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We show that every locally compact group G contains a discrete subspace X which is closed 

in G \ { 1) and has the property that G is the smallest closed subgroup containing X. The mini- 

mum of the set of all cardinals card X for these X is called the generating rank s(G) of G. We 

show that s(G)< w(G)~s(G)‘~ for all G which are not monothetic. We calculate s(G) for G 

with w(G) 5 C. For compact groups G with w(G) 5 c and finitely many components, s(G) is finite. 

Introduction 

We say that G is topologically generated by X if G is the smallest closed subgroup 

containing X. One would like to know something about ‘thin’ closed generating 

sets. Thin sets should be discrete. But a compact group cannot contain infinite 

closed discrete subsets. Hence we consider discrete subsets X of a topological group 

G which generate G topologically and are closed in G \ { I}. Equivalently, these are 

subsets whose only possible accumulation point is the identity and which generate 

the group topologically. Such generating sets were considered by Tate in the context 

of Galois cohomology (see [5]) and by Mel’nikov in the context of free profinite 

groups (see [13]). We shall call them suitable subsets of G for the purposes of this 

paper. It is not at all clear that suitable subsets exist in general. Our first main result 

secures the fact that every locally compact group contains a suitable subset. This 

permits us to define, for all locally compact groups, a new cardinality invariant, the 
generating rank 

s(G) = min { N : there is a suitable subset X of G such that card X= X ) . 
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The weight 

w(G) = min{ K: there is a base 2~ for the topology O(G) such that 

card .K= X> 

of a topological space G is a purely topological invariant, whereas the generating 

rank s(G) is an invariant for locally compact topological groups. We calculate s(G) 

for compact groups G in terms of their weight w(G) and discover a curious dichoto- 

my involving the cardinal c of the continuum. Indeed, if w(G) > c, then s(G) = w(G). 

On the other hand, if w(G)sc, then s(G) is much smaller in general. In fact, 

s(G) is finite whenever G has only finitely many components. If not, then s(G) = 

w(G/GO), where G, denotes the identity component of G. 

It is worth noting that our proofs rely heavily on various structure theorems for 

compact groups. 

1. Suitable generating sets 

1.1. Definition. A subset X of a topological group is called suitable if 

(i) G is the smallest closed subgroup of G containing X; that is, topologically 

generates G. 

(ii) The identity element 1 $X and X is discrete and closed in G \ {l}; that is, 

1 is the only possible accumulation point. 

All topological groups are assumed to be Hausdorff. Observe that in a compact 

group, if X is suitable, then X U { 1) is compact. Indeed, X U {l} is the one-point- 

compactification of the discrete space X. 

The main result of this section is that every locally compact group contains a suit- 

able subset. This will be accomplished in a sequence of lemmas. 

The following simple lemma, whose proof we shall leave to the reader, will be 

helpful: 

1.2. Lemma. Let G be a compact Hausdorff space and A a closed subset. For a 
subset X of G \ A the following conditions are equivalent: 

(1) X is discrete and closed in G \ A. 
(2) For each open subset U of G containing A the set X \ U is finite. 0 

1.3. Lemma. If G is a topological group which is the product NH of two subgroups 
N and H each of which has a suitable subset, then G contains a suitable subset. 

Proof. If X and Y are suitable subsets of N and H, respectively, then X U Y is 

discrete and closed in G \ { l} and generates G topologically, hence is a suitable sub- 

set of G. 0 
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Of course, this lemma generalizes to the case of any finite number of subgroups. 

1.4. Lemma. If f : G --f H is a surjective morphism of compact groups, and if G has 
a suitable subset X, then H has a suitable subset f(X) \ { l}. 

