + xj € g - X +WCV.

This proves that G = igl (xi-FV) . (The important point is
that we only need X i>0.) As V 1is a compact subset

of G we have that
7c .U
(1) v c ;Y (xi+V) , for some N ,

For each g € G , let n = n(g) be the smallest positive

n such that g € xn-FG . By (1), x -8 € xi-FV for some
1 <i <N ,sowe have that g &€ X 5 +V . Since i >0,
n-1i <n and so by our choice of n, n-1i <0 . Thus
n<is<N, So foreach g€ G, n < N, which means that
N -
¢ = Y &M

which is a finite union of compact sets and so G 1is

compact. //
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Theorem 20. A compact Hausdorff abelian group G is mono-
*
thetic if and only if G is topologically isomorphic to a

subgroup of T the circle group endowed with the discrete

d ’
topology.

Proof. Exercise.

We now use Theorem 19 to obtain our first description of
the structure of compactly generated LCA-groups. (Recall
that an LCA-group G 1is said to be compactly generated if
it has a compact subset V such that G 1is generated
algebraically by V . Without loss of generality V can be

chosen to be a symmetric neighbourhood of O .)

Proposition 33. If G is an ICA-group which is algebraically
generated by a compact symmetric neighbourhood V of O ,

then G has a closed subgroup A topologically isomorphic

to z" , for some n > O , such that G/A is compact and

vnNna-={0}.

Proof. If we put v, =V and v

n>1l, then G = Uu v .
n=l 'n
As ¥, is compact there are elements BpseersB in G
m
such that V, C igl (gi-+V) . Let H be the group generated

2
by {gl,...,gm} - So V. CV+H, for i=1 and 1i=2.

a1 Vn-+V , for each

If we assume that Vn C V+H , then we have

Vn+1gv+(v+H)=V2+Hg(V+H)+H=V+H.
So, by induction, Vn C V+H , for all n z 1, and hence
G =V+H.

Let ﬁi be the closure in G of the subgroup Hi genera-—
ted by g » for i =1,...,m . As H=H + ... + Hm , if

1
each Hi is compact, then H 1is compact and so G = V+H
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is compact. (Use Exercise Set One, Problem 4 (iii).) The
Proposition would then be true with n =0 . If G is not
compact, then, by Theorem 19, one of the monothetic groups
ﬁi is topologically isomorphic to Z . 1In this case
Hi = Hi and we deduce that

If G=V+H , where H 1is a finitely generated
* group, and G 1is not compact, then H has a sub-

group topologically isomorphic to Z .

As H is a finitely generated abelian group (and every
subgroup of an abelian group with p generators can be
generated by < p elements) there is a largest n such
that H contains a subgroup A topologically isomorphic
to z" . Since A is discrete and V is compact, ANV
is finite. Without loss of generality we can assume that
ANV =1{0}. (If necessary we replace A by a subgroup
A' which is also topologically isomorphic to z" and has
the property that A'N V = {0} . For example, if A =
gp{al,...,an} and r 1is chosen such that ANV C {kla1 +
ce-tka:l-r sk, £r-1, i =1,...,n} then we put
A' = gp{ral,...,ran} D)

Let f be the canonical homomorphism of G onto K=G/A.
Then K = £(V) +£f(H) . By Problem 2 of Exercise Set Twelve
and our choice of n , f(H) has no subgroup topologically

isomorphic to Z . By (*) applied to K instead of G , we

see that K 1is compact, as required. //
The above proposition allows us to prove a most important
theorem which, of course, generalizes Theorem 14 and the

Corollary to Proposition 17.

Theorem 21. Every LCA-group has enough characters to

separate points.,
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Proof. Let G be any LCA-group and g any non-zero
element of G . Let V be a compact symmetric neighbour-
hood of O which contains g . Then the subgroup H
generated algebraically by V 1is, by Proposition 8, an
open subgroup of G . By Proposition 33, H has a closed
subgroup A such that H/A is compact and V N A = {0} .
Defining f to be the canonical map of H onto H/A we
see that f(g) # 0 .

According to Theorem 14 there is a continuous homo-
morphism ¢: H/A -~ T such that ¢(f(g)) # O . Then ¢f
is a continuous homomorphism of H into T . As H 1is an
open subgroup of G and T is divisible, Proposition 17
tells us that ¢f can be extended to a continuous homo-
morphism y: G+ T , Clearly y(g) # 0 and so G has

enough characters to separate points. //

Corollary 1. ret H be a closed subgroup of an LCA-group
G . If g 1is any element of G not in H , then there is
a character Yy of G such that vy(g) #0 but vy(h) =0,
for all h€H,

Proof. Exercise.

The next corollary is an immediate consequence of the

opening sentences in the proof of Theorem 21.

Corollary 2. Every LCA-group has a subgroup which is both

open and a compactly generated LCA-group.

Remarks.  Theorem 21 was first proved by E.R. van Kampen.
A proof based on the theory of Banach algebras was given by
I.M. Gelfand and D.A. Raikov.

The reader should not be misled, by Theorem 21, into

thinking that all Hausdorff abelian topological groups have
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enough characters to separate points. This is not so. See
Section 23.32 of E. Hewitt and K.A. Ross, Abstract Harmonic
Analysis I.

The next proposition gives another useful description of

the structure of compactly generated LCA-groups.

Proposition 34. If G is a compactly generated LCA-group,
then it has a compact subgroup K such that G/K is topo-

logically isomorphic to R? x be T x F , where F 1is a
finite discrete abelian group and a , b and c¢ are non-

negative integers.

Proof. By Proposition 33 there exists a discrete finitely
generated subgroup D of G such that G/D 1is compact.
Let N be a compact symmetric neighbourhood of O such
that 3N ND={0} . If f: G-+ G/D 1is the canonical homo-
morphism then f£(N) is a neighbourhood of O in G/D and,
by Corollary 2 of Theorem 14, there exists a closed subgroup
B C f(N) such that (G/D)/B is topologically isomorphic
to T xE , where E 1is a finite discrete group and n 3 O.
If we let K' = £f~!(B) then we see that G/K' is topo-
logically isomorphic to ™ x E .

Putting K = K' N N , we have that K 1is compact and
f(K) = B . To see that K 1is a subgroup of G , let x
and y be in K. Then x-y €K' , so there is a z €K
such that f£(z) = f(x-y) . This implies that x-y-z €D,
and since 3N ND = {0} it follows that x-y-2z = 0 ; that
is, x-y €K and so K 1is a subgroup of G . We claim
that K' = K+D , For if k'€ K' , there is a k € K such
that f(k') = f(k) and so k'-k €D . Thus K' = K+D .
By Problem 8 of Exercise Set Four, K' is topologically
isomorphic to KxD , Hence if 6 1is the canonical map of
G onto G/K then 6(D) is topologically isomorphic to D
and (G/K) /6(D) 1is topologically isomorphic to G/K' which
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is in turn topologically isomorphic to T'xE . As 6(D)
and E are discrete, Problem 6 of Exercise Set Five tells
us that G/K 1is locally isomorphic to T" and hence also
to R" . Theorem 8 then says that G/K 1is topologically
isomorphic to R¥x T x s , where S 1is a discrete group
and a 20 and c 2 0. As G 1is compactly generated
G/K and hence also S are compactly generated., So S is
a discrete finitely generated abelian group and thus is
topologically isomorphic to Zb><F , for some finite

discrete group F and b 20 . //

EXERCISE SET TWELVE
1. (1) Let f be a continuous homomorphism of an
LCA-group A 1into an LCA-group B . If f(A)
is dense in B , show that the map f*: B*-*A*,
described in Proposition 30, is one-one.

(ii) Show that if G 1is a compact Hausdorff abelian
group which is monothetic then G* is topo-
logically isomorphic to a subgroup of Td , the
circle group endowed with the discrete topology.
(Hint: Use (i) with A =2 and B =G .)

