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Introduction

Armacost [1] characterises A, the topological group of p-adic integers, where p is
any prime number, in the class of locally compact Hausdorff abelian topological
groups as a non-discrete group having all of its non-trivial closed subgroups of finite
index. We show that the condition ‘abelian’ can be dropped. As a consequence we
have that a compact Hausdorff group in which all closed subgroups are open is
topologically isomorphic to A, for some prime number p.

Results

LEMMA 1. Let G be a torsion-free group with centre Z(G) algebraically isomorphic
to A, for some prime number p, and G/Z(G) finite. Then G is abelian.

Proof. First we show that G/Z(G) is a p-group. Suppose, on the contrary, that
there is a prime g # p which divides the order of G/Z(G). For each non-negative
integer r, let K, = (Z(G))”". Then

(i) K. is a normal subgroup of G,
(ii) Z(G)/K, is algebraically isomorphic to the cyclic group C,- of order p’,
(i) N2 K, = {1}
Thus G is algebraically isomorphic to a subgroup of [ [2,G/K,.

In fact, since the K, form a chain, G = lim G/K,, under the natural homomor-
phisms. =

Now each G/K, has order divisible by g and so contains elements of order g. Let
Q, be the set of all elements of order g in K. Then, under the natural map from G/K,
to G/K,_,, Q, maps onto Q,_,. Hence lim Q, is a set of elements of order ¢ in G, which
is thus not torsion-free. Hence G/Z( G ) is a finite p-group and so has a non-trivial
centre, which must contain a group isomorphic to C,. By the proof of the Lemma in
Morris and Oates-Williams [4], G/Z(G) cannot contain a subgroup isomorphic to
C,x C, and so can contain no other subgroup isomorphic to C,. But by Theorem
12.5.2 of Hall [3], a finite p-group containing a unique subgroup isomorphic to C,, is
either cyclic or generalised quaternion, with generators and relations

g h:g"=1,8" =k hght=g"} n>2
In the former case G is certainly abelian, so suppose that

G = gpia, b, Z(G)},
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where a2 = b%c, ce Z(G). Then both g and b commute with ¢®" which thus belongs
to Z(G). Hence G/Z(G) cannot be generalised quaternion. Hence G is abelian.

LEMMA 2. Let G be a non-discrete locally compact Hausdorff group with the
property that each of its non-trivial closed subgroups is of finite index. Then G is torsion-
[free with centre Z(G) # {1}. Indeed Z(G) is topologically isomorphic to A, for some
prime number p.

Proof. Suppose that G has a non-trivial element g of finite order. Then the
subgroup g generates is finite and hence closed. So this subgroup is of finite index,
which implies that G is finite and hence discrete, which is a contradiction. Hence G
is torsion-free.

Without loss of generality, we may assume G is not abelian. Let g,€G. Then
gpig,}, the closure of the subgroup generated by g,, has finite index in G. Thus there
exist g,, &, ..., &, such that gp{g,, 2, ...,&,} = G. As gp{g,} has finite index in G, there
exists a positive integer m such that 1 # gi'e gp{g,}. Therefore gi'egp{g,} N gpig,}
By assumption, then, the closed subgroup gp{g,} N gp {g,} has finite index in G. Thus
thereexistsapositiveintegerksuchthatgh e gp{g,} N gp{g.}.-Sogp(g,} N gp{g.} N gp{g.}
# {1}. By induction, (|, gp{g.} # {1}

Let 1 # xe[),gpig;). Clearly xe Z(G). So Z(G) is a non-trivial non-discrete
locally compact HausdorfT abelian group with each closed subgroup having finite
index. By [2, Corollary 1.3], Z(G) is topologically isomorphic to A, for some p.

THEOREM 1.  Let G be a non-discrete locally compact Hausdorff group. Then the
Jollowing are equivalent :

(i) G is topologically isomorphic to A, ;
(ii) every non-trivial closed subgroup has finite index.

Proof. Corollary 1.3 of Armacost [2] says that (i) implies (ii). If G has property
(i), then by Lemma 2, it satisfies the conditions of Lemma 1 and so is abelian. Thus,
by Armacost [2, Corollary 1.3], G is topologically isomorphic to A, for some prime
number p.

COROLLARY 1. Let G be a compact Hausdorff group. Then the following are
equivalent :

(i) G is topologically isomorphic to A, for some prime number p;
(ii) every closed subgroup of G is open.

Proof. By [2, Theorem 1.6] (i) implies (ii). Conversely, every open subgroup in
a compact group has finite index, and so by Theorem | we see that (i) implies (1).

The above results complement that of [4] where it was shown that a compact
Hausdorff group is topologically isomorphic to A, for some prime number p, if and
only if all of its non-trivial proper closed subgroups are topologically isomorphic.
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OpeN QUESTION. If G is a non-discrete locally compact Hausdorff group such
that every non-trivial closed subgroup is open, is G necessarily topologically
isomorphic either to the topological group of p-adic integers, A, or to the topological
group of p-adic numbers, Q?
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