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1. Introduction 

In recent years the authors have investigated the question of which free abelian 
topological groups can be embedded as subgroups of the free abelian topological 
group on the closed unit interval I and, more generally, the closed ball B”, for 
positive integers n. For example, it was shown in [4] that the free abelian topological 
group F((O, 1)) on the open interval (0, 1) can be embedded in F(I), and this result 
was extended in [6] to show that F((O,I))“)IF(B”). In [5], it is shown that 
F(S”) IF@“), and that F((S’)“)rF(B”), where S” denotes the n-sphere. 

In this paper, we prove that if F(X)%F(B”), then F(X UfB”)<F(B”) also, 
where X UfB” is any adjunction to X of B” along its boundary S” -I. A special 
case of this is the previously stated result that F(S”) I F(B”). (For a discussion of 
adjunction spaces, see [2].) 

It should be noted that, by contrast, much more is known about subgroups of 
free (non-abelian) topological groups. For example, the free topological group on 
a space Y is contained in the free topological group F on B” if and only if Y is 
homeomorphic to a closed subspace of F. 

2. Preliminaries 

We record here the necessary definitions and background results. 
A Hausdorff topological space X is said to be a &-space with &-decomposition 
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X=U, X, if X, is compact, X,,rX,+, for n=1,2,3,... and X has the weak 

topology with respect to the sets X,,. 

Definition. If X is a topological space with distinguished point e, the abelian 

topological group F(X) is said to be the (Graev) free abelian topological group on 
X if 

(a) X is a subspace of F(X), and 

(b) any continuous map $ from X into any abelian topological group H, sending e 

to the identity of H, extends uniquely to a continuous homomorphism @ : F(X) + H. 

If X is any completely regular space, then F(X) exists, is unique, and is indepen- 

dent of the choice of e in X. Further, F(X) is algebraically the free abelian group 

on X \ (e}. If X is also Hausdorff, then F(X) is Hausdorff and has X as closed 

subspace [8]. For km-spaces, one can say rather more. 

Theorem A (Mack et al. [7]). Let X= UX, be any k,-space with distinguished 
point e. Then F(X) is a k,-space and F(X) has km-decomposition F(X)= 
U, gp,(X,,), where gp,(X,,) is the set of words of length not exceeding n in the 
subgroup generated by X,. 

Definition. Let X= U X,, be a k,-space, and let Y= U Y, be a closed k,-subspace 

of F(X). Then Y is said to be regularly situated with respect to X if for each natural 

number n there is an integer tn such that gp(Y) fl gp,(X,) C_ gp,(Y,). 

Theorem B (Mack et al. [7]). ZfX is a km-space, and Y is a closed subset of F(X) 
containing e such that Y \ {e} is a free algebraic basis for gp(Y) and Y is regularly 
situated with respect to X, then gp(Y) is F(Y). 

3. Results 

We record here a result which is probably known, but does not appear to be in 

the literature. The k, non-commutative case appears in [3]. 

Note that a space X with distinguished point e will be called contractible relative 
to e if there is a continuous function 0 : Xx I + X such that @J(x, 0) =x and 

@(x,l)=e for all XEX, and @(e,t)=e for all tel. 

Proposition. Let X be a completely regular Hausdorff space with distinguished 
point e. Zf X is contractible relative to e, then so is F(X). 

Proof. Firstly observe that, for any topological group G, and any locally compact 

Hausdorff space X, the group GX of continuous functions from X to G, with the 

compact-open topology, is a topological group. The proof of this fact is routine, 
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and hence omitted. 

Let @:XxZ+X be a contraction relative to e. We shall construct a contraction 

@ : F(X) x I+ F(X). 

By [ 1, Theorem 3.1( 1) of Chapter XII], the mapping 6 : X+X’ defined by 

&(x)(t) = @(x, t), XE X, t E I, is continuous. As X is a subspace of F(X), we can, by 

[l, 1.2(b) of Chapter XII], regard X’ as a subspace of the topological group 

F(X)‘, and so, by the freeness of F(X), 4 extends to a continuous homeomorphism 

6 : F(X) + F(X) ‘. It is easy to see that the function @ : F(X) x I-+ F(X) defined 

by @(w, t) = &w)(t), w E F(X), t E Z, which by [ 1, Theorem 3.1(2) of Chapter XII] 

is continuous, is the contraction we require. 0 

We now prove our main result. 

Theorem. Zf, for some n EN, F(B”) has F(X) as a closed topological subgroup, 
then F(B”) also has F(X UfB”) as a closed topological subgroup, where 
f : S”-’ +X is any continuous map, and S”- ’ is regarded as the boundary of B”. 

Proof. Let Ct and C2 be subsets of B” both homeomorphic to B”, such that 

Ct Il Cz = {e}, and without loss of generality, let F(X) be embedded in 

gp(Ci)=F(C,). Since F(C,) and F(B”) are topologically isomorphic, and the latter 

is contractible, the map f: S”-’ -+Xc F(C,) extends continuously to a function 

p: B” + F(C,). 

Also, by [5], there is an embedding s : S” + gp(C,) extending to a topological 

isomorphism of F(S”) into F(C2). Let ~0 be the point of S” satisfying s(xo)= 

e E F(C,), and let r : B” -+ S” be any continuous function which maps S”-‘C B” to 

xoe S”, maps no other points to ~0, and is one-to-one on B” \ S”-‘. 
We now claim that the embedding g of X USB” in F(B”) which we require is the 

map induced by the function 

h(x) = 
;I 

x’ 
XEX, 

Ax)+s(W), XEB~ 

of Xu B” into F(B”). 
Note firstly that g is well defined, since if x E S”- ’ CB" , then p(x) + s(r(x)) = 

f(x) +O=f (x) = h(f (A)), SO that the two possible expressions for h(x) coincide. 