(iii) Let A be an LCA-group which satisfies the
duality theorem and B an LCA-group. If f
is a continuous one-one homomorphism of A into
B show that f*(B*) is dense in A* .

(Hint: See the proof of Corollary 2 of Theorem
15 and use Proposition 31 and Theorem 21.)

(iv) Show that if G is a compact Hausdorff abelian

group with G* topologically isomorphic to a

subgroup of T then G 1is monothetic.

d b

2, Let A and B be LCA-groups and H a (not necessarily

closed) finitely generated subgroup of A . If f 1is a con-
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tinuous homomorphism of A 1into B such that the kernel
of f lies wholly in H and 1is topologically isomorphic
to z" , for some n » 1 , and such that f(H) contains a
subgroup topologically isomorphic to Z , show that H
contains a subgroup topologically isomorphic to Zn+1 .

(Hint: Use the Corollary of Theorem 2.)

3, If H 1is a closed subgroup of an LCA-group G and
g 1s an element of G not in H , show that there is a
character y of G such that y(g) #0 but vy(h) =0,
for all he€H.

4. A Hausdorff topological space X 1s said to be a
kw—space if x= VY Xn , where (a) each Xn is compact;

n=1
(b) Xn - Xn for each n ; (c) a subset A of X is

>
closed in X+1if and only if A N X is compact for each
n . Prove

(1) R 1s a kw—space.

(ii) A locally compact Hausdorff group G 1is a kw—
space if and only if it is o-compact. If G

is o-compact, show that the Xn s 1in the kw—
decomposition can be chosen to be neighbour-
hoods of e .

(iii) Any connected locally compact Hausdorff group
is a k,-space.

(iv) If X = g X is a ky,-space, then any compact
subset K of X 1is contained in some X .

(Hint for (ii): As G 1is o-compact, G = dg Yn where each

1
Yn is compact. Let V be a compact symmetric neighbourhood
of e and put Xn = Y1V v Y2V “es LJYnV .)
5. (1) Let G be a locally compact Hausdorff group
and N a closed normal subgroup of G . If

f: G > G/N is the canonical map, show that for
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each compact subset C of G/N there exists
a compact subset S of G such that f£(S) =C.

(ii) Deduce that if N 1is a closed normal subgroup
of a locally compact Hausdorff group G such
that both N and G/N are compactly generated,
then G 1is also compactly generated.

(iii) If in (i), N is also compact show that f£-1(¢)
is compact.

(iv) Deduce that if G 1is a Hausdorff topological
group having a normal subgroup K such that
both K and G/K are compact, then G is

compact.

% % % % % % x %

Definition. Let A, B and C be topological groups,

f1 a continuous homomorphism of A into B and f2 a

continuous homomorphism of B into C . The sequence

is said to be exact if

(1) f1 is one-one,
(ii) f2 is onto,
and (iii) the kernel of f2 equals fl(A) .
Proposition 35. Let K be a compact subgroup of an LCA-

group G , so that we have an exact sequence

where f2 is an open continuous homomorphism and f1 is a
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homeomorphism of K onto its image in G . Then the

sequence

*

1 * 2 *
0 K G (6/K)«——0

* *
is exact and f1 and f are open continuous homomorphisms.

2
%
Proof. By Proposition 30, f2 is one-one. Using Corollary
%
3 of Theorem 15 together with Theorem 21 we see that f1 is

*
both open and onto. To see that the image of f

2 equals the

*
kernel of f1 consider the diagram

f f

1 2
0 > K G G/K 0
*
f2(Y)
* %
flfz(Y) Y
T

Let Y be any character of G/K and k any element of K.

* %
Then flfzy(k) = Yfzfl(k) = 0 as the given sequence 1is

* *
exact. Therefore ftf;(y) =0 and so Image f2 C Kernel fl'

*
Now if ¢ €G and ft(¢) = 0 , then we have ¢f1(k) =0
for all k €K . So there exists a homomorphism &: G/K > T

such that 6f2 =¢ . As f, is both open and onto, ¢ is
% %
continuous. So Kernel fi C Image f2 . Hence Image f2 =
%
Kernel f. .
1 %
Finally we have to show that f, is an open map. Let C

2
be a compact subset of G/K, U an open subset of T and

*
P(C,U) the set of all elements of (G/K) which map C

*
into U . Then P(C,U) 1is a sub-basic open set in (G/K) .

Now by Problem 5 (i) of Exercise Set Twelve there exists a
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compact subset S of G such that f2(S) = C . Thus we
*
see that P(S,U) 1is a sub-basic open subset of G such

* * * *
that f2(P(C,U)) = P(S,0) nfz((G/K) ) . So f

2 is a
. * . (3 . * *
homeomorphism of (G/K) onto its image in G . As K
* % *
is discrete, Kernel f1 is open in G ; that is, Image f2
is open in G . So f; is an open map. //
Proposition 36. ILet A be an open subgroup of an LCA-
group G , so that we have an exact sequence
f1 f2
0 A > G >G/A 0
where the homomorphisms f1 and f2 are open continuous
maps. Then the sequence
f f*
* 1 * 2 *
0 A G (G/4) 0
* *
is exact, f1 is open and continuous and f2 is a homeo-
* *
morphism of (G/A) onto its image in G .
3 3 * 3 * 3
Proof. By Proposition 30, f1 is onto and f2 1s one-one.
* *
That Image f2 = Kernel f1 is proved exactly as in Proposi-

tion 35, As A 1is open in G, G/A 1is discrete and

* % *
(G/A) is compact. As f2 is one-one and (G/A) is
* *
compact, f2 is a homeomorphism of (G/A) onto its image
*
in G .

Finally we have to show that fi is an open map. Let
K be a compact neighbourhood of O in G which lies in
A . If Xa is as in Theorem 11, then P(K,Va) is an open
Sit in G such that P(K,Va) is compact. Of course,
fl(P(K’Va)) consists of those elements of A which map K

*
into Va , and so is open in A . If we put H equal to
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the group gene:ated by f:(P(K,Va)) then H 1is an open
subgroup of A . Furthe:more as gp{P(K,Va)} is an open
and closed subgroup of G , 5??:7;) C gp{P(K,Va)} =B .
As B is generated. by P(K,Va) it is o-compact. The Open
Mapping Theorem then implies*that fl: B~>H 1is open. As
B is an open subgroup of G and H 1is an open subgroup
of A R f:: ¢ - A" s open. //

The next Proposition is a corollary of the 5-Lemma of
category theory. It is easily verified by "diagram-

chasing".

Proposition 37. 1et A ,B, C ,D,E and F be

abelian topological groups and f1 , f2 , f3 , f4 , f5 , f6
and f7 be continuous homomorphisms as indicated in the
diagram below.
f1 f2
0 —A B C 0
f5 f6 f7
0 D E F 0
f3 f4

Let each of the horizontal sequences be exact and let the

diagram be commutative (that is, = f6f1 and f, f, =

f3f5

476
f7f2 ). If f5 and f7 are algebraic isomorphisms (that
is, both one-one and onto) then f6 is also an algebraic

isomorphism.

We now prove the duality theorem for compactly generated

LCA-groups.

Theorem 22. Let G be a compactly-generated LCA-group and
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I' its dual group. Then the canonical map o of G into
* *
r is a topological group isomorphism of G onto T .

Proof. By Proposition 34, G has a compact subgroup K
such that G/K 1s topologically isomorphic to R? x be TCx F
where F 1is a finite discrete abelian group and a , b and

c are non-negative integers. So we have an exact sequence

f1 f2

0 K G > G/K 0

Applying Proposition 35 to this sequence and Proposition 36

to the dual sequence, we obtain that the sequence

*% *%

f f
sk 1 2

* *k
0 K r —(G/K) 0

is also exact. It is easily verified that the diagram

f1 £
0 K G G/K >0
C!K a aG/K
* %k * *
0——K I——(G/K) 0
*k k&
£ £,

is commutative, where o _ and are the canonical maps.

