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Abstract

For each compact connected simple Lie group G and each compact con-
nected pointed space X we explicitly construct a compact connected group FgX
containing X such that every continuous basepoint preserving map X — G whose
image topologically generates G extends uniquely to & morphism FgX — G. We

" show that FgX is isomorphic to G*(X)"° where w(X) denotes the weight of X,
and describe the embedding of X . For each cardinal R, this allows the construction
of compact connected semisimple groups S whose generating rank s(G) does not
exceed ® while the weight w(G) is R¥,
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0. Introduction

Free compact groups are defined by the left adjoint of the forgetful functor
KG — TOPq from the category of pointed topological spaces into the category of
Hausdorff compact topological spaces. Thus for each topological space X we get
a natural continuous map ex:X — FX from X into a compact group sending
the basepoint to the identity which has the well known universal property. This
universal property allows us to conclude that ex factors thmugh the CECH-STONE
compactification X — AX in such a fashion that fX is topologically embedded
into FX (see [7), Proposition 1.4). Thus, in fact, it ia no loss of generality to assume
that X is compact Hausdorff and we do this throughout.

Compact groups have a rich structure theory which is, in the final evalu-
ation, based on the theory of LIE groups and PONTRYAGIN duality and which we
have summarized in [8] and [9]; accordingly, the free compact groups FX have an
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intricate algebraic and topological structure depending on the cohomology and the
weight of X . The project addressed in this sequence of papers is to clarify this
structure.

For the purpose.of introducing the reader to this present paper we shall
summarize what we know for the case of a connected compact pointed space X ; for
in this case F'X is itself connected. Then let ZoF'X denote the identity component
of the center of FX and F'X the commutator subgroup (which we know to be
closed!). Then we have an exact sequence . '

(1) P 0= Y'H‘ (X,2))~— ZiFX x F'X — FX =, R/ Z@

which, intuitively, expresses the fact tha.t FX is nearly the direct product of the
center component and the commutator group except for a zero dimensional compact
abelian group in their intersection which is the dual of the (discrete!) first CECH
cohomology of X. Thus, if, for instance, this cohomology vanishes, the direct
product decomposition of 'FX is true on the nose. (For these and more general
pieces of information see [9].) The factor group FX/F'X is the free compact
abelion group FuX on which [8] gives complete information. From (1) we obtain
therefore an exact sequence

(2) 0 (hr(x, l))“—rZoFX—»F,.X—rO @R/ Z

which we have identified as the projective resolution of F,X in [9], Theorem 2.2.
Since, on the other hand, we have discussed the projective cover of F, X extensively

"in [8], we may consider the “abelian aspects of FX”, namely, the center component
ZyFX and the factor group F, X = FX/F'F and their relationship as satisfactorily
clarified. _

So far we know little on F'X. This paper contributes to the structure
theory of this portion of the free compact group. For compact connected spaces
X, this group is a semisimple compact connected group, and one has general
information on the structure of such groups. Hence we were able at an early stage
to offer questions and speculations on F'X (see [7]). Some of these issues will be
clarified in this paper. Given the structure of F'X we know the structure of FX
satisfactorily for all compact connected pointed spaces X .

' The approach we take is to investigate the basic “molecules” from which
F'X is made up.  Simple compact Lie groups serve as an index set for these
molecules. (A simple Lie group is by definition nonsingleton.) We shall therefore

fix a compact connected simple Lie group G and define a new type of free compact
group as follows

0.1. © Definition. (i) A basepoint preserving function f: X — G from a pointed
space into a topological group is said to be essentialif it is basepoint preserving and
G is topologically generated by f(X ), that is, G is the smallest closed subgroup
containing f(X).

(ii) For any compact group G, and any compact pointed space X, the
essential G -free compact group FgX is a compact group together with a natura.l
map ex: X — FgX such that for every essential function f: X — G mapping the
basepoint of X to the identity of G there is a unique continuous homomorphism
f':FgX — G such that f = f'oex.