Proof. Let X be a suitable subset of G and set Y=f (X) \ {I}. Clearly, Y topologi- 

tally generates H. In order to show that Y is suitable, we verify condition (2) of 

Lemma 1.2. Let Vdenote an open neighborhood of 1 in H. Then Udzff -l(V) is an 

open neighborhood of 1 in G. Since f is surjective, f(U) = V and f (G \ U) = H \ K 
But X \ U is finite as X is suitable, and so Y \ V=f (X \ U) is finite. Hence Y is 

suitable. (Thanks to the referee for this short proof!) 0 

1.5. Lemma. Every direct product of any family of topological groups with suit- 
able subsets has a suitable subset. 

Proof. Let Gj, jEJ be a family of topological groups, each with a suitable subset 

Xi. NOW let cj : Gj -+ P with the direct product P of the Gj be defined by ej(g) = 

(gk)kEJ with gj =g and gk= 1, otherwise. Then X= U{ej(Xj):j~~} is the required 

suitable subset of P as is readily verified with the aid of Lemma 1.2. 0 

1.6. Lemma. If H is a compact abelian group, then H has a suitable subset. 

Proof. Let A be the dual of H. Then A can be embedded into a divisible group D. 

Consequently, there is a surjective morphism f: G -+ H with G =D. Now D is a 

direct sum of a Q-vector space and some family of groups Z(p”). Hence G is a 

direct product of groups Q and Zp (the p-adic groups). Since Q and Zp are mono- 

thetic, they have (one-point) suitable sets. Hence G has a suitable subset by Lem- 

ma 1.5. But then H has a suitable subset by Lemma 1.4. 0 

Recall that a compact connected group is said to be semisimple if its center is 

totally disconnected. 

1.7. Lemma. A compact connected semisimple group N has a suitable subset. 

Proof. The group N is a quotient of a direct product n {Lj: j E J> of simple Lie 

groups [ 11. By a result of Kuranishi [ 1 l] (see also [ 14]), each Lj has a (two-point) suit- 

able subset. Once again, the result follows from Lemma 1.5 and Lemma 1.4. 0 

1.8. Lemma. Every compact connected group G has a suitable subset. 

Proof. The group G is the product of its semisimple compact commutator subgroup 
N and the identity component H of its center [ 11. The result now follows from Lem- 

mas 1.6 and 1.7 via Lemma 1.3. 0 
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We now have to deal with the case of totally disconnected compact groups. 

Douady [5] reports on a proof of Tate that every compact totally disconnected 

group has a suitable set. This proof is extremely condensed. We give here a different 

proof which depends on an interesting structure theorem of Varopolous [1.5]. 

1.9. Lemma. Suppose that G is compact and that there is a descending series G = 
G,DG,D--.DG,D~-- such that: 

(0 nGn={l). 
(ii) For each n = 1,2, . . . . the quotient group G,/G,,, has a suitable subset. 

(iii) For each n = 1,2, . . . there is a compact subspace Y,, c G, containing 1 such 

that (y,g)-yg: YnxGn+l + G, is a homeomorphism. 
Then G has a suitable subset. 

Proof. For n = 1,2, , . . let X, C_ Y, be such that (X, G, + J/G, + 1 is suitable in G,/G, + 1. 

Then for every x E X,, the set XC, + 1 is isolated in X, G, + 1/G, + 1, hence in G/G, + 1, 

and so {x} is isolated in X,. Moreover, if g E X, \ X,, then gG, + t E (X,G, + , U G, + J/ 
G n+l, whence gEX,G,+, UG,+l. But since each point of X,, is isolated, we may 

conclude that g E X,, U G, + 1. Because of g $X,, we finally have g E G,+i. On the 

other hand, we know g E X,, c Y,, and thus g E Y,, n G, + 1 = { 11. Therefore g = 1 and 

X,, is discrete in G \ {l}. Now the set Z, =X1 U ..- U X,, is discrete in G. We set X= 

Unm_lX,=U,m_lZ,.LetUcGbeopenandcontain1.Sincennm=,G,={1),bythe 

compactness of G, we find an n such that G, + I _ c U.NOWX\U~(Z,UG,+~)\U= 
Z, \ U is finite. Hence X is discrete G \ {l} by Lemma 1.2. Finally, we claim that 