K *e/k
As we have already seen that K and G/K satisfy the

duality theorem, ay and aG/K

morphisms. This implies, by Proposition 37, that o 1is an

are both topological iso-
algebraic isomorphism. As o 1is continuous and G is

compactly generated the Open Mapping Theorem then implies

that o 1is an open map, and hence a topological isomorphism., //
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We now prove the duality theorem for all LCA-groups.

Theorem 23 (Pontryagin-van Kampen Duality Theorem). rLet
G be an LCA-group and T its dual group. Then the

*
canonical map o of G into T is a topological group

*
isomorphism of G onto T .

Proof. By Corollary 2 of Theorem 21, G has an open sub-
group A which is compactly generated. So we have an

exact sequence

Applying Proposition 36 and then Proposition 35 yields the

exact sequence

*% *%

* X%k
0 A r (G/A) ——— 0

f
1 fz
0 A G G/A 0
aA a aG/A
* %k * fk
0 A T (G/A) ———0
* %k f**
£ 2

As A 1is a compactly generated LCA-group and G/A 1is a
discrete group, both A and G/A satisfy the duality

theorem and so o and o are topological isomorphisms.

A G/A
By Proposition 37, a 1is an algebraic isomorphism. Since
Kok Kk
f1 , f1 and a, are all open maps and afl = f1 a, » We
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see that a 1is also an open map, and hence a topological

isomorphism. /

We can now prove the structure theorem for compactly
generated LCA-groups, from which the Principal Structure

Theorem for all LCA-groups is a trivial consequence.

Theorem 24. Let G be a compactly generated LCA-group.

Then G 1is topologically isomorphic to Ra><Zb><K , for

some compact group K and non-negative integers a and b.

Proof. By Proposition 34, we have an exact sequence

b

X T % F——50

0 c e R¥xz

where C 1is a compact group, F 1is a finite discrete group
and a, b and c¢ are non-negative integers. By Propo-

sition 35 we, therefore, have an exact sequence

f f*
* Lo« 2 a_.b c
O« C G R XT XZ XFe0
* %
where f2 is an open map. So G has an open subgroup
topologically isomorphic to R? x Tb . As R and T are

divisible groups, Proposition 18 says that G* is topologi-
cally isomorphic R? x Tb><D , for some discrete group D .
As G satisfies the duality theorem G 1is topologically
isomorphic to G** which in turn is topologically isomorphic
to R%x Zb><K , where K 1is the compact group D* /i

Since every LCA-group has an open compactly generated

subgroup we obtain the Principal Structure Theorem.
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Theorem 25 (Principal Structure Theorem). Every LCA-group
has an open subgroup topologically isomorphic to R? x K,

for some compact group K and non-negative integer a .

As an immediate consequence we have the following signifi-

cant result.

Theorem 26, Every connected LCA-group is topologically
isomorphic to R* x K , where K 1is a compact connected

group and a > 0 .

Remarks.

(1) Theorem 24 generalizes the well-known result that
every finitely generated abelian group is the direct
product of a finite number of copies of the infinite
cyclic group with a finite group.

(ii) One might suspect that one could improve upon the
Principal Structure Theorem and show that every LCA-
group is topologically isomorphic to R¥x Kx D s
where K 1is compact, D 1is discrete and a % O .
Unfortunately as the following example shows, this
statement is false.

©

Example. Let G be the group ;I H; , where each H, is

a cyclic group of order four. Let K be the subgroup of

G consisting of all elements g € G such that 2g =0

Then K 1is algebraically isomorphic to iﬁl Ki , where

each Ki is a cyclic group of order two. Put the discrete

topology on each Ki and the product topology on K . So

K 1s a compact totally disconnected topological group.
Define a topology on G as follows: A base of open

neighbourhoods at 0 in G consists of all the open sub-

sets of K containing O . With this topology G 1is a

totally disconnected LCA-group having K as an open subgroup.
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By the Principal Structure Theorem, G has an open

subgroup H topologically isomorphic to R?xC , where C

is compact and a 2 0 , As G 1is totally disconnected
a=20, Suppose that G 1is topologically isomorphic to
HxD , where D 1is a discrete subgroup of G . As G 1is

not compact D must be infinite., But this is impossible
as every infinite subgroup of G has infinitely many
elements in K and any discrete subgroup of K must be

finite., //

EXERCISE SET THIRTEEN
1. Show that if G 1is an LCA-group such that G and

its dual group are connected, then G 1is topologically iso-

. n . .
morphic to R , for some non-negative integer n .

2. Show that an LCA-group G has enough continuous homo-
morphisms into R to separate points if and only if G 1is
topologically isomorphic to R"xD , where D 1is a discrete
torsion-free abelian group.

(Hint: Observe that a compact group admits no non-trivial

continuous homomorphisms into R .)

3. Describe the compactly generated LCA-groups which are

topologically isomorphic to their dual groups.

4, A topological group G 1is said to be solenoidal if
there exists a continuous homomorphism f of R into G
such that f£(R) = G .

(1) Show that if G 1is also locally compact
Hausdorff, then G 1is either a compact
connected abelian group or is topologically
isomorphic to R .

(ii) Show that if G 1is a compact Hausdorff
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solenoidal group then the dual group of G is

topologically isomorphic to a subgroup of Rd ,
the group of reals with the discrete topology.

(Hint for (i): Observe that f?i) is topologically isomorphic

to Rlx R2X cee X Rnx K , where each Ri is a copy of R .

Let P; be the projection of f(R) onto Ri and note that

pif is a continuous homomorphism of R into Ri )

5. Let F be a field with a topology such that the al-
gebraic operations are continuous. (The additive structure
of F , then, is an abelian topological group.) Show that
if F 1is locally compact Hausdorff and connected then F ,
as a topological group, is isomorphic to R" , for some
n 21 . (A further analysis would show that F is either
the real number field R (n = 1) , the complex number field

(n = 2) or the quaternionic field (n = 4) .)

6. Show that if G 1is any LCA-group then there exists
a continuous one-one homomorphism B of G onto a dense
subgroup of a compact Hausdorff abelian group. Prove this
by two different methods.
(Hint: (1) Use the fact that any LCA-group has enough
characters to separate points.

(2) Alternatively, let T be the dual group of G

and T the group T endowed with the discrete topology.

d
*
Put K = (Fd) and let B be defined by

(g,y) = (v,8(g)) , g€6, yYeET.
*
The group K = (Fd) is called the Bohr-compactification
of G .)

7. Let T be any LCA-group and YooYy er . If ¢

is any homomorphism of T into T , show that there is a
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continuous homomorphism ¢ of T into

|UJ(Y1) —¢(Yl)| <€, is= 1:---:“ .
(Hint: Use Problem 6, above, method (2).)

* k% k k k k k %k %

T

such that
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7 - Consequences of the
duality theorem

We begin this chapter by showing that the dual of a sub-—
group is a quotient group and the dual of a quotient group

is a subgroup.

Definition. Let H be a closed subgroup of the LCA-group
G and A the set of all y in the dual group T of G
such that <(h,y) =0 , for all h €H . Then A 1is called
the annihilator of H .

For fixed h € H, the continuity of (h,y) shows that
the set of all y with (h,y) =0 1is closed, so that A
is the intersection of closed sets and is therefore closed.

Clearly A 1is a group and so it is a closed subgroup of T .

Proposition 38. with the above notation, if A is the

annihilator of H , then H 1is the annihilator of A .

Proof. If he€Hd, then (h,y) =0 for all y €A ., 1If
g €G and g & H then, by Corollary 1 of Theorem 21, there
is a Yy €A such that (g,y) # 0 . //

Theorem 27. Let H be a closed subgroup of an LCA-group
G . If T 1is the dual group of G and A 1is the annihi-
lator of H , then A and T/A are topologically iso-
morphic to the dual groups of G/H and H , respectively.