210

Notice that FgX = {1} if card X < 2 and G is nonabelian, since one needs
at least 2 nonidentity elements to topologically generate a nonabelian compact
group. However, we shall see that for connected compact simple Lie groups G
and spaces X with at least 3 points, ex is an embedding so that f' is simply a
homomorphic extension of a continuous function on the subspace X of FgX (after
natural identification). o X

The reason that we shall restrict our attention here to essential functions
is this: Assuming again that X is connected, every homomorphic image H of FX
is a product of the identity component Zo(H) of its center and its (semisimple!)
commutator group H'. The image of F'X under this homomorphism is H'. For
every continuous function f:X — K into any compact group, the subgroup H
topologically generated by f(X) is a homomorphic image of FX. The homomor-
phisms of a compact group into Lie groups separate the points. We see therefore
that F'X is completely determined by the homomorphisms into the commutator
groups H' of groups H for which we have an essential function X — H. At the
very least we have to deal with essentm.l functions X — G into simple connected
Lie groups. . =

We shall give a complete structure theory of FgX and the way X is
embedded into FgX. Remarkably, if X contains atf least 3 points outside the
basepoint, the structure of FgX is that of the power G*X)™ where w(X) denotes
the weight of X. 1In [10] we have defined a cardinal invariant for all compact
groups G called the generating rank s(G) of G. It is the smallest cardinal of
a discrete subset of G\ {1} which topologically generates G.- (The existence of
such sets is a problem which was settled in [10].) We established the relation
8(G) € w(G) < s(G)M. The essential G-free compact group Fg(I'Uoo) of the one
point compactification of an arbitrary infinite (discrete) set I based at oo affords an

example of a compact group G satlsfymg 3(G) £ card ] and w(G) = (card Il =
-"(G')"" :

1. Homomorphically simple groups.

1.1.  Definition. ‘A compact group G will be ca.lled homamarph:cally Jtmplc
if each endomorphmm of @ is either consta.nt or an automorphism.

VI Lemma. If f:G — G is an endomorphism of a connected L:e group G
with finite fundamental group 1r1(G') , and if the morphism L(f) induced on the. Lie
algebra is an isomorphism then f is an isomorphism.

Proof. ~ Since L(f) is an isomorphism, the morphism - FG= @ mduced by f
on the s:mply connected covering group G of G isan isomorphism. If p: G — ¢}
denotes the covering morphism then pf = fp by the definition of the hftmg f:
If K = kerf then f(K) C K follows. Now K 2 m(G), whence K is finite
by hypothesis. - Since f is an 1somorphmm this implies that f |K K — K'is an
. isomorphism, and, since p is in particular a quotmnt morph:sm, thm entails that
fiG— G is. an 1somorph:sm, too, ]

It muy be of interest to note in passing that a surjective endomorph:sm
f:G — G of a connected Lie group is an open mapping as a consequence of the
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Open Mapping Theorem as G is o-compact. (See‘ [6], Theorem 5.29.) Hence the
endomorphism L(f): L(G).— L(G) of Lie algebras is surjective and thus is an
tsomorph1sm as a morphmm between finite dimensional ‘vector spaces,

1.3. . Lemma. (i) Any compact connected simple group and any finite simple
group is homomorphically simple.

(i) Conversely, a compact connected hamomorph;cally simple Lie group is
semisimple or singleton. : y

Proof. : (i) Suppose that G is'a compact connected s:mple group and f: G —+ G
i sicnconstunt endomorphism. Then L(f): L(G) — L(G) is a nonzero morphism of
simple Lie algebras and is, therefore an isomorphism. Since G is a simple compact
connected Lie group, m1(L) is finite (see for instance [1], Chap VII, §3, n°2, Prop.
5). Hence Lemma 1.2 applies and shows that f must be an isomorphism. This
proves the claim in the first case; and the second case is trivial.

(ii) Let G denote a compact connected nonsingleton homemeorphically sim-
ple Lie group. If G is not semisimple, then G/G' is a nondegenerate torus, hence
there is nontrivial character x:G — T onto the circle group. Now let X: T = G
be any morphism with a finite nontrivial kernel; such morphisms exist since every
compact nonsingleton group has circle subgroups. Then f = X oy is a nonconstant
endomorphlsm which i is not m_]ectlve |

The proof of Lemma 1 3 is ra.ther d]rect but not elementa.ry Itis 1n3truct1ve
to note that a covering morphism T = T in general is by no means an isomorphism
even though it induces an isomorphism R & L(T) = L(T) &R.