X topologically generates G. Indeed, let H be the closed subgroup topologically 

generated by X. Further, let N be an arbitrary compact normal subgroup such that 

G/N is a Lie group. Since Lie groups satisfy the descending chain condition, we find 

an n such that G,,+i c N. Since XkGk+,/Gk+i topologically generates Gk/Gk+,, we 

conclude that G, _j/N c HN/N, j = 1, . . . , n - 1 and thus that G c HN. Since N was 

arbitrary and G=lim G/N, we have G= H as we had claimed. 0 

1.10. Lemma. Every compact totally disconnected group G has a suitable subset. 

Proof. By a theorem of Varopoulos [ 15, Theorem 2, p. 4581, there is a sequence G = 

G,DG,D~..DG,D~~. with nG, = { 1) and such that G,/G, + 1 is a direct product 

of finite simple groups. Hence G,/G,+l has a suitable subset by Lemma 1.5. Our 

assertion then follows from the preceding Lemma 1,9, where we note that condition 

(iii) is satisfied since every surjective morphism of compact zero dimensional groups 

allows a continuous cross section (see for instance [lo]). q 

1.11. Lemma. Every compact group G has a suitable subset. 

Proof. By a theorem of Lee [12] there is a compact totally disconnected subgroup 
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E in G such that G = GoE. The assertion now foIlows from Lemmas 1.10, 1.8, and 
1.3. 0 

Now we are ready for the first main theorem. 

1.12. Theorem. Every locally compact group has a suitable subset. 

Proof. Let H be an open subgroup of G such that H/H, is compact. Let C be a 
maximal compact subgroup of H. Then we find one-parameter subgroups El, . . . , E,,, 
each isomorphic to R such that H= CE, ..*E, (see, for example, [7] for the Lie 
group version, which is extended by lifting one-parameter subgroups). Then all Ek 
have suitable (two element) subsets, since IR has the dense subgroup Z+Zfi. By 
Lemma 1.11, the group C has a suitable subset. By the (n + 1)-subgroups version of 
Lemma 1.3, it follows that H has a suitable subset Y. Now let Z c G \ H be such 
that gHfl Z is singleton for each coset gH. Then X= YU Z is the desired suitable 
subset of G. q 

2. Generating compact groups 

We begin with some information on compact connected groups which we record 
completely for the sake of easy reference. Our first definition fixes a terminology 
which is suggested by the important concept of a maximal torus in a compact Lie 
group. 

2.1. Definition. If G is a compact group, then we shall call any maximal compact 
connected abelian subgroup of G a maximal protorus. 

2.2. Lemma. Let F: G + A be a surjective morphism of a compact connected 
group onto a compact abelian group. Then f(T) = A for any maximal protorus T 
in G. 

Proof. We have G =Z,, . G’ with the identity component Z, of its center and the 
commutator subgroup G’. Since f (G’) = {l}, we know f (Z,) = A; but then f(T) = A, 
since Z, is clearly contained in every maximal protorus. 0 

2.3. Lemma. Let f : G + H be a morphism of compact connected groups. Then 
f(T) is a maximal protorus of H for every maximal protorus T of G. Moreover, if 
S is a maximalprotorus of H, then there is a maximalprotorus T of G with f (T) = S. 

Proof. Let A be a maximal protorus of H containing f(T). Let G, be the identity 



186 K.H. Hofmann, %A. Morris 

component of f-‘(A). Since components map onto components under surjective 

morphisms of compact groups, the restriction f lG, : Gi +A is surjective. By Lem- 

ma 2.2, we then conclude f(T) =A which proves the first claim. 

If now S is a maximal protorus of H, let G, denote the identity component of 

f-‘(s). If T, is a maximal protorus of Gi, then f(T,) = S by Lemma 2.2. Now let 

T be a maximal protorus of G containing T,, then f(T) is a compact connected 

abelian subgroup of H containing S, hence by maximality of S, agrees with S. This 

proves the second claim. 0 

2.4. Proposition. Let G be a compact connected group. Then: 
(i) The maximal protori of G are conjugate. 
(ii) The union of all maximal protori is G. 

