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As the second step in understanding the structure of free compact groups, the center Z of a 

free compact group FX on a compact space X is here discussed. In particular, we shall show 

that Z is contained in the identity component (FX), and that Z is related to the free compact 

abelian group F,X on X, which group we studied extensively in the first of this series of articles. 

Indeed, if F’X denotes the closure of the commutator subgroup of FX, it is shown here that the 

function z++z(FX): Z,+ F,X = FX/F’X is a projective cover (in a sense previously specified); 
its kernel Z,n F’X has the character group Q/Z0 H’(X, Z). If X is connected and H’(X, Z) is 
divisible, then the free compact group is the direct product of its commutator subgroup and the 

free compact abelian group. 
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0. Introduction and overview 

This is the second paper in a sequence which exposes the structure of free compact 

groups. (For an overview of our study of free compact groups, see [3].) In [5] we 

completely described the structure of free compact abelian groups. For example, 

we showed that if X is an infinite compact connected metric space, then the dual 

group of the free compact abelian group on X, FOX, is topologically isomorphic to 

the direct sum H’(X, Z)O G, where G is a rational vector space of dimension 2No 

and H’(X, Z) denotes the first Alexander-Spanier cohomology group. We now 

describe the structure of the center, ZFX, of the free compact group, FX on X, and 

determine how far it is from the free compact abelian group. We find, for example, 

that if X is an infinite compact connected space such that H’(X, 2) = {0}, then 
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ZFX = F,X and FX is topologically isomorphic to F,X x F’X, where F’X denotes 

the commutator subgroup of FX. 

For the sake of easy reference, we record the relevant definitions. A free compact 

group over a topological space X with base point x,, is a compact topological group, 

FX, together with a continuous function e, :X + FX mapping x0 to the identity 1 

of FX such that the following universal property is satisfied: For every base point 

preserving continuous function f: X + G into a compact topological group G (with 

1 as its base point) there is a unique continuous group morphism f’: FX + G 

satisfying f = f ‘e,. (All topological spaces and topological groups we consider are 

assumed to be Hausdorff.) If TOP0 denotes the category of topological spaces and 

base point preserving maps, and if KG is the category of compact groups, then 

F : TOP0 + KG is the left adjoint of the grounding functor 1 I: KG + TOP,, associating 

with a compact group G its underlying space /G] with base point 1. 

Our primary interest will be with connected spaces X; under these circumstances 

FX will be connected. Some of our results do pertain to the general situation. 

To bring our strategy into focus we now proceed to some category theoretical 

remarks and then general observations on the structure of general compact connected 

groups. 

Several adjoint situations are nearby. Firstly if COMPo denotes the category of 

compact spaces with base points and base point preserving continuous functions, 

then the inclusion function COMPo + TOP0 has a left adjoint /3 : TOP0 + COMP,, , 
the Stone-Tech compactification. This functor is a retraction, and F : TOP0 + KG 

factors through p. In fact, if b, :X+/3X is the unit of this adjunction, then 

e, = epxbx and epx is a homeomorphic embedding. (See [5, Remark 1.4.21, where 

this is proved for F, in place of F, the proof is verbatim the same. Also see [3, 

Proposition 141. Therefore, without loss of generality, we can and shall restrict our 

attention to pointed compact spaces X. Further, we shall regard X as a subspace 

of FX. 

If G’ denotes the closure of the commutator subgroup of the compact group, G, 

then the functor GH G/G’ is left adjoint to the inclusion functor KAB + KG of the 

category of abelian groups into the category of compact groups. The group 

FX/(FX)’ is called the free compact abelian group and is denoted F,X. Our paper 

[5] was devoted to a complete description of Fax, we can and shall, therefore, 

consider the strucuture of F,X as known. We are consequently faced with the 

problem of determining the group (FX)‘, the closure of the commutator subgroup, 

and an extension problem 

O+ (FX)‘+= FX+ F,X-*O. (1) 

If Go denotes the identity component of the compact group, G, then G++ G/Go is 

left adjoint to the inclusion functor KZG +KG of the category of compact O- 

dimensional groups into the category of compact groups. The group FX/( FXk, is 

called the free compact zero-dimensional group or the free projinite group and is 

denoted F,X. For free profinite groups there is a rather detailed theory due to 
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Mel’nikov [7]. If X is connected, then F,X = (1). We shall show in our preliminary 

results that the exact sequence 

O+(FX),-+ FX-, F,X+O (2) 

splits in KG; that is, FX is a semidirect product (FX), X, F,X. Here the extension 

problem is comparatively simple, but we are still left with the determination of (FX), . 

This brings us to the question of the structure of compact connected groups. For 

easy reference, we collect some background information on compact groups in the 

following theorem. 

0.1. Theorem. Let G be a compact connected group and Z = Z(G) its center, 2, = 

Z,,(G) the identity component of its center. Then we have the following conclusions. 

(a) The algebraic commutator subgroup of G is closed. 