A homomorphlcally simple compact Lie group G may not be s:mple

1.4, Exam’ple. Let Z & 2(7) deuote the center of SU(7) with generator
z.  Define the subgroup D of Z x Z'by D = {(z,2°):z € Z}. Then G =
(SU(T) x SU(T))/D is homomorph:cally simple but. not simple. ; ;

Proof. G is the product of two elementwise commutmg subgroups 4 = (SU(7)x
{1})D/D and B = ({1} x SU(7 ))D/D. A nonconstant endomorphism f of G

. induces an isomorphism I,(f)-—in which case it is an isomorphism by Lemma 1.2—
- or has L(A) or L(B) as kernel. In the first case ker f is locally isomorphic to

A; but 'G/A = B/(AN B) = SU(7)/Z = PSU(7). Since PSU(7) is centerfree,
A = kerf and im f & PSU(7).' However, the Lie subgroups of G which are
locally isomorphic to SU(7) but are different from A, B and G are all of the
form So = {(g,a(g))D | g € SU(7)} for an automorphism a € Aut(@). If K is

- the kernel of the morphism g — (g,a(g)) : SU(7) — Sa, then S, = SU(T)/K.

But k € K if and only if (k,a(k)) € D, that is, if there is & z € Z such that
(k,a(k)) = (z,2%). This means k € Z with a(k) =k®. Now an automorphism a -
of SU(7) either fixes every element of Z or else is of order 2, and thus a(k) = k~1.
Therefore k € K'if and only if kZ and satisfies k = k% or k~! = k3, that is k% =1
or k% = 1. In both cases we conclude k = 1, Thus all subgroups of G which are
locally isomorphic to SU(7) are isomorphic to SU(7), hence cannot be the image
of f. Analogously, ker L(f) = L(B) is impossible, too. Hence any nonconstant
endomorphism of G is an automorphism. L]
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It is an instructive exercise to show that, for instance, the group (SU(2) x
SU(2))/D with the diagonal D of the center Z x Z is not homomorphically simple.

(Note that all nonnormal Lie subgroups of this group which are locally isomorphic
to SU(2) are isomorphic to SO(3).)

1.5. Lemma. Let G be a compact connected homomorphically simple Lie group
end J any sef. Then any nonconstant morphism G¥ — G is a projection followed
by an automorphism of G.

Proof. Suppose that f:G7 — G is any morphism. Since G is a Lie group there
is an identity neighborhood V in G containing no subgroup other than {1}. Then
any subgroup of G’ contained in the identity neighborhood f~(V) is in the kernel
of f. By the definition of the product topology on G”, there is a cofinite subset
I of J such that the partial product G! (identified with the obvious subgroup of
G7) is annihilated by f. Hence f factors through the projection G¥ — G/, We
may therefore assume that J is finite. If the kernel N of f meets any of the factors
G inside G, it must contain this factor since the restriction of f to this factor is
either constant or an isomorphism. Now LL(/N) is an ideal in T(G?Y) = g1 @+ --® gn
with g; = L(G). Since G is semisimple by Lemma 3(ii), L(G) = 5, @+ - @ s, with
simple ideals sx, whence gj = s;; @ -+ @ 6;p with sjz & s;. Now the ideal L(N)
is a sum of the sji and if it contains 5;; then it contains g;. It follows that L(N)
is a sum of the g;. Consequently, L(f):L(G)’ — L(G) is a projection, whence
f:67 = G is a projection. -

2. The G-free compact group over X

The concept of subdirect products belongs to universal algebra. We formu-
late it for the variety of compact groups in which we work.

2.1, Definition. A closed subgroup S of a product P = [],.;G; of a family
of compact groups is called a subdirect product of this family if G; = pry(S) for
each projection pr;: P = Gj.

Typically, the diagonal in any power G7 of a compact group G is a sub-
direct product and is itself isomorphic to G. For any given family, the subdirect
products are of a great diversity. Accordingly, the usefulness of this concept depends
significantly on the family whose subdirect products we consider. For instance, ev-
ery compact connected abelian group is a subdirec}\ product of a family of circle
groups T; indeed the evaluation injection G — TS\ defines such a subdirect
product. This information cannot be of much value. The situation is different with
subdirect products of powers of simple compact connected groups. One might con-
jecture that a subdirect product inside a power of a simple connected compact Lie
group is itself isomorphic to a power of this group. Some examples are instructive:

2.2, Example. Let G be a simple compact group with nontrivial center Z.
Let D denote the diagonal in G® for n > 1. Then § = DZ™ C G" is a subdirect
product in G™ which is not isomorphic to G™. L

This shows that without connectivity assumptions on S the conjecture is
false. The following example is more interesting:
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2.3. Example. Let S be a simple group with center (z,z'), where (z) =
(2') = Z(2) such that there is an automorphism & € Aut(S) with 2’ = &(z).
Such groups exist, for instance S = Spin(2m) with m > 2. Now we consider the

quotient morphisms m: S — §/(z) and #:5§ — G % 5/{(z'). Then & induces an

isomorphism a:5/(z) — G. Define §:5 — G? by §(g) = (a(n(g)),7'(9)). Then
S is a subdirect product in G?. n

This example shows that a simply connected compact simple Lie group
may be a subdirect product in a power of simple Lie groups which are not simply
connected. Hence the conjecture is invalid unless further hypotheses on the global
geometry of G are imposed. On the infinitesimal level, however, the conjecture is
true:

2.4. Remark. In the category of finite dimensional real Lie algebras and Lie
algebra morphisms, a subdirect product s inside a finite power g" = g, @+ @ g,
p;j = g of a simple algebra g is isomorphic to a power of g. If s is subdirect in g"
then there is an ideal n of g" so that g is the semidirect sum of n and s.

Proof.  Since the projections onto the simple factors separate the points, the
radical of 5 must be zero. Hence s is semisimple, that is, is isomorphic to a direct
sum 8y @ -+ @ 8,, of simple ideals, and every ideal of s is a sum of a subset of
these summands. Since the homomorphisms onto g separate points, s; 2 g follows
for all j = 1,...,m < n. Reorder indices so that s; projects faithfully onto the
summand g;, j =1,...,m. Then n=3 7 ., g is the required ideal. u

2.5. Remark. Let G denote a compact connected simple Lie group and n
a natural number. If § € G" is a subdirect product, and if S is connected then
§2 G™ for some m = 1,...,n, provided that G is center free.

Proof. By the preceding remarks, L(S) & L(G)™. Hence S and G™ are
locally isomorphic. If G is center free, then so are G™ and S since the surjective
morphisms § — G separate points. The isomorphy of L(S) and L(G™) then
implies the isomorphy of S and G™. L]

In the third section we shall generalize this remark. However, we shall
not need it for the pursuit of our main objective. In this line we shall find that
sometimes other information may allow us to conclude that a subdirect product of
a power of a simple group is itself a power of this group.

2.6. Definition. Let X be a pointed compact space and G any compact
group. We denote by E(X,G) the set of all essential functions f: X — G. The
function ev x: X — GE(X.0) is given by ev x(z)(f) = f(z) for f € E(X,G).

2.7. Lemma. For any essential function f: X — G there is a morphism
f1:GEX6) |, G of compact groups such that f = f'oevy.

Proof. In view of the definition of the product topology, that is, the topology
of simple convergence on GF(X:9) | the function evy is continuous, and if f €
E(X,G), then f(z) = evx(z)(f) = (pryoevx)(z) and thus f' = prI;GE{X-G) -
G satisfies the requirement. L]
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2.8. Lemma. If G is an arcwise connected compact nonsingleton group whose
weight is af most 2% | and if X contains at least 3 points then the evaluation map
evy: X — GF(X.9) {5 g tapological embedding of the compact pointed space X .
Proof.  If | denotes the unit interval, then the functions of C(X, 1) separate the
points of X. Thus the evaluation n: X — GEX\) is injective. If the compact group
* G is a compact connected group whose weight does not exceed the cardinality of the
continuum, then it is topologically generated by two points a and b (see [10], §2).
There is a homeomorphism h of the unit interval | into G with A(1/2) = 1, h(0) = a
and h(1) = b. Since X contains at least three points zo = basepoint, z; and z,,
the set C.(X,l) of functions f with f(0) = 1/2, f(z:) = 0, f(zz) = 1 still
separates the points of X' and h induces an injection C(X,h) of C.(X,!) into
C(X,G) such that all functions f in the image satisfy a,b € f(X) and thus are
essential. Hence we have an embbeding of C\(X,1) into E(X,G). This shows
that the functions of E(X,G) separate the points of X, Hence the evaluation
evy: X — GF(X.9) ig injective. Since X is compact and GB(X:9) Hausdorff, it is
an embedding.
L]

This information now readily allows us a first identification of the essential
G-free compact group. :

2.9.  Proposition. Let X be any compact pointed space and G any compact
group. Let FgX denote the compact subgroup generated by evx(X) in GE(X.G)
and ex: X — FgX the essential map oblained by corestricting evyx. Then FgX
is the essential G-free compact group over X and ex the universal mapping of X
into it. If G is arcwise connected and of weight at most 2% and if X has at least
3 points, then ex is a topological embedding. n

The proof 6f this, of course, is routine from the preceding Lemmas 2.7 and
2.8.