(iii) If T is a maximal protorus, then there is an element ge G such that G is 
topologically generated by T U {g} . 

Proof. (i) Since G =&,a G’ it clearly suffices to prove the claim for semisimple 

compact connected groups such as G’. So we assume G to be semisimple. Now every 

compact connected semisimple group is the quotient of a direct product n,,, Lj of 

simple connected compact Lie groups. In view of Lemma 2.3, it therefore suffices 

to assume that G itself is such a product. Then any maximal protorus T of G is of 

the form n,,, J T. with a maximal torus 7; of Lj. Suppose that T(“), n = 1,2 are two 

maximal protori in G. Since in any compact connected Lie group the maximal tori 

are conjugate, for each jE J, there is a gj such that TC2) =gjT(‘)gj’. If we now set 

g = (gj),sJy then TC2) = gT(‘)g-‘, as asserted. 

(ii) We shall consider the function e : G x T + G given by e(g, t) =gtg-‘. We 

must show that e is surjective. But this map is the limit of the maps eN: G/NX 
T/N--t G/N as N ranges through the filterbasis of all compact normal subgroups 

such that G/N is a Lie group. Since all eN are surjective, the surjectivity of e 

follows. 

(iii) Again in view of the fact that G = Z,. G’ and that Ze is contained in every 

maximal protorus, it suffices to consider the case that G is semisimple. As G is a 

quotient of a direct product of a family of simple compact Lie groups, in view of 

Lemma 2.3, it suffices to assume that G itself is such a product. Thus we have 

G = njEJ Lj and a maximal protorus T= njCJ T. with a maximal torus q of Lj for , 
each jEJ. By Kuranishi’s Theorem, there is an element gj such that Lj is topo- 

logically generated by q U {gj}. If we set g = (gj)j,J, then G is topologically gener- 

ated by TU{g}. 0 

2.5. Corollary. Let G be a compact connected group and T a maximal protorus in 
G. If X is a suitable subset of T, then there is a g E G such that X U {g} is a suitable 
subset of G. 0 
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3. Some background information on the weight 

For our discussion of the generating rank s(G) in Section 4 below we need certain 

information on the weight of compact groups. Observe that for an infinite compact 

group G the weight w(G) is at the same time the local weight in the sense that it is 

the smallest among all the cardinals X for which there is a neighborhood basis %V 

of 1 such that card % = X . 

We shall first make a few observations concerning the weight of locally compact 

groups. The identity component of a topological group G will be denoted by Go. 

Surely there will be many ways of proving these matters; here is the way we do it: 

3.1. Proposition. For an infinite locally compact group G we have the following 
conclusions : 

(i) w(G) =max{ w(G,), w(G/Go)}. 

(ii) If G is connected and C is a maximal compact subgroup, then w(G) = 

max{XO, w(C)). 
(iii) If G is compact and connected, and if Z,, G’ and T denote the identity com- 

ponent of the center, the commutator subgroup, and a maximal protorus, respec- 
tively, then w(G) = maxi w(Z,), w(G’)} = w(T). 

(iv) If H is a compact open subgroup of G, then w(H) is independent of the 
choice of H if G is nondiscrete and card G/H is independent of the choice of H, 

if G is noncompact. 

Proof. (i) The space underlying G is homeomorphic to the Cartesian product 

G, x G/Go (see for instance [lo]). The claim follows. 

(ii) Here G is homeomorphic to the Cartesian product C x R” (see [7]). This im- 

plies the claim. 

(iii) The group G is a quotient of Z0 x G’, whence 

w(G) 5 max 1 w(-Q, w(W), 

and since w(ZO)< w(G) and w(G’)s w(G), equality follows. 