(b) G = Z,G’. Specijcally, there is an exact sequence of compact groups 

P 
O+Z,,nG':ZoxG'-, G--O (3) 

with a(z) = (z-l, z), p(z, k) = zk, and with a zero-dimensional group Z,, n G’. 

(c) There is a closed abelian subgroup A in G such that G = G’A and G’ n A = (1). 

SpeciJically, there is an isomorphism of compact groups 

/.L:G’x,A+G, 

p(g, a) = ga, where G’ X, A denotes the semidirect product with respect to the 

action of A on G’ by inner automorphisms. In particular, A = G/G’. 

For a proof of (a), (b), and (c) see [l] and for a proof of(d) see [2]. 

From the exact sequence (3) we immediately derive an exact sequence of compact 

abelian groups 

incl 

O+Z,nG’--+Z,,- ’ G/G'-,0 (41 

with p’(z) = zG’. Thus putting G = FX, the free compact group on the pointed space 

X, we obtain a close connection between the free compact abelian group F,X (which 

we know very well) and the identity component Z,,FX (which we have yet to 

determine), namely, the connection expressed by the exact sequence (in which we 

write F’X for (FX)’ 

0 + Z,,FX n F’X -+ Z,FX + F,X + 0. (5) 

It is, therefore, of basic importance to know Z,,FX and Z,,FX A F’X. Of course, 

the structure of F’X remains to be determined according to Theorem 0.1(b). We 

shall address this question in a later paper in order to be able to concentrate here 

on the center of ZFX. 

In order to analyze exact sequences like (4) and (5) we have to recall from [5] 

the concept of a projective cover of a compact abelian group, and the concept of 



218 K.H. Hofmann, S.A. Morris / Free compact groups 

a characteristic sequence of G. If GA denotes the character group of G and 

dG : G” + QO G” the natural map given by dG( p) = 1 Op, then ker d, = tor GA (the 

torsion subgroup of G”) and coker dG is a torsion group. The projective couer 

pg : PG + G of G is the dual of dG, sometimes the group PG = (QO GA)” is called 

the projective cover of G. If we set AG = (coker d,)^ and note that G/G0 = (ker dG)n 

we obtain the characteristic sequence of G 

dl3 
O+AG+PG- G-+ G/G,-,O. (6) 

Characteristic sequences are discussed in [5, Chapter 2, 0 2.2.1 In particular, the 

characteristic sequence of a free compact abelian group F,X is well understood 

(see [5, Theorem 2.2.4 and Corollaries 2.2.5 and 2.2.61). From there we have 

PF,X = C(X, 03)” naturally, and for a connected compact space X with at least two 

points, the characteristic sequence of F,X is 

O+(Q/Z@H’(X,Z))^-+ PF,X--, F,X+O. (7) 

One of the main results of this paper will be that (5) is the characteristic sequence 

of F,X; that is, it is equivalent to (7). One immediate consequence of this will be: 

0.2. Proposition. Let X be a compact connected space with a least two points and 
suppose that (Q/Z@H’(X, Z))’ = (0). Then 

FX = F,X x F’X. 

We make the following observation. For any abelian group A, we consider the 

exact sequence 

O-,divA-,A+A,,,+O 

where div A denotes the maximal divisible subgroup of A and where Ared is defined 

by the exact sequence. This sequence induces an isomorphism 

Q/Z@A+Q/ZOA,,,. 

Hence 

Q/Z@ H’(X, Z) = Q/Z@ H’(X, Z)red. 

Hence the divisibility of H’(X, Z) suffices for the conclusion of Proposition 0.2. 

However, we shall prove more. Indeed, we shall elucidate the structure of Z,,FX = 

the identity component of the center of ZFX for arbitrary spaces X. For this purpose, 

we prove a theorem on the structure of general compact groups which, as far as we 

know, is new and is of independent interest. This theorem is a generalization of the 

well-known fact that a compact connected group is nearly the direct product of the 

identity component of its center and its commutator subgroup; namely, Theorem 

0.1 (b). 
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0.3. Theorem. Let G be a compact group, Z its center, and G’ the closure of its 

commutator subgroup. Then we have the following conclusions: 

(a) 2 n G’ is zero-dimensional (hence so is Z, n G’). 

(b) Go = (ZG’), = Z,( G’)o. 

0.4. Remark. Let G be a compact group as in Theorem 0.3. Set G, = G/G’ and 

G,= G/Go. Also set G,,= (G,),. Then 

(i) (G& = G’GJ G’, 
(ii) (G,)‘= G’Go/GO, 

(iii) (G,), = (G,), = G/ G’Go, naturally. 

Proof. The conditions (i) and (ii) follow from the fact that within the category of 

compact groups surjective morphisms map components onto components and 

closures of commutator subgroups onto closures of commutator subgroups. Then 

(G,),= G,/(G,),= (G/G’)/(G’G,/G’)= G/G’G,=(G/G,)/(G’,/G,) 
= G,/( G,)‘. q 

From Theorem 0.3 and Remark 0.4 we shall easily deduce the following: 

0.5. Corollary. Under the conditions of Theorem 0.3 

(a) (G/G’),= G,G’/G’=Z,,G’/G’=ZO/(Z,,n G’). 