Proof. Let f be the canonical homomorphism of G onto

* x %
G/H . Then Proposition 30 says that the map f : (G/H) -G

is a continuous one-one homomorphism. Further, the last

90



paragraph of the proof of Proposition 35 shows that f* is
a homeomorphism of (G/H)* onto its image in G* . Of
course the definition of f* tells us that f*((G/H)*) =A,
and so A 1is topologically isomorphic to (G/H)* .

The fact that T/A 1is topologically isomorphic to H*
then follows from the above, together with Proposition 38

and the duality theorem. //

As a corollary we have the following generalization of

Corollary 2 of Theorem 15.

Corollary. If H is a closed subgroup of an LCA-group G,
then every character on H can be extended to a character

on G .

Proof. If ¢ 1is a character on H , then by the above
theorem ¢ €T/A . If £ is the canonical homomorphism of
' onto T'/A and f(y) =¢ , Yy €ET , then (h,y) = (h,¢) ,

for all hE€H . So Yy 1is the required extension of ¢ . //

We now record an application in the area of
diophantine approximation,

Firstly observe that the definition of the annihilator of
a subgroup H of an LCA-group G would make sense even if
H were not closed in G . However it is obvious that the
annihilator of H , A(H) , would equal AH) . We will see

that this observation is quite useful.

Proposition 39. Let G be a (not necessarily closed)
subgroup of R" ,n21. Let A(G) denote the annihilator
of G in (RM" =R . Then A(G) = {y € B® such that

(y|x) is an integer for each x € G} , where y = (yl,...,yn)

n n n
ER , x=(X,,...,Xx) EGCGCR and (y|x) = % y.X. .
1 n = i=1 11
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Proof. Exercise.

As an immediate consequence of Proposition 38 we have the

following result,

Proposition 40. If G is any subgroup of R* , n 3 1 ,
then A(A(G)) = G .

Translating Proposition 40 using Proposition 39 we obtain
a characterization of those points lying in the closure of a

subgroup of R" .

Proposition 41. A point x lies in the closure of a sub-
group G of R , n>1 if and only if (y|x) is an
integer for all y € R" such that (y|g) is an integer
for all g &€G .

We apply this characterization to the case where G 1is
the subgroup of R , 1 21 generated by the vectors
S ERREE LN of the canonical basis and by an arbitrary number
m of points a: i=1,...,m of " . To say that
(y|ei) is an integer, for i =1,...,n means that each
coordinate of y 1is an integer. So we obtain Kronecker's

theorem.

Theorem 28 (Kronecker). rLet a, = (ail’ . ’ain) for
i=1l,...,m and b = (b1’°°°’bn) be points of R" , n 32 1,
In order that for each € > Q0 there exists integers

Qyseeesdy and integers PyseeesP such that

|q1a1j+q2a2j+...+qmamj—pj—bj| e for j=1,...,n

it is necessary and sufficient that for each finite sequence

n
Tosaee,l of integers such that the numbers .I. a..r. for
1 n =l "137]
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n
i=1,...,m are all integers, the number jél bjrj should
also be an integer.

Putting m = 1 we obtain the following corollary which

is a generalization of Problem 3(ii) of Exercise Set Five.

Corollary. rLet 61,...,6n be real numbers. In order
that, given any n real numbers Xpsoees X, and a real
number € > 0 , there should exist an integer q and n

integers pj such that

6. -p.-x.| £ for j=1,...,n

a8, -p; - x] i=1,...,

it is necessary and sufficient that there exist no relation
n

of the form jél rjej = h , where the rj are integers not

all zero and h is an integer. (In particular this

implies that the ej and the ratios ej/ek » J #k , must

be irrational.)

For some further comments in this area of approximation
see Section 26,19 of E. Hewitt and K.A. Ross, Abstract
Harmonic Analysis I and Chapter VII, Section 1,3 of N,

Bourbaki, Elements of Mathematics, General Topology II,

EXERCISE SET FOURTEEN

1., Prove that a closed subgroup of a compactly generated
LCA-group is compacted generated.

(Hint: Use Corollary 2 of Theorem 7.)

2. (1) Show that any closed subgroup of RPx T is

topologically isomorphic to R? x 2 x 1D .
where D 1is a discrete finite group, a+b < n

and ¢ < m .
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(ii) Show that any Hausdorff quotient group of
R xT" is topologically isomorphic to R%x TP
with as<n and a+b <n+m.

(iii) Show that any closed subgroup of R x T"x F ,
where F 1is a discrete free abelian group, is
topologically isomorphic to RabexTCxDxF' ,
where a+b <n, c<m, D is a discrete
finite group and F' 1is a subgroup of F .

(iv) Show that any closed subgroup of R x T"xD ,
where D 1is a discrete abelian group, is topo-
logically isomorphic to RaXTbXD' , where D'
is a discrete group, a <n and b £ m.

(v) Show that any Hausdorff quotient of R*x T"x D s
where D 1is a discrete abelian group, is topo-—

be' , where D'

logically isomorphic to R¥*xT
is a discrete group, a <n and a+b <n+m.
(vi) Hence show that any closed subgroup or Hausdorff
quotient of R" x 2™ x K , where K 1is a compact
Hausdorff abelian group, is topologically iso-

b

morphic to R#xZ° xK' , where K' is a compact

group, a <n and a+b < n+m .

3. Let G be a compactly generated LCA-group. Assuming
the structural result (Proposition 33) which says that G
has a subgroup A topologically isomorphic to z" ,y 1 20,
such that G/A 1is compact, show that G* is locally iso-
morphic to R" . Hence prove that G 1is topologically
isomorphic to RaXZbXK , where a+b =n and K is

compact.

4, Let G be any LCA-group. Assuming the structural
result (Theorem 26) which says that every connected LCA-
group is topologically isomorphic to R¥x K , for some

compact group K and a > O , prove the Principal Structure
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Theorem. (Hint: Let C be the component of O in G and
observe that Problem 4(i) of Exercise Set 3 says that G/C
has a compact open subgroup A ., So G has an open subgroup
H with the property that H/C 1is compact. Deduce that H*

is locally isomorphic to ")

5. Let G be a compactly generated LCA-group. Assuming
the Principal Structure Theorem show that G 1s topologically
isomorphic to R? x Zb><K , where K 1is compact, a x> O and
b > 0. (Hint: Observe that G* has an open subgroup topo-
logically isomorphic to R? x K1 , where K1 is compact and

*
a3 0., Noting that K1 is a quotient group of G we see

that it must be finitely generated and so K1 is topologically
isomorphic to Tbx F , where F 1is a finite discrete group

and b 3 0 .)

6. Let G be a subgroup of R" , 121 and A(G) 1its
annihilator. Show that A(G) = {y € R® such that (y]x)
is an integer for each x € G} , where y = (yl,...,yn) GERn,

% .
1 V5% ¢ (Hint:

n
x = (xl,...,xn) €GCR and (y|x) =
Recall that T = R/Z and use Example 3 in Chapter 3 and
Theorem 13.)

7. If G 1is an LCA-group, C 1s the component of O
in G and G/C 1is compact show that G 1is topologically

isomorphic to R" x K , for some compact group K and n > 0.

* % k k k k k %k %

Theorem 29. ILet G be an LCA-group and T its dual group.

Then G 1is metrizable if and only if T is o-compact.

Proof. Assume that G is metrizable. Then G has a

countable base of compact neighbourhoods Ul’U2’°°° of O .

95



By Theorem 11, if a = %—, then the sets E?GZTV;) s
i=1,2,..., are compact neighbourhoods of 0 in T .,
As each y €T 1is continuous, T = i§1 E?ﬁ;:;;} . So T
is o-compact.

Conversely, assume that T 1is o-compact. By Problem 4
of Exercise Set Twelve, there exists a family {Yn} ,
n=1,2,... of compact neighbourhoods of O in T such
that every compact subset of T 1lies in some Yn and
Y €Y, »n31. Sothe family {g € G: (g,Y) evl/k s
for all y € Yn} , for k=2,3,,,. and n=1,2,... 1is a
base of neighbourhoods of O in G . (Observe that in
saying that these sets are neighbourhoods we are using the
fact that G 1is the dual group of T .) Thus G has a
countable base of neighbourhoods at O which, by Problem

3(ii) of Exercise Set Six, implies that G 1is metrizable. //
As a corollary we have the following striking result.