Since w(T)< w(G), it remains to show that w(G)5 w(T). For this purpose we first 

consider an identity neighborhood V of T. Since G, as a compact group, has a basis 

of open identity neighborhoods invariant under inner automorphisms, there is an 

open invariant identity neighborhood U of G such that U n T c V. Hence for all 

gEG we have UngTg-‘=g(UnT)g-‘~gVg_‘. As G=U,,ogTg-’ by Proposi- 

tion 2.4, we have ug,,_g(Lrn T)g-‘= U c u,.ogVg-‘. If we set P= Ug,ogVg-‘, 
then the function V H Pmaps any basis of identity neighborhoods of T onto a basis 

of identity neighborhoods of G. Since the weight and the local weight of a compact 

group agree, w(G) 5 w(T) follows. (This line of proof again follows an idea of the 

referee and replaces the authors’ more complicated original argument.) q 
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3.2. Proposition. Let G be a compact group and D a totally disconnected normal 
subgroup contained in Go. Then w(G) = w(G/D). 

Proof. We first prove the assertion when G is compact connected abelian. In this 
case, w(G/D) = card G% = card D’, where D’ denotes the annihilator of D in 6. 
Since D is totally disconnected, Dze/D’ is a torsion group. Hence the pure sub- 
group generated by D’ in C.? is C?. Thus w(G/D) = card D’ = card C? = w(G), which 
proves the claim in this case. 

We now address the general case. By Proposition 3.1(i), we have w(G) = 
max{ w(G,), w(G/Go)}. It therefore suffices to consider the case that G is con- 
nected. We assume that G is not abelian. Then there are two surjective morphisms 

Z,X n Lj+G+Z,/AX fl Lj/Zjl 
jcJ jcJ 

with Lj a nonempty family of simply connected simple compact Lie groups having 
finite centers Zj, and with A a totally disconnected subgroup of ZO. Thus w(Z,/A) = 
w(Z,) by the first part of the proof. So we have 

max(w(ZO/A), KO,card J} = max{w(Zo), X,,card J} 5 w(G) 

5 maxi w(ZO/A), X 0, card J}. 

If we write H=ZO/A x flj, J Lj/Zj, we now have w(G) = w(H). If D1 is the image 
of D in H, then D, is central, hence contained in Z,/A. By the first part of the 
proof again, w(Z,) = w(ZO/A) = w((Z,/A)/D,) which implies 

w(G) 1 w(G/D) 2 w(H/D,) 

= max{ w((Z,/A)/D,), KO, card J} 

= max{ w(Z,), X0, card J} = w(G). 

This completes the proof. 0 

We denote by N >Q H a semidirect product of the normal subgroup N by a sub- 
group H. 

3.3. Proposition. Let G be a compact group. Then there is a totally disconnected 
compact normal subgroup D contained in the center of G, such that 

where T is the circle group, L, a simple compact Lie group with trivial center, the 
J,,, n=O, 1, . . . are appropriate sets, and where E is a compact totally disconnected 
group. 
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Proof. By Lee’s Theorem (see [12]) there is a compact totally disconnected 
group F such that G = Go. F and Go Il F is in the center of Go. Let D = (G, fl F) . 

(Z,, fl (GO)‘). Z((G,)‘) where Z, is the identity component of the center of Go and 
Z((G,)‘) denotes the center of (G,)‘. Then D is a compact totally disconnected nor- 
mal subgroup of G contained in the center of Go, and G/D z (A x S) >Q E, where 
A =(Z,. D)/D, S=((G,)‘. D)/D, and E= (F. D)/D. Now SzflnE,,., L$ for some 
simple compact Lie groups L, with trivial center and with appropriate sets J,. The 
assertion of the lemma will now be implied by the subsequent lemma. 0 

3.4. Lemma. Let A be a compact connected abelian group. Then there is a totally 
disconnected subgroup D such that A/Dz:TJ, for some set J. 

Proof. The claim follows by duality: Indeed A is a torsion free abelian group which 
then contains a maximal free subgroup F such that a/F is a torsion group. Then 
the annihilator D = F’ of F in A satisfies the requirements. 0 

4. Weight and generating rank 

Our Theorem 1.12 enables us to introduce a new cardinal invariant for locally 
compact groups. (For profinite groups, this cardinal was already formulated by 
Mel’nikov [13].) 