2.10." Corollary.  The group FgX is a subdirect product in GE(X.G)

Proof. If f € E(X,G), then pry(FgX) is the subgroup topologically generated
by f(X) in G, hence is G. -

We now proceed to describe this subdirect product FgX accurately if G
is 2 homomorphically simple Lie group. We begin with the observation that the
automorphism group Aut G acts on the set E(X,G) on the left by

(a,f) = a0 f : Aut G x E(X,G) — E(X, G).

We shall denote the orbit space E(X,G)/AutG by A(X,G) and write [f] for the
orbit {0 f | « € Aut G). : ; ' ;
For two functions f, f' € E(X,G) we shall write f ~ f' if and only if
there is an automorphism a € Aut G such that pry | =xpry |[Fg X, and this is
tantamount to pry oevx = & o pryoevy, that is, to f' = ao f. Thus f ~f' is
equivalent to [f] = [f']. Hence ~ is none other than the orbit equivalence of the
. action of AutG on E(X,G). .
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For each F' € A(X,G) we select a function sp € F C E(X,G). Thus

[sF] = F and f ~ s{5. Hence for each f € A(X,G) thereis at least one ay € Aut G
such that

(5) ' f =ayo 3[!].
We define ex: X — GAX.®) py ‘
() ex(z)(F) = sp(z).

Then (5) implies

(f(=)) e = VX (Z) = Qevy(2) O S[ex(2)] = (af{slﬂ(x)})!es‘
If we define
px: GAXO) , GEXO) - o l(9r)reax.a) = (as(gtn)reex.6)
then

(7 evy = px oex.

In particular, ex: X — GA(X:6) is an embedding whenever evy is an embedding.
Now suppose that f:X — G is an essential map. Set f*:GAX.G)
G, f'((gF)FeA(x,G)) - af(g[ﬂ)- Then f‘(sx(:t)) - f.{(("F(z))peA(x,a)} =

ag(ss(z)) = f(z) in view of (6) and (5). We notice that the following diagram is
commutative.

X ., gMxay oY% amx0)
IT

[ |r

G —— G > G

idg ida

Now suppose that pj: GAX:G) 4 G, j =1,2 are two morphisms such that
M o0Ex = ppoex. At this point we assume that G is homomorphically simple.
Then Lemma 1.5 implies that there are automorphisms 8; € Aut G, j = 1,2 such
that pj = f; o pry;. Now B;pry, (ex(z))= Bj(sr(z)) by (6). Hence sp, cevy =
(B:'B1)skox and this implies sp, ~ sp,. Thus F} = [sp,] = [sp,] = F2. But
now, setting F = Fy, via (6) we find sp = ex(F) = prpex = (87 ' fi)prpevy =
(B7'B1)sr. Since sp € E(X,G), the subset sp(X) topologically generates G.

Thus 3, = B follows, and we have pu; = pp. Therefore, the following universal
property of GAX.) s proved:

2.11. Lemma. Let G be a compact connected homomorphically simple Lie
group, further X a compact pointed space with at least 3 points, and ex: X —
GAGX) the embedding defined by EB) Then for each essential function f: X — G
there is a unique morphism f*:GAX.C) 5 G such that f = f*oey. ©

Hence GA(X:9) is in fact the essential G-free compact group over X . This
immediately entails the following principal result for whose formulation we use the
embedding ex: X — GAX:9) of (6) and the injective morphism ¢x: GAX.G) _,
GE(X.G) of (3).
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2.12. Theorem. Let G be a compact connected homomorphically simple com-
pact Lie group and X a compact pointed space with at least 3 points. Then px
corestricts to an isomorphism Yx: GAGX) o Fo X such that x o =ex. ]

We now apply the structure information contained in this theorem to com-
pute the weight w(FgX)and the generating rank s(FgX) of the G-free compact
group.