(b) The morphism 5 = (z H zG’) : Z,+ G/G’ is embedded into an exact sequence 

incl 5 
OdZ, n G’ 

quo, 
-Z,,+ G,- G,,+O. (8) 

Now we specialize the situation of Theorem 0.3 to the case that G is the free 

compact group FX over an arbitrary pointed compact space X which does not have 

two components. We then write Z,,FX for Z,, further F’X = G’ and F,X for G,, 

finally F,,X for G,,. 

The principal result for free compact groups in this paper is the following theorem. 

0.6. Theorem. The exact sequence 

incl 
O+Z,,FZnF’X- Z,,FX -E, F,X = F,,X+O (9) 

is the characteristic sequence of F,X. 

This has a number of immediate consequences in view of our precise knowledge 

of F,X. 

0.7. Corollary. 
(a) The identity component Z,,FX of the center of the free compact abelian group 

is the projective cover PF,X of F,X. 

(b) Z,FX n F’X is isomorphic to the character group of Q/Z@ H’(X, Z). 
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We recall, further, that the character group of F,,X is isomorphic to Q/Z@ 

C,,(X, Z), where C,, indicates the group of finitely valued locally constant functions. 

These results completely clarify the role of the identity component, &,FX of the 

center of FX. Our knowledge of the center itself includes the following information. 

0.8. Proposition. The center ZFX is contained in the identity component F,,X. 

Moreover, FOX. F’X = ZFX. F’X and ZFX n F’X is zero-dimensional. The torsion 

.subgroup of ZFX is contained in F’X. 

We do not know whether this torsion subgroup is in fact dense in ZFX n F’X. 

This is, nevertheless, true if X is connected. 

1. On the center and the commutator subgroup of a compact group 

The purpose of this section is to establish a general structure theorem for compact 

groups, namely Theorem 0.3 of the Introduction and its Corollary 0.5. 

We begin with a structure theorem for compact Lie groups. 

1.1. Theorem. Let G be a compact Lie group, L(G) its Lie algebra, Z its center, and 

G’ the closure of its commutator subgroup. Then L(G) = L(Z) CD L( G’). 

Proof. Let Ad: G + Aut L(G) be the adjoint representation of G on L(G). Then 

L(Z) is exactly the fixed vector space for Ad (G). Since G is compact, L(G) splits 

into a direct orthogonal sum of the fixed vector space L(Z) and its orthogonal 

complement V relative to an Ad (G)-invariant inner product. This inner product 

is also ad L( G)-invariant, where ad: L(G) += Der L(G) is the adjoint representation 

of L(G). Therefore, since L(Z) is an ideal of L(G), the vector space V is also an 

ideal of L(G). 

From the representation theory of compact groups we know that the orthogonal 

complement V of the fixed vector space is spanned by the elements of the form 

Ad(g)(X) -X, g E G, X E L(G). But if we write 

x * y=x+ Y+;[X, Y]+* * * 

for all sufficiently small X, Y then we know exp(X * Y) = exp X exp Y as well 

as X+ Y=lim n((l/n)X * (l/n)Y). Thus we deduce Ad(g)(X) -X = 

lim n((l/n) Ad(g)(X) * (l/n)(-X)); that is, 

exp t(Ad(g)X-X)=lim expfAd(g)(X) .expi(-X) 
> 

n 

for all ge G, XE L(G) and all tell. 
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It follows that Ad(g)(X) -X E L( G’) for all g E G and all X E L(G). Hence VS 

L( G’). If we can show the converse inclusion L( G’) c V, we are finished. 

We first observe that L(Z(G,)) and L(Gb) are orthogonal and that Z(G) G 

Z( Go). Thus L(Z( G)) E L(Z( Go)). H ence L(GA) E V In order to prove L(G’) E V, 

it suffices to prove this claim for the group G/G; in place of G; thus we assume 

from now on that Gh = {l}, that is, that G,, is abelian. Then exp: L(G) + G is a 

morphism and thus exp(Ad(g)(X) - X) = g(exp X)g-‘(exp X)-l. Hence exp V= 

[G, G,] (the group algebraically generated by the commutators ghg-‘h-l with g E G 

and h E G,). We claim that exp V is closed. To see this, let F be the kernel of exp. 

Since Go = im exp is a torus, F is a free subgroup generated by elements e, , . . . , e, 

forming a basis of L(G). Since Z is closed, we can assume that e, , . . . , e, were 

chosen in such a fashion that they form a basis of L(Z). Then 

V=span{Ad(g)(ej)-ej:j=l,...,n;gEG} 

=span{Ad(g)(e,)-ej:j=m+l,...,n;gEG) 

since Ad(g)(X) = X for X E L(Z). Now Ad(G) leaves F invariant, and hence 

Ad(g)(ej)-e,EF for j=l,..., n. Thus spanz{Ad(g)(ej) - ej: j = M + 1,. . . , n; g E 

G} c F n V. It follows that span( F n V) = V We conclude that exp V = V/( V n F) 

is compact