4.1. Definition. For a locally compact group G we set 

s(G) = min{ H : there is a suitable subset X with card X= X}. 

We call s(G) the generating rank of G. 

4.2. Remark. For any locally compact group G we have s(G)< w(G). 

Proof. If X is a suitable subset of G with cardinality s(G), and if SS is a basis of 
the topology of G with cardinality w(G) then for every XEX there is an element 
U(x) E 8 with U(X) fl X= {x}. Then x - U(x) :X-+ 33 is an injective function and 
thus s(X)5 w(G). El 

Lemma 1.4 instantaneously translates into the following remark: 

4.3. Lemma. For a surjective morphism of compact groups f : G + H the inequality 
s(H) ss(G) holds. 0 

Our objective is to show that for compact nonmonothetic groups G we have 
s(G)‘“= w(G)‘“. 

For convenience, we make the following definition: 
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4.4. Definition. A compact group G will be called good if it satisfies s(G)‘O= 

W(G)‘“. We shall write w(X) = W(X)’ O, further S(X) = s(X) X0 and finally card(X) = 

(card(X))xo. 

4.5. Lemma. If D is a totally disconnected compact normal subgroup of a compact 
group G such that D is contained in GO and G/D is good, then G is good. 

Proof. By Proposition 3.2 and Lemma 4.3, w(G) = W(G/D) =s(G/D) <s(G). 0 

The preceding lemma and Proposition 3.3 will allow us to reduce the proof that 

a given compact group G is good to proving that a group of the form 

(*) TJ%&L$)aE) 

is good, provided w(E) or any of the cardinals, cardJ,, is large enough. 

By Remark 4.2, in order to show that a group G of type (*) is large, it suffices 

to prove 

(**I s(G) r max W(E), 
n=O, 1, . 

This task forces us to handle the generating rank of semidirect products. Not too 

much can be said. Let G be a locally compact group with G = N >Q H. Then s(H) 5 
s(G) IS(N) + s(H). Indeed the first inequality follows from Lemma 1.4. If Y is a 

suitable subset of N and X is a suitable subset of H, then (Y x (l}) U ({ 1) xX) is 

a suitable subset of G. Hence the second inequality holds. In order to see that the 

bounds are sharp let us consider discrete finite abelian groups. If N= H= Z/22 and 

the product is direct, then s(N) =s(H) = 1 and s(G) = 2. So the upper bound is at- 

tained. Next let H=H/2Z and N=Z/3Z and define G to be the direct product of 

these two groups. Then G is cyclic and s(G) = 1 = s(H) < 2 = s(N) + s(H). However, 

the following information concerning semidirect products will be useful to us: 

4.6. Lemma. Suppose that G=N M H is compact. Then the normal subgroup 
N >a {l} contains a compact topological generating subset Y with 

w(Y) I w(H)s(G). 

Proof. If X is a suitable subset of G of cardinality s(G), we set X’ =X if X is closed 

and X’=XU { 1) otherwise, and thus s(G)=cardX= w(X’). Let X, denote the 

projection of X’ into N. Then the function (h,x) ++ (h, 1)(x, l)(h, l)-’ maps the 

compact space H x X, surjectively onto a compact subspace Y of N x {l}. We 

have w(Y) 5 w(H xX,) = w(H) w(X,) I w(H) w(X’) = w(H)s(G). It remains to 

show that the space Y topologically generates N x {l}. For this purpose let M be 

the compact subgroup of N x {l} which is topologically generated by Y. Since Y is 

invariant under all inner automorphisms of G induced by the elements of {l} x H, 
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the same is true for M. Hence M({ l} x H) is a compact subgroup of G. But it also 

contains X’, whence it agrees with G. This implies M=Nx {l}. 0 

The estimate in this lemma may appear curious. However, we shall apply it in a 

situation where we have lower estimates for topological generating sets of N and 

where w(H) is small by comparison with s(G). Then these lower estimates give lower 

estimates for s(G). 