2.13. Lemma. ]Jf G is a compact connecied nonsingleton Lie group and X a
pointed compact space with at least 5 points, then card E(X,G) = w(X )M,

Proof. If C(X,G) denotes the set of basepoint preserving continuous functions
X — G, then E(X,G) C C(X,G). Now card C(X,G) = w(X)e (see for instance
[10], Lemma 4.8, which uses [8]). We have seen in the proof of Lemma 2.8 that
G is topologically generated by two points a and b and noted that there is a
homeomorphism h of the unit interval | into G which induces an injection of
C.(X,1) into E(X,G) such that all functions f in the image satisfy a,b € f(X)
and thus are essential. Hence we have an embbeding of C.(X, 1) into E(X,G) where
C.(X,1) denotes the set of functions f: X — I with f(0) = 1/2, f(z;) =0, f(z2) =
1. Hence card C.(X,1) < card E(X,G). Let |, denote the figure 8 obtained by
collapsing the points 0, 1/2 and 1 into one point and X, the space obtained from
X by collapsing zo, z;, and z; into the basepoint. Then there is a surjection
C.(X,1) onto C(X,,1.) and thus card C.(X,1) > card w(X,)* = w(X)™ since .X
has at least 5 points. Hence w(X)" < card E(X,G).

2.14. Lemma. If X is a compact space with at least 5 points, then

card A(X, G) = w(X)*.

Proof.  Since the orbit map is a surjective function E(X,G) — A(X,G) we have
card A(X, G) < card E(X,G). Now AutG is a compact Lie group and contains all
inner automorphisms of G, whence card(AutG) = 2%, The orbits [f] therefore
have at most continuum cardinality. Thus card C(X,G) < 2% card A(X, G). Now
Aut G is a finite extension of the group Int G of inner automorphisms, and G has
a continuum of conjugacy classes, hence a continuum of Aut G-orbits F. f z € X
is different from the basepoint, for each F there is an fp € E(X,G) such that
fr(z) € F. Then {[fr] | F € G/AutG} is a subset of A(X,G) of continuum
cardinalty, whence card A(X,G) > 2%, Therefore card E(X,G) < card A(X, G)
and the lemma is proved. : L]
B

2. 15 Cofollnrf. Under the hypotheses of Theorem 213, lf X haa at lens! 5

points, w(FgX)=w(X), X wasiidin. ey w
Proof. We have w(FoX) = w(GAX.9) = card A(X,G) = w(X)Re by Lernmn"
2.14, . o s s vor, @

2.16.  Corollary. For each infinite cardinal R, thcm are compact connected
groups G with 3(G) <R, and w(G) = R = 5(G)No, ;
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Proof. Let X be the one point compactification of a discrete space of cardinality
R, based at co. Since ex(X) has cardinality R, and generates G = FsoX
topologically, we have s(G) < R,. By Corollary 2.15 we know w(G) = w(X)* =
RY°. From [10] we know w(G) < s(G)e.

We observe that s(G) < R, may occur in the preceding construction: Let
v =0. Then w(Fs0(3)X) = w(X)* = R§® = 2% Hence s(Fso(3X) =2 < R by
Theorem 4.13 of [10).

3. Supplements on subdirect products

The following result generalizes Remark 2.5.

3.1. Proposition. Let G be a compact connected simple Lie group which
is center free and J an arbitrary set. If S is a subdirect product in G’ and
if S is connected, then there is a surjective function o:J — I and a function
i aj:J — Aut(G) such that the morphism,

(3) ¢:6' =G, p((2i)ier) = (0j(20(9)) ey

maps G' isomorphically onto S.

Proof. We write 6: S — G for the inclusion and define a binary relation ~ on J
by writing j ~ k if and only if there is'an o € Aut(G) such that aopr; o6 = pryob.:
One observes at once that ~ is an equivalence relation. This allows us to set
I = J/~ and to define ¢:J — I as the quotient map. For each i € I let
Gi = G°7' with projections pr;;:G; — G for j € i, and let S; denote the
projecton of § into the partial product G; with &;: §; — G; the inclusion. Then
Si is a subdirect product in G; since S is a subdirect product in G7.