Corollary. 1Let G be an LCA-group. Then G is compact

and metrizable if and only if T is countable,
Proof. Exercise.

The remainder of this chapter is devoted to characterizing

those compact groups which are connected.

Proposition 42. Let G be a locally compact Hausdorff
group and K a compact subset of G . Then there exists
an open and closed compactly generated subgroup of G con-
taining K .

Proof. Exercise.

Definition. An element g of a topological group G is
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said to be compact if gp{g}l , the smallest closed subgroup
of G containing g , is compact.

Example. An element g € G = R%«x be K , where K is
compact and a > 0 and b » O , is compact if and only if

it lies in {0} x {0} xK .

Proposition 43. If G is an LCA-group then the set § of

compact elements is a closed subgroup of G .

Proof. If g and h are in S, then g-h € gplg} +
gp{h} C gp{g} + gp{h} . As g-h lies in the compact group
éﬁfgi + é;fﬁ? , i1t is compact and so is in S . Thus S 1is
a subgroup of G .

Now let x €S . By Proposition 42 there is an open
compactly generated subgroup H of G containing x . By
Theorem 24, H 1is topologically isomorphic to R? x Zb><K ,
where K 1s compact, a * 0 and b > O . To see that
x € S we only have to show that the R® coordinate of x
and the Zb coordinate of x are both zero. If the r?
coordinate of x or the Zb coordinate of x were
different from zero, then there would be an entire neighbour-
hood of x disjoint from S - since all the compact
elements of R®xZzPxK lie in {0} x {0} xK . This would

contradict the fact that x €8 . //

Remark. The set of compact elements of a non-abelian
locally compact Hausdorff group need not be a subgroup of
G . As an example of this, let G be the discrete group
generated by two elements a and b with the relations
a2 =b2=e . Then a and b are compact elements, but

ab 1is not compact.
Theorem 30. Let G be an LCA-group, T its dual group,
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S the set of compact elements in T and C the component

of 0O

in G . Then S is the annihilator in T of C

and C 1is the annihilator in G of § .

Proof.
(i)

(ii)

(iii)

Suppose that there is a compact subgroup K of T

such that K # {0} . Then G has a discrete quotient
group K* . As K* is not connected, G 1is not
connected.

Suppose that G 1is totally disconnected. Let y €T
and U be a neighbourhood of O in G such that

vy(g) €V, , for all g&€U. As G 1is locally compact
and totaily disconnected, Problem 4(i) of Exercise Set
Three implies that U contains a compact open subgroup
K . It is clear that vy(K) 1is a subgroup of V, and
hence equals {0} ; that is, Yy € A(I',K) the an;ihi—
lator in T of K . As K 1is open in G , A(T,K) ,
which is the dual group of the discrete group G/K ,

is compact. So every Y €T lies in a compact group.
Hence S =T .

Now let G be any LCA-group. Then G/C 1is a totally
disconnected LCA-group and so, by (ii), the dual group
of G/C contains only compact elements. As (G/C)*

is topologically isomorphic to A(T',C) , we see that
A(T,C)C S . As C 1is a connected LCA-group (i)
implies that C* has no non-trivial compact subgroup;
that is, T'/A(T,C) has no compact subgroup. If

Y €S and y & A(I',C) then there is a compact sub-
group K of T whose image under the canonical map

f: T » T/AN(T,C) 1is nmot {0} . This image is a compact
subgroup of T/A(T',C) and so we have a contradiction.

Hence S C A(T,C) . Thus S = A(T',C) .

The dual statement then follows from Proposition 38. //
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Corollary 1. Let G be an LCA-group. Then the following
properties are equivalent:
(1) G 1is totally disconnected

*
(11) every element in G 1is compact.

Corollary 2. Let G be an LCA-group. Then G 1is

*
connected if and only if G has no compact subgroup # {0} .

Corollary 3. rLet G be a compact Hausdorff abelian group
with C the component of O in G . Let ¢ be the torsion
subgroup of T (that is, the subgroup consisting of all
elements of finite order). Then & = A(T,C) , the annihilator
in T of C, and C = A(G,®) . Also & is isomorphic to
/e .

Proof. The first two equalities follow from the theorem
above, since an element of a discrete group is compact if
and only if it has finite order. The last statement follows

from the duality between subgroups and quotients. //

As an immediate consequence of Corollary 3 we have an
interesting characterization of those compact groups which

are connected.

Corollary 4. A compact Hausdorff abelian group is connected

if and only if its dual group is torsion free.

Notation. Let G be an abelian group and £ the homo-

g, for n

and f£f-1{0}
n

morphism of G into itself given by fn(g) =n
a positive integer. We denote fn(G) by G(n)

b G .
ACY

Proposition 44. Let G be an LCA-group with dual group

r Forany n >0,
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. (n)
(1) A(T,G ) F(n)

and (ii) A(T,G r(n)

(n)’

Proof. Let Y € A(F,G(n)) . Then for each g € G we have
ng € ¢t

and so vy(ng) ny(g) =0 . Thus y €T

(n) °
Conversely, if y € F(n) , then ny(g) = y(ng) = 0 , for all
g €G and so Yy € A(F,G(n)). Hence (i) is true.

To prove (1i) regard G as the dual group of T . Then,
by (i), AG,Tr™) = G(py and s0

= aace, Ty = aae, Ty = aae ) L
Theorem 31. Let G be an LCA-group and T its dual group.
If G 1is divisible then T 1is torsion-free. If T 1is
torsion-free then G(n) is dense in G , for n = 1,2,...
If G 1is discrete or compact, then G 1is divisible if and

only if T 1is torsion-free.

Proof. If G 1is divisible then G(n) =G, for all n
and so Proposition 44(i) implies that F(n) = {0} ; that is,
' is torsion—free.

If T 1is torsion-free then Proposition 44(ii) shows that

A(G,F(n)) =G = G(n) , for each n > 1 .
If G 1is discrete then G(n) is certainly closed, for
each n3x» 1. If G 1is compact then G(n) is a continuous

image of G and so is compact and closed. So in both cases

G = G(n) , for all n 3 1, and G 1is divisible . //

Corollary 1. Let G be a compact Hausdorff abelian group
and T its dual group. Then the following are equivalent:
(1) G is connected.

(ii) T is torsion-free.

(1ii) G is divisible.
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Corollary 2. Every connected LCA-group G is divisible.

Proof. G 1is topologically isomorphic to R x K , where K
is compact and connected, from which the result immediately

follows. //

Remarks. It is also true that a compact Hausdorff non-
abelian group is connected if and only if it is divisible.
(See J. Mycielski, Some properties of connected compact
groups, Collog. Math. 5 (1958) 162-166.)

Corollary 2 above does not extend to the non-abelian
case., (See Section 24.44 of E. Hewitt and K.A. Ross,

Abstract Harmonic Analysis I.)

EXERCISE SET FIFTEEN
1., If G 1is an LCA-group, show that it is compact and

metrizable if and only if its dual group is countable.

(Hint: Use the Corollary of Theorem 2.)

2. Show that the Bohr-compactification bG of an LCA-
group is metrizable if and only if G 1is compact and
metrizable and bG = G .

(Hint: See Problem 6 of Exercise Set Thirteen and use

Problem 1, above.)

3. Let K be a compact subset of a locally compact
Hausdorff group G . Show that there exists an open and

closed compactly generated subgroup of G containing K .

4, Let G be an LCA-group and T 1its dual group., Let
a be the least cardinal number of an open basis at O 1in
G and b be the least cardinal number of a family of

compact subsets of T whose union is T . Show that a=b.
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(Hint: To prove a < b, let S {Ai: i € I} be a family

mec u

of compact sets such that T = Ai and b equals the

1€l
cardinality of the index set I . Let Bi be an open set
containing Ai such that ﬁi is compact, for each i €1 .
Let S8' be the family of all finite unions of sets
B, UB, U...U B, . Verify that T 1is the union of the

i iy iq

members of S' and that every compact subset of T 1is a
subset of a member of S' ., Now proceed as in the proof of

Theorem 29.)