Mel’nikov [13] has the following result: 

4.7. Lemma. If G is an infinite compact totally disconnected group, then 

w(G) = max{ xe,s(G)}. 0 

4.8. Lemma. Let L be a compact infinite Lie group, X a compact pointed non- 
singleton space, and C(X, L) the set of continuous functions from X to L mapping 
the base point to the identity. Then card C(X, L) = W(X). 

Proof. In [S, Proposition 1.4. l] we have shown card C(X, I) = W(X), where I denotes 

the unit interval with base point 0 and C refers to base point preserving continuous 

functions. Since C(X, I”) s C(X, I)” the set C(X, I”) has still the same cardinality for 

alln=l,2,.... Now there are topological embeddings I-+ L --+ I” for an appropriate 

natural number n. Hence there are injections C(X, I) + C(X, L) -+ C(X, I”). Thus 

card C(X, L) = card C(X, I) = w(X) as was asserted. 0 

The following is a key lemma: 

4.9. Lemma. Let L be a compact Lie group and J a nonsingleton set. Then 
s(LJ) = card J. 

Proof. Since s(LJ) I W(LJ) = card J by Remark 4.2, we must show the reverse in- 

equality. This claim will be implied by the following slightly more general lemma, 

which we will also need in the sequel. 0 

4.10. Lemma. Let L be an infinite compact Lie group, J a nonsingleton set, and 
Y a compact subspace of LJ which contains the identity and topologically generates 
LJ. Then card J= w(Y). 

Proof. We consider Y and L as pointed compact spaces with the identities of LJ 
and L, respectively, as base points. Let C(Y, L) denote the set of all base point 

preserving continuous functions of Y into L. Then 

card C(Y, L) = w(Y) (1) 
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by Lemma 4.8. We now consider the compact group G = LccKL) and note 

w(G) = w(Y) (2) 

in view of (1). We also have 

w(LJ) = card J. (3) 

Hence by (2) and (3), in order to prove card JI w(Y) it suffices to establish the 

following claim: 

There is a surjective morphism of compact groups G -+ LJ. (4) 

Since w(Y)< w(LJ) = card J implies w(Y) <card J, this will prove the lemma. In 

order to prove claim (4) we prove a certain universal property of G. First we observe 

that there is a topological embedding E : Y + G given by a(y)(f) =f(_y) for y E Y and 

f E C(Y, L). Now we establish the following universal property (U) of G: 

(U) For each base point preserving continuous function f: Y + L there is a 

morphism of compact groups f’ : G -+ L such that f =f ‘0 E. 

Indeed, for an arbitrary element y E G, y : C(Y, L) --f L we simply define f’(y) = 
y(f). Then f’, as a point evaluation, is a morphism of compact groups, and for 

_vE Ywe notef(y)=~(y)(f)=f’(~(y))=(f’o~)(y). 
Now we define, for each ~EJ a continuous function 4 : Y -+ L by fj(y) =y(j) 

(remembering that y E LJ is a function y : J + L). As a point evaluation, fj is con- 

tinuous. By the universal property (U), we find a morphism of compact groups 

fj’ : G + L with y(j) =4(y) =fi’(e(y)). By the universal property of the Cartesian 

product LJ we now find a morphism of compact groups F: G + LJ given by 

F(y)(j) =4’(y). In particular, F@(Y))(~) =.$(a(~)) =r(_0; that is, F@(Y)) =Y. 
Thus the image of F contains Y. Since Y topologically generates LJ, the morphism 