We claim that each morphism prj;06; : S; — L with j € i is an iso-
morphism; that is, S; behaves in G; like a diagonal, Indeed by the definition of
~, for each k € i we know k ~ j, and thus there is 2 B¢ € Aut(G) such that
pry 06 = Py o pr;0é. The morphism ¢j: L — G; defined by ¢;(z) = 8‘3&-1(3))&5!
is injective. Further, if (zx)rei € Si, then zx = fi(z;) for all k € i and
$i(Prji{(ze)rei}) = ¥i(zj) = (87 () 4e; = (za)rei. Since prjs(Si) = G, the
image of 1 is S;, and its corestriction to this image is an inverse of prj; 08;. This
proves the claim.

In particular, each S; is isomorphic to G. In other words, there is an
isomorphism v;: L — ;. For each j € J we define

(4) aj:G =G, @ =prjy(j) o%o(s)-
Th_é map : G — given by
e((ziier) = (aj(e(p) s,
= (Prioti) (Yoi(2o()}) je s

is clearly an injective morphism of compact groups. Hence it is an isomorphism
onto its image.
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We claim that this image is 5. A proof of this claim will finish the proof of
the proposition. Firstly, we observe that im¢ = [];.; Si where we have identified
G’ and [];; Gi in the obvious fashion. Clearly 5 C [lier Si, and we have to
show equality. This product is subdirect by the definition of S; and each S; is
isomorphic to G. If i # ¢' in I, then there is no isomorphism p: §; — Si» such
that pry |S = popr;|S, for such a p would give us for j € ¢ and j' € ¢/ an
@ € Aut(G) given by a = (pr;; |Si)~?p(prj; such that pry |S = Prjye /(pry |S) =
pryin p(pr;|S) = aprji(pr; |5) = a(pr; |S), and this would 1mp]y J ~j', that is,
t =1' contrary to the assumption.

Hence in order to prove our last claim, in simplified notation, we have to
prove that for a subdirect product S € G’ we have § = G” if the relation ~ on
J is equality. Let E denote any finite subset of J and Sg the projection of S into
GE. Then Sg is a subdirect product of G and the relation ~ on E is likewise
trivial. If these circumstances imply Sg = G¥ for all finite subsets E of J, then
5 = G7 follows, since GY is the projective limit of its projections onto all finite
partial products.

Tharefore it suffides to prove the claim when J is finite. We assume that
the claim is false and derive a contradiction. Let us assume that S C G" is a
counterexample to the claim with a minimal natural number n. Evidently, n > 2.
The projection 5* into G"~! (after identifying G® with G™! x G) satisfies all
hypotheses and cannot be a counterexample. Thus §* = G"~!, If we denote by
F = G the subgroup {1} x G in G"! x @, then we have an exact sequence

1—>..S'ﬂF——>S£hG’“‘1—b1

Since § = G™ for some m by Lemma 2.5, m > n— 1. If m = n, then
dimS = dimG" and S = G contrary to our assumption. Thus § = G"!.
Accordingly, L() is an isomorphism and thus 7 a covering morphism. Now Lemma
1.2 implies that # is an isomorphism and thus SN F = {1}, Now S C G*! x G
is the graph of a morphism 8:G*~! — G and since § is subdirect, § is surjective.
We use Lemmas 1.3 and 1.5 to conclude, that & is a projection of G"~! followed by
an automorphism « of G; let us say that the projection maps onto the last factor
of G"1. This means that S = {(L,...,1,8,a(s)) | s € G} CG". f p:G" = G
is the projection of G™ onto the next to last factor and ¢ the projection on the

last factor, then & o p|S = ¢|S in violation of our assumption. Ti'us contradiction
completes the proof .

- T R‘em'ark IfscP=I]] EJG, is a subdirect product of compact
connected semisimple groups Gj, then go is the identity component Sy of §.

Proof. If pr;: P — Gj is the projection, then N; = prJ(Su) is 2 normal subgroup’
of G;. If N; 7!: Gj, then N; is contained in the ﬁmte center Z; of G;. Then the
sur_]ectwe pro;ectmn pr;|S: S — Gj gives us a surjective morphism S5/S, — 'G}/Z;.

Since 5/Sq is compact zero dimensional, the image of this map is a compact zero
dimensional subgroup of a Lie group hence is finite. But if G; i/Z; is infinite since
Nj # G;. This contradiction shows that N; =Gj. ’ . L
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