Hence, by the definition of the adjunction space, and since h is continuous, g is con- 

tinuous. It is easy to check, further, that g is one-to-one, using the definitions of 

p, s, r and the fact that gp(Ct) II gp(C2) = {e}. Using the facts that g is a homeo- 

morphism of X onto its image, that &X)=X is closed in F(W), and that B” is 

compact, we see that g is a closed mapping. Hence g is a homeomorphism of 

X UfB” onto its image in F(B”). 
It remains to show only that g(X UfB”) = Y is regularly situated with respect to 

B”, and that Y \ {e} is algebraically a free basis for the subgroup it generates. 
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Since p(B”) is a compact subset of the k,-spaceF(B”),p(B”)cgP,(B”) for some 

I~N,l12. Consider now wEgp(Y),w#e, and write 

where each E; and vi is -1 or 1, XiEX for i=l,...,t,yiEg(B”)\X for i=t+ 

I 9 * * * , k, and the representation for w is reduced. 

Now ris one-to-one on B”\S”-‘, ~~Cf=,+~q~S(r(y~)) is a reduced word in 

elements of the free basis s(S”) \ {e). Al so, each s(r(yi)) lies in gP(C,), while each 

xi and each p(yi) lies in gP(Ct). It follows that the reduced length of w relative to 

B” is at least k-t, SO wfe unless k= t. If k= t, then w = Cf= 1 EiXi, which is a 

reduced word in elements of the free basis X \ {e} , and w is therefore not e. Hence 

Y \ {e} is a free basis. 

To prove regular situation of Y, in the expression (1) for w, without loss of 

generality assume k 2 21. Then by the argument of the above paragraph the reduced 

length of w with respect to B” is at least k-t. 

Consider the case when k- t< k/(3/). NOW the only terms in the representation 

(1) of w which GUI cancel terms EiXi are the terms Y/j p( _Yj), and there are k-t of 

the latter, each of length at most I with respect to B”. SO the reduced length of w 

with respect to B” is at least t - I(k - t) > t-k/3 > k/(31). 

Thus, irrespective of the value of k - t, the reduced length of w with respect to 

B” is at least k/(30. 

Now let X have k,-decomposition X= UX~ so that F(X) has k,-decom- 

position F(X) = U gp,(X,). For b any positive integer, gpb(B”) fl F(X) is com- 

pact and so there exists a positive integer a such that 

gPb(B”) n F(X) c gP,(&). 

As g is a closed mapping, Y is a km-space with k,-decomposition Y= U Y, 

where Y, =X, U g(B”) U [p(B”) fl X]. (Note that X is closed in F(X) and hence 

also in F(B”).) 

To prove regular situation of X with respect to B” it suffices to verify that 

gpb(B”)n gp(Y) rgP,(Y,) where c = a +6/b. 

SO let w ~gp~(B”) Il gp(Y). Then, using the representation (l), we have shown 

above that k< 31b. 

NOW put w’ = Ci= I EiXi . As observed above, the only terms in the representation 

(1) of w which can cancel terms EiXi are the terms qjP(Yj)y and there are 

k-t%ks3lb of these. So 

W’E gP&? + [gPb(B”) I-7 F(X)] 

c @31b(%b) + gP,(&) 

5 gp3lb(%b) + @,(Y,) 
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c !%+3Ib(Y,+3/b)* 

This implies that 

wEgp,+3/b(Ya+3rb)+gp,-,(Y,) 

~gP,+3lb(Y,+3/b)+gP3/b(~/b) 

c gPc(y,). 

Hence, Y is regularly situated with respect to B”, as required. The theorem 
follows. 0 

Remark. En route we have used the fact, proved in [5], that F(F) contains F(S”). 
It should be noted that this is a special case of the theorem just proved. 

An interesting consequence is derived by observing that any finite graph can be 
obtained from the closed unit interval by successive adjunctions of other closed unit 
intervals. 

Corollary 1. Let X be any finite graph. Then F(X) is topologically isomorphic to 
a closed subgroup of F(I). 0 

Extending the above argument to higher dimensions, we see that, for any n EN, 
F(B”) contains F(X), where X is obtained from B” by a finite number of succes- 
sive adjunctions of balls of dimension at most n. In particular: 

Corollary 2. F(B”) contains F(X) for any finite cell complex X of dimension at 
most 12. 0 

Indeed, we easily see the following: 

Corollary 3. Let X be any ceN complex of dimension rz. Then F(X) contains F(Y), 
for any cell complex Y of dimension at most n. 0 

Definition. Let Y be obtained from the topological space X by adjoining a finite 
number of cells. If the greatest dimension of the cells is n, then (Y,X) is said to be 
a finite relative C W complex of dimension n [9, p. 4011. 

The following generalizations of our theorem follow without extra work: 

Corollary 4. Let (Y X) be a finite relative CW complex of dimension n, and F(X) 
a closed subgroup of F(B”). Then F(Y) is also a closed subgroup of F(B”). 

Corollary 5. Let K be a closed subset of B” and f: Kn S”-‘+ X a continuous 
function. If F(X) is a closed subgroup of F(B”), then F(X u fK) is also a closed 
subgroup of F(B”). 0 
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