F is surjective and claim (4) is proved. This finishes the proof of the lemma. 0 

Now we assume that G is a compact group of type (*), and that w(G) 2 c. We 

begin to prove statement (**). If it(E) = w(G) L c, then w(E) L X 0 and then w(E) = 

s(E) by Lemma 4.7. Thus s(G)zs(E) = w(E) and (**) follows. Now assume iir(E)e 

iit (hence w(E) < w(G)), but also that at least one of the cardinals card J,, m 2 1, 

equals a(G). Set G, = n,, N L;I” x E. Then s(G,) ss(G) by Lemma 4.3. In view of 

Lemma 4.6, we find a compact topological generating subset Y of JJ,, N L$ x {l} 

with w(Y) 5 w(E)s(GI)s w(E)s(G). The projection Y, of Y into Lb is a compact 

topological generating subset of L$. Lemma 4.10 implies J?(G) = card J, I w(Y,) 5 

w(Y). Thus w(G) 5 ii(Y) 5 w(E)S(G), and since W(E)< W(G), this implies w(G) s 

s(G). 

Finally, we assume that iv(E) < ii(G) and that card J, < W(G) for all n = 1,2, . . . . 
Now we set N=TJo and H=JJ,,, L$>a E and apply Lemma 4.6 again to the 

semidirect product NH. Exactly as before we find w(G) = card Jo 5 s(G), and this 

finishes the proof of condition (**). 

We have now proved the following main theorem of this section: 
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4.11. Theorem. Let G be a compact group with w(G)rc. Then So”= 
w(G)‘O. 0 

Our next theorem describes the situation for compact groups whose weight does 
not exceed c. But first we prove a lemma: 

4.12. Lemma. If f: G--f H is a surjective morphism of compact groups, then 
s(G)%s(H)+s(kerf). 

Proof. Let Xi be a suitable subset of K= kerfand Y a suitable subset of H, both 
of minimal cardinality. Then K acts on f-‘(Y) and thus there is a continuous cross- 
section o: Y+f-‘(Y) (see for instance [lo, p. 317, 1.121). Set X,=0(Y). Then 
X, U X, is a suitable subset of G. Hence s(G) I s(H) + s(K). 0 

4.13. Theorem. Let G be a compact group with w(G) I c. Then the following cases 
can occur: 

(i) s(G)=0 ifG={l}. 
(ii) s(G) = 1 if G is monothetic, in particular, if G is connected and abelian. 

(iii) s(G) = 2 if G is connected and nonabelian. 
(iv) max{ K,,,s(G)} = w(G/GO) if G has infinitely many components. 
(v) s(G/GO) rs(G) <s(G/G,,) + 2 tfG has at least 2, butfinitely many components. 

Proof. (i) is clear. Since any connected compact abelian group whose weight does 
not exceed c is monothetic, (ii) follows. From (ii) and Corollary 2.5 we infer (iii). 
Next we prove (iv). From Lemma 4.12 we know s(G)ls(G,) +s(G/G,). If G/Go 
is infinite, then max{ No,s(G/GO)} = w(G/Ge) by Lemma 4.7. Then by (i)-(iii), 
assertion (iv) follows. Finally, in order to prove (v), let 2 I card G/G,< N,. Then 
(v) follows from (ii), (iii) above and Lemma 4.12. 0 

4.14. Theorem. The equation s(G)‘“= w(G)‘” holds for all nonmonothetic com- 
pact groups. 

Proof. This is a consequence of Theorems 4.11 and 4.13. 0 

The cardinal number c seems to play a rather special role. But we shall show else- 
where that for each cardinal a> c there is a compact group G such that s(G) = a and 
w(G)=a”O [16, Corollary 2.161. 

5. Supplementary remarks 

We compare the generating rank s(G) introduced here with another cardinality 
invariant, the density 
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d(G) = min ( x : there is a dense subset X of G with card X= X >. 

Due to a result of Comfort and Itzkowitz (see [3,4]) one knows that for any locally 
compact group one has 

d(G) = log w(G), where log H = min{ K’: 8 <2”‘}. 

If X is a suitable subset of a locally compact group G of cardinality s(G), and if 
D denotes the group which is algebraically generated by X in G, then D is dense and 
thus, since card(D)smax{ K,,s(G)}, we have 

log w(G) = d(G) I max{ K e, s(G)}. 
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