5. (1) Let G be a compact Hausdorff abelian group
and w(G) the least cardinal number of an
open basis of G . Show that w(G) equals
the cardinal number of G* .

(Hint: Use Problem 4 above.)

(ii) If G 1s a compactly generated LCA-group, show
that w(G) = w(G*) .

(iii) If G 1is any LCA-group, show that w(G)==w(G*)-
(Hint: If G 1s finite, the result is trivial,
so assume G 1is infinite, Then G has an
open subgroup H topologically isomorphic to
R" x K , where K 1is compact and n > O . Show
that

w(G) = max[w(R" xK), cardinal number of G/H] .
Observing that G* has a compact subgroup A,
topologically isomorphic to (G/H)* such that
G*/A is topologically isomorphic to Rn><K* s
show that

w(G*) 2 max[w(RnXK*), w((G/H)*)] )]

6. Let G be a compact Hausdorff abelian group with
dual group T . Show that the following conditions are
equivalent (where ¢ denotes the cardinal number of R )

(1) G 1is solenoidal
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(ii) I 1is algebraically isomorphic to a subgroup of R
(iii) T 1is torsion-free and the cardinal number of T < ¢
(iv) G 1s connected and w(G) < c .

(Hint: See Problem 4 of Exercise Set Thirteen. Assume the

fact, from abelian group theory, that (iii) implies (ii).)

7. Let G be a divisible compact Hausdorff (mot
necessarily abelian) group. Prove that G 1is connected.
(Hint: Assume that G 1is not connected and arrive at a
contradiction by showing that G has a proper open normal

subgroup H , such that G/H 1is a finite divisible group.)

* % % % % % % % %
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8 - Locally Euclidean and
NSS-groups

Definition. A topological group G 1is said to have no
small subgroups, or to be an NSS-group, if there exists a
neighbourhood U of e which contains no subgroup other
than {el} .

As an immediate consequence of Corollary 2 of Theorem 14
we have a complete description of compact Hausdorff abelian

NSS-groups.

Proposition 45. Every compact Hausdorff abelian NSS-group
is topologically isomorphic to T x D , for some discrete
group D and n 2 0 .

The above proposition allows us to describe all locally

compact Hausdorff abelian NSS-groups.

Theorem 32. Every LCA-group G which has no small sub-

, R , , b
groups is topologically isomorphic to Rax T xD , where D
is some discrete group, and a and b are non-negative

integers.

Proof. By the Principal Structure Theorem G has an open
subgroup topologically isomorphic to R¥x K , for some
compact group K and a 2 O . As every subgroup of an NSS-
group is an NSS-group, K 1is an NSS-group. Proposition 45
then implies that K 1is topologically isomorphic to ° x S,
where S 1s a discrete group and b >0 . So G has an
open subgroup topologically isomorphic to R? x Tb . Propo-
sition 18 then shows that G 1is topologically isomorphic

to RaxTb xD , for some discrete group D . //
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Remark. In 1900 David Hibert presented to the International
Congress of Mathematicians in Paris a series of 23 research
projects (Bull., Amer. Math. Soc. 8 (1901) 437-479). The
spirit of his fifth problem is: What topological conditions
on a topological group will ensure that the group admits an
analytical structure which makes it into a Lie group?
(Roughly speaking a topological group is said to be a Lie
group if the component of the identity is open and it has

the additional structure of a differentiable manifold with

the operations (x,y) -~ xy and x - x !

As examples we mention R" , T" and discrete groups.) In

being analytic.

particular he asked if a locally Euclidean group is a Lie
group, An affirmative answer was given in 1952 by A. Gleason,
D. Montgomery and L. Zippin. Another formulation is: a
locally compact group is a Lie group if it has no small sub-

groups. Theorem 32 above is the abelian case of this theorem.

The remainder of this chapter is devoted to proving that
a locally Euclidean abelian topological group is topologically
isomorphic to Ra><TbX D, where D 1is discrete, a > O and
b0, and so is a Lie group.

For a full discussion of Hibert's fifth problem see D.
Montgomery and L, Zippin, Topological transformation groups,
and I. Kaplansky, Lie algebras and locally compact groups.

The reader may also be interested in J. Szenthe, "Topo-
logical characterization of Lie group actions", Acta
Scientiarum Mathematicarum 36 (1974) 323-344, where it is
shown that a locally compact group is a Lie group if and only

if it is locally contractible.

Definition. A topological space X is said to be locally
connected if for each x € X and each open neighbourhood
U of x , there is a connected neighbourhood V of x

such that VC U .
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Definition. A topological space X 1is said to be locally
Euclidean if each x € X has a neighbourhood U homeomorphic

. . n
to the unit sphere in R, for some n x> O .

Examples. All Lie groups are locally Euclidean; for
example, any group of the form R? x Tbx D , where D 1is
discrete, a > 0 and b 2 O

Of course every locally Euclidean space is locally

connected.

Theorem 33. Every locally connected LCA-group G is topo-
logically isomorphic to R¥x K xD , where K 1is some compact
connected locally connected group, D 1is some discrete group

and a z2 0 .

Proof. Let C be the component of 0O in G . As G is
locally connected, C 1is an open subgroup of G . By
Corollary 2 of Theorem 31, C 1is divisible. So G 1is topo-
logically isomorphic to CXxD , where D is the discrete
group G/C . As C 1is connected it is topologically iso-
morphic to R¥x K , for some compact connected group K and
ax0. So G 1is topologically isomorphic to R¥x Kx D

As G 1is locally connected and K 1is a quotient group of

G, K 1is locally connected. [/

Remark. The above theorem reduces the problem of
characterizing the locally connected LCA-groups to that of
characterizing the compact connected locally connected

Hausdorff abelian groups.

Remarks on dimension. Let X be a set and I a finite
family of subsets of X . For each x € X we denote by
m(x) the number of sets S € £ such that x €S . The

multiplicity m(Z) 1is defined as max{m(x): x € X} . A
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family ' of subsets of X 1is said to refine I 1if for
every S8' € I' there is an S € I such that S'C S .
Now let X be a compact Hausdorff space and n a non-
negative integer. Then X 1is said to have dimension n
if the following two conditions are satisfied: (i) every
finite covering of X by open sets admits a finite covering
by closed sets which refines the given open cover and has
multiplicity < n+1 ; (ii) there exists a finite covering
of X by open sets such that every finite covering by
closed sets which refines the given open cover has multi-
plicity > n . (If no such n exists, X 1is said to have
infinite dimension.) We write dim(X) = n
Theorem. The dimension of the unit sphere in R" is n
The proof of this theorem is non-trivial - see, for
example, J. Nagata, Modern Dimension Theory, North Holland,
1965.
We need one more fact about dimension, the proof of

which is quite easy.

Proposition. Let Y be a closed subspace of a compact
Hausdorff space X . Then dim(Y) ¢ dim(X) .

Remarks on rank. A finite subset {xl,...,xn} of a
torsion-free abelian group G 1is said to be linearly independent
if m X, + ... +mnxn = 0 , for integers MyseoesM implies

that moEm = ... =@ = O . The linearly independent set
{xl,...,xn} is said to be maximal in G 1if, for each

x € G\{xl,...,xn} , the set {x,xl,...,xn} is not linearly
independent. It can be shown that if G has a maximal
linearly independent set {xl,...,xn} then no linearly
independent subset of G has more than n elements. So we
can define the rank of G to be the number of elements in a

maximal linearly independent subset. If G has linearly
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independent subsets with arbitrarily large numbers of
elements, then G 1is said to have infinite rank. We will

have cause to use the following easily verified proposition.

Proposition. Let G be a torsion-free abelian group of
infinite rank. Then for each natural number n , G has a

quotient group H which is a torsion-free abelian group of

rank n .

