LOCALLY COMPACT GROUPS WITH EVERY CLOSED SUBGROUP OF FINITE INDEX

SIDNEY A. MORRIS, SHEILA OATES-WILLIAMS AND H. B. THOMPSON

Introduction

Armacost [1] characterises Δ_p , the topological group of p-adic integers, where p is any prime number, in the class of locally compact Hausdorff abelian topological groups as a non-discrete group having all of its non-trivial closed subgroups of finite index. We show that the condition 'abelian' can be dropped. As a consequence we have that a compact Hausdorff group in which all closed subgroups are open is topologically isomorphic to Δ_p , for some prime number p.

Results

LEMMA 1. Let G be a torsion-free group with centre Z(G) algebraically isomorphic to Δ_n , for some prime number p, and G/Z(G) finite. Then G is abelian.

Proof. First we show that G/Z(G) is a *p*-group. Suppose, on the contrary, that there is a prime $q \neq p$ which divides the order of G/Z(G). For each non-negative integer r, let $K_r = (Z(G))^{p^r}$. Then

(i) K_r is a normal subgroup of G,

(ii) $Z(G)/K_r$ is algebraically isomorphic to the cyclic group C_{p^r} of order p^r ,

(iii) $\bigcap_{r=0}^{\infty} K_r = \{1\}.$

Thus G is algebraically isomorphic to a subgroup of $\prod_{r=0}^{\infty} G/K_r$.

In fact, since the K_r form a chain, $G = \varprojlim G/K_r$, under the natural homomorphisms.

Now each G/K_r has order divisible by q and so contains elements of order q. Let Q_r be the set of all elements of order q in K_r . Then, under the natural map from G/K_r to G/K_{r-1} , Q_r maps onto Q_{r-1} . Hence $\varprojlim Q_r$ is a set of elements of order q in G, which is thus not torsion-free. Hence G/Z(G) is a finite p-group and so has a non-trivial centre, which must contain a group isomorphic to C_p . By the proof of the Lemma in Morris and Oates-Williams [4], G/Z(G) cannot contain a subgroup isomorphic to $C_p \times C_p$ and so can contain no other subgroup isomorphic to C_p . But by Theorem 12.5.2 of Hall [3], a finite p-group containing a unique subgroup isomorphic to C_p is either cyclic or generalised quaternion, with generators and relations

$$\{g,h:g^{2^n}=1,g^{2^{n-1}}=h^2,hgh^{-1}=g^{-1}\}\quad n\geqslant 2.$$

In the former case G is certainly abelian, so suppose that

$$G = \operatorname{gp} \{a, b, Z(G)\},\$$

where $a^{2^{n-1}} = b^2c$, $c \in Z(G)$. Then both a and b commute with $a^{2^{n-1}}$ which thus belongs to Z(G). Hence G/Z(G) cannot be generalised quaternion. Hence G is abelian.

Lemma 2. Let G be a non-discrete locally compact Hausdorff group with the property that each of its non-trivial closed subgroups is of finite index. Then G is torsion-free with centre $Z(G) \neq \{1\}$. Indeed Z(G) is topologically isomorphic to Δ_p , for some prime number p.

Proof. Suppose that G has a non-trivial element g of finite order. Then the subgroup g generates is finite and hence closed. So this subgroup is of finite index, which implies that G is finite and hence discrete, which is a contradiction. Hence G is torsion-free.

Without loss of generality, we may assume G is not abelian. Let $g_1 \in G$. Then $\overline{\operatorname{gp}\{g_1\}}$, the closure of the subgroup generated by g_1 , has finite index in G. Thus there exist g_2, g_3, \ldots, g_n such that $\overline{\operatorname{gp}\{g_1, g_2, \ldots, g_n\}} = G$. As $\overline{\operatorname{gp}\{g_1\}}$ has finite index in G, there exists a positive integer m such that $1 \neq g_2^m \in \overline{\operatorname{gp}\{g_1\}}$. Therefore $g_2^m \in \overline{\operatorname{gp}\{g_1\}} \cap \overline{\operatorname{gp}\{g_2\}}$. By assumption, then, the closed subgroup $\overline{\operatorname{gp}\{g_1\}} \cap \overline{\operatorname{gp}\{g_2\}}$ has finite index in G. Thus there exists a positive integer k such that $g_3^k \in \overline{\operatorname{gp}\{g_1\}} \cap \overline{\operatorname{gp}\{g_2\}}$. So $\overline{\operatorname{gp}(g_1\}} \cap \overline{\operatorname{gp}\{g_2\}} \cap \overline{\operatorname{gp}\{g_3\}} \neq \{1\}$. By induction, $\bigcap_{i=1}^n \overline{\operatorname{gp}\{g_i\}} \neq \{1\}$.

Let $1 \neq x \in \bigcap_{i=1}^n \overline{\operatorname{gp}\{g_i\}}$. Clearly $x \in Z(G)$. So Z(G) is a non-trivial non-discrete locally compact Hausdorff abelian group with each closed subgroup having finite index. By [2, Corollary 1.3], Z(G) is topologically isomorphic to Δ_p , for some p.

Theorem 1. Let G be a non-discrete locally compact Hausdorff group. Then the following are equivalent:

- (i) G is topologically isomorphic to Δ_p ;
- (ii) every non-trivial closed subgroup has finite index.

Proof. Corollary 1.3 of Armacost [2] says that (i) implies (ii). If G has property (ii), then by Lemma 2, it satisfies the conditions of Lemma 1 and so is abelian. Thus, by Armacost [2, Corollary 1.3], G is topologically isomorphic to Δ_p , for some prime number p.

COROLLARY 1. Let G be a compact Hausdorff group. Then the following are equivalent:

- (i) G is topologically isomorphic to Δ_p , for some prime number p;
- (ii) every closed subgroup of G is open.

Proof. By [2, Theorem 1.6] (i) implies (ii). Conversely, every open subgroup in a compact group has finite index, and so by Theorem 1 we see that (ii) implies (i).

The above results complement that of [4] where it was shown that a compact Hausdorff group is topologically isomorphic to Δ_p , for some prime number p, if and only if all of its non-trivial proper closed subgroups are topologically isomorphic.

OPEN QUESTION. If G is a non-discrete locally compact Hausdorff group such that every non-trivial closed subgroup is open, is G necessarily topologically isomorphic either to the topological group of p-adic integers, Δ_p , or to the topological group of p-adic numbers, Ω_p ?

References

- D. L. Armacost, 'Well-known LCA groups characterized by their closed subgroups', Proc. Amer. Math. Soc. 25 (1970) 625–629.
- 2. D. L. Armacost, The structure of locally compact abelian groups (Marcel Dekker, New York, 1981).
- 3. M. HALL, The theory of groups (Macmillan, New York, 1976).
- S. A. Morris and S. Oates-Williams, 'A characterization of the topological group of p-adic integers', Bull. London Math. Soc. 19 (1987) 57–59.

S. A. Morris
Department of Mathematics,
Statistics and Computing Science
University of New England
Armidale
NSW 2351, Australia

S. Oates-Williams and H. B. Thompson Department of Mathematics University of Queensland St Lucia Queensland 4067, Australia