Proposition 46. Let G be a discrete torsion-free abelian
*

group of rank n . Then G has a subspace homeomorphic to

n
igl Xi , where each Xi is a homeomorphic copy of the open

unit interval (0,1) .

Proof. Let {gl,...,gn} be a maximal linearly independent

n
subset of G . For each t = (t,,...,t ) €. X. we define
1 n i=1l "1
a character Y, on G as follows: If g &€ G , then there
exist integers MMy 5 eee M such that mg = m1g1+ .o +ann,
so we put
Yt(g) = exp[2n1(Tlt1 + ...+ Tﬂtn)] .
) m

That Y, is indeed a character is easily verified. The map
n

%

of .M. X, into G given by ¢t - y_ 1is clearly one-one
1=1 1 t n

and a routine verification shows that it maps igl Xi

*
homeomorphically onto its image in G . //

Theorem 34. Let G be a compact connected Hausdorff

abelian group. Then G has infinite dimension if and only
*

if G has infinite rank. If G has finite dimension,

*
then the dimension of G 1is equal to the rank of G

Proof. Note that it is implicit in the statement of the

* I3
theorem that G is torsion-free, of course we proved this
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in Corollary 4 of Theorem 30.

First we show that dim(G) 2 rank(G*) . If G* has rank
n then Proposition 46 says that G has a subspace homeo-
morphi: to iﬁl Xi , where Xi = (0,1) . So dim(G) 2 n =
rank(G ) . If G* has infinite rank, then it has a quotient
group H which is torsion-free of rank n , for each natural
number n . So G has a subgroup topologically isomorphic
to H* which in turn has a subspace homeomorphic to iﬁl X,

Hence dim(G) * n , for each n ; that is, G has infinite

dimension.
*
Now we show that rank(G ) = dim(G) . Assume that
dim(G) » n , for some natural number n . Let I be a

finite open cover of G such that any closed cover that
refines I has multiplicity > n . For each g € G there

is a neighbourhood Vg of O such that g-FZVg is contained
in some S €I . As G 1is compact, a finite number of the
sets g+Vg cover G ; that is, G = (gl-FVgl) u...u
(gm-+ng) . Put V= Vgl n...n ng . By Corollary 2 of
Theorem 14, V contains a closed subgroup H such that

G/H 1is topologically isomorphic to Tk , for some k » 0 .
(Observe that G/H 1is connected and so the discrete group
in this Corollary must be trivial.) If f 1is the canonical
map of G onto G/H then it is easily verified that £yl
is a subset of some S €I , for each y €G/H . So Problem
1 of Exercise Set Sixteen implies that dim(G/H) *n ; that
is, dim(Tk) =k 3 n . Of course (G/H)* is topologically
isomorphic to Zk and to a subgroup of G* . Hence

* *
rank(G) >k 2 n . So rank(G ) 3 dim(G) . //

Remark. If G 1is any abelian group then we define the
torsion-free rank of G to be the number of elements in a
maximal linearly independent subset of G . The argument
in the above theorem then shows that for any compact Haus-—

dorff abelian group G , the dimension of G 1is equal to
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*
the torsion-free rank of G .

Theorem 35. rLet G be a discrete torsion-free abelian
*
group of finite rank. Then G is locally connected if

and only if G 1s finitely generated.

Proof. If G 1is finitely generated then it is topologically
isomorphic to 28 xF , where F 1is a finite discrete group
and a 1s a non-negative integer. So G* is topologically
isomorphic to T3 xF , and hence is locally connected.

Let G* be locally connected and suppose that G 1is not
finitely generated. Let S = {gl,...,gn} be a maximal
linearly independent subset of G and W the sub-basic
neighbourhood P(S,V,) . Let H be the subgroup generated
by S and A = A(H)A, the annihilator in G* of H . We

shall show that W 1is homeomorphic to R x A .

n

For each t = (tl,...,tn) eiI=Il Xi , where Xi is the
open interval -+,1) , we define a character Yt on G as
follows: If g € G then there exist integers My, .M

= + ...

such that mg m 8 +mngn y» SO we put

Yt(g) = exp[2n1(Tlt1 + ...+ Tﬂtn)] .

il i

Ag in Propositi:n 46, Ye is a character and the map of

igl X% into G , given by t - Ye o is a homeomorphism

of igl X, onto its image E in G . Of course E 1is
homeomorphic to R" . Now let Yy EW . Put ti = Y(gi) s
i=1,...,n, and t = (tl""’tn) . Clearly Y=Y, € A=
A(H) . Thus vy = Yt + n, where n €A . It is routine to
verify that the map of W into ExXA given by vy - (Yt,n)
is a homeomorphism. In particular, we obtain a continuous
open map of W onto A . So we will have our contradiction,
and hence the required result, if we can show that A 1is

not locally connected.
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Since H 1is finitely generated while G 1is not, it
follows from Problem 5(ii) of Exercise Set Twelve that
G/H 1is not finitely generated. So G/H 1is an infinite
torsion group. By Corollary 3 of Theorem 30, the dual
group of (G/H) 1is totally disconnected. However A is
topologically isomorphic to (G/H)* and hence is an
infinite totally disconnected group. Finally observe that
a totally disconnected group is not locally connected
unless it is discrete, but A 1is not discrete as it is
infinite and compact. So we have the required contra-

diction. //

We now have as an immediate consequence of Theorems 33,

34 and 35 the main result of this chapter.

Theorem 36. Let G be a finite-dimensional locally
connected LCA-group. Then G 1is topologically isomorphic
to Ra><Tbx D , where D 1is a discrete group and a and

b are non-negative integers.

Corollary. Let G be a locally Euclidean abelian topo-
logical group. Then G 1is topologically isomorphic to
R? x Tbx D , where D 1is a discrete group and a and b

are non-negative integers.

Remark. J. Dixmier (Quelques proprietés des groupes
abéliens localement compacts, Bull. Sci. Math. 81 (1957)
38-48) has characterized the compact connected locally
connected Hausdorff abelian groups as those having dual
groups which are discrete torsion-free and have every sub-
group of finite rank free. From this L.S. Pontryagin,
Topological Groups, derives the following generalization

of Theorem 36.
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Theorem. Every locally connected metrizable LCA-group is
topologically isomorphic to R? x D x igl Ti or R¥*xDx Tb ,
where each Ti is a copy of T, D 1is a discrete group,

and a and b are non-negative integers.

Unfortunately the structure of non-metrizable locally
connected groups 1s not so pleasant, Dixmier showed that a
compact connected locally connected LCA-group need not be
path connected and hence need not be topologically isomorphic
to a product of copies of T . Some further information 1is
given in Ky Fan's paper, On local connectedness of LCA-groups,

Math. Ann. 187 (1970) 114-116.

EXERCISE SET SIXTEEN

1. Let X be a compact Hausdorff space of dimension % n
and I a finite open cover of X such that every closed
cover of X which refines £ has multiplicity > n . If f
is a continuous map of X onto a Hausdorff space Y such
that, for each y €Y, f !{y} is a subset of a member of
z , show that dim(Y) > n .

2, (1) Show that an LCA-group is compactly generated
if and only if its dual group has no small sub-
groups.

(ii) Deduce that any closed subgroup or Hausdorff
quotient group of an LCA-NSS-group is an LCA-
NSS-group.

3. Show that a finite product of NSS-groups is an NSS-
group, but that an infinite product of NSS-groups is an
NSS-group only if it is, in some sense, trivial.

4, Using Problem 2(i) above, show that every LCA-group
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G has a compact subgroup K such that G/K 1is an LCA-NSS-

group.

5. (i) Let X be a topological space and d a metric
on the set X . Then d 1is said to be a con-
tinuous metric on X , if the map d: XXX - R
is continuous, where XX X denotes the product
of two copies of the topological space X .

We say, then, that the topological space X
admits a continuous metric. Show that any
compact space which admits a continuous metric
is metrizable,

(ii) Show that any locally compact group which admits
a continuous metric is metrizable.
(Hint: Use (i) and Problem 3(ii) of Exercise
Set Six.)

(iii) If G 1is a topological group which has a
family °°Vl,Vz,... of neighbourhoods of e such
that igl v, o= {e} , show that G admits a
continuous metric.
(Hint: See Problem 3(i) of Exercise Set Six.)

(iv) Deduce that a locally compact group is metrizable
if and only if it has a countable family
Vé’VZ"°° of neighbourhoods of e such that
igl Vo= {e} .

) Show that every locally compact NSS-group is

metrizable.

6. (1) Let G be a non-discrete locally compact NSS-
group. Show that there exists a compact neigh-
bourhood V of e such that for all x and
y in V , the relation x? = y2 implies x=y.
(Hint: Assume G 1s not abelian. If the result

were false there would exist two sequences
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(i1)

(iii)

(iv)

X sXysen and M TERE of elements of G

both converging to e such that xﬁ = yﬁ

x;ly;1 =z #e . Let U be a symmetric compact

and

neighbourhood of e not containing any subgroup
of G other than {e} and let P, be the
smallest integer p > O such that (zn)p+1 EU.
Show, by passing to a subsequence that we can
assume that =z = %ig(zn)pn exists, is not equal
to e , and belongs to U . Show that 2z = z~!
and so obtain a contradiction.)

Let U be a compact symmetric neighbourhood of
e containing no subgroup other than {e} and
let V be a neighbourhood of e . Prove that
there exists a number c¢(V) > O such that when-
ever p and q are positive integers such that
p < ¢c(V)q and X €G 1is such that x,xz,...,xq
are in U then x> €V .

(Hint: Suppose that there exist sequences
PysPgsese and qpsQgs e of positive integers
im(p /q ) = 0 and for each n , an

such that 1
ne fn’n X

element g, €6 such that (gn) € U for

1<k g qQ but (gn)pn & V . Suppose also that
the sequence (gn)Pn has a limit g # e such
that g €U . Show that gm €U, for all

m > 0 and so obtain a contradiction.)
Let G and V be as in (i). If 81585500 is
any sequence of points of V with e as limit,

show that there exists a subsequence b._,b

1°Pgse--
of 81585500 and a sequence kl’k2"'° of
positive integers such that the sequence
blkl,bzkz,... converges to a point other than e.

(Hint: Consider the smallest of the positive
integers k such that (an)k+1 &V .

Show that if r and s are real numbers such



that the sequences bl[rkl],bz[rRZJ,... and

sk sk
bl[ 1] ’b2[ 2] .
respectively, in G , then the sequence

b, [(r+s)k4] b, [(r+s)k,] e

(Here [t] denotes the integer part of the

... converge to x and vy
converges to xy .

real number t .)

(v) Using (iii) and (iv) show that for every
dyadic_number r € [0,1] the sequence
bl[rkl],bz[rRZJ,... comverges in G .

(vi) If W 1is any neighbourhood of e such that
WCV , show that for every real number
r € [0,1] there is a dyadic number s such
that bn[(r+s)kn] € W, for all n . Deduce
that for each r € [0,1] , the sequence
bl[rkl],bz[rRZJ,... has a limit £(r) .
(Hint: Use (ii).)

(vii) If -1 < r <0, put f(r) = (£(-1))~! . Show
that if r, s and r+s are all in the interval
[-1,1] we have f£(r)f(s) = f(r+s) and that
the mapping r - f(r) of [—1,1] into G 1is
continuous. Deduce that the mapping can be
extended to a non-trivial continuous homo-
morphism of R into G .

(viii) Hence show that every non-discrete locally
compact NSS-group contains a subgroup topo-

logically isomorphic to either R or T .

* k % % k% * x Xx X
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9 - Non-abelian groups

In this chapter we make a few remarks about non-abelian
locally compact Hausdorff groups.

For compact Hausdorff (not necessarily abelian) groups
there is a duality theory due to M.G. Krein and T. Tannaka,
The dual object of a compact Hausdorff group G 1is not
another topological group, as in the abelian case, but
rather the class of continuous finite-dimensional unitary
representations of G (or a Krein algebra). For full
details, see E. Hewitt and K.A. Ross, Abstract harmonic
analysis Vol.II,

Let H be a complex vector space and T(H) the group
of all one-one linear transformations of H onto itself.
A representation of a group G 1is a map x - Tx of G
into T(H) such that T .T =T , for each x and vy

x'y xy

in G , with Te = I = the identity operator. A representa-
tion U of a topological group is said to be a continuous
irreducible unitary representation if (a) H 1is a Hilbert
space, (b) every transformation Ux » X €G 1is unitary on
H, (c) for every £ and n in H , the function x ~+
(Uxﬁ,n) of G 1into the complex numbers is continuous, and
(d) there are no proper closed subspaces of H carried into
themselves by every Ux y X €EG .

The central theorem in representation theory of topological

groups is due to I.M. Gelfand and D.A. Raikov.

Theorem (Gelfand-Raikov). Every locally compact Hausdorff
group G has enough continuous irreducible unitary repre-

sentations to separate points.
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Two special cases are important:

(1) If G 1is compact then every continuous irreducible

unitary representation of G 1is finite-dimensional (that
is, H 1is a finite dimensional vector space),.

(2) If G 1is abelian then every continuous irreducible

unitary representation of G 1is one-dimensional,.

An n-dimensional continuous unitary representation can be
thought of as a continuous homomorphism of G into the unitary
group U(n) . As U(l) = T , the one-dimensional representa-
tions are just the characters of G . So as corollaries we
have the important results of F, Peter, H, Weyl and E.R. van

Kampen which were mentioned in Chapters 5 and 6,

Corollary 1. Let G be a compact Hausdorff group. Then
for each g €G , g # e , there is a continuous homomorphism ¢
of G into the unitary group U(n) , for some n , such

that ¢(g) # e . Hence G is topologically isomorphic to a

subgroup of a product of unitary groups.

Corollary 2. Every ICA-group has enough characters to

separate points.

The class of locally compact groups which have enough
finite-dimensional continuous unitary representations to
separate points might be expected to have a pleasant structure
theory. They do! Such groups are called maximally almost

periodic.
Theorem. Let G be a connected locally compact maximally
almost periodic group. Then G 1is topologically isomorphic

to R xK ,» Where K 1is compact and connected, and n % O .

For information on maximally almost periodic groups, see

S. Grosser and M, Moskowitz, Compactness conditions in topo-
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logical groups, J. Reine Angew. Math. 246 (1971) 1-40,

To deal with non-compact non-abelian locally compact
Hausdorff groups we have to turn to Lie groups. For any Lie
group we can define a corresponding Lie algebra and two Lie
groups having the same Lie algebra are locally isomorphic,
(There are a large number of books on Lie groups and Lie
algebras, some are listed in our references.) Further,
locally compact groups can be "approximated" by Lie groups

as follows:

Theorem. Let G be any locally compact Hausdorff group.

Then G has an open subgroup G such that each open

1

neighbourhood of e in G1 contains a compact normal sub-

group H such that Gl/H is a Lie group.

Corollary. Every connected locally compact Hausdorff group
is topologically isomorphic to a subgroup of a product of

Lie groups.

Finally we mention a structure theorem of K, Iwasawa, On
some types of topological groups, Ann. of Math. (2) 50 (1949)
507-557. (The result is derived from the analogous result

for Lie groups using the above approximation theorem.)

Theorem, Let G be a connected locally compact Hausdorff
group. Then G has a maximal compact subgroup, and all such
subgroups are connected and conjugate to each other, Let K
be one of them. Then G has subgroups Hl""’Hn each
topologically isomorphic to R and such that each element

g € G can be decomposed uniquely and continuously in the
form g = h., ... hnk , with hi € Hi and k€K . In

1
particular, G is homeomorphic to R %K .

In the abelian case this theorem reduces to Theorem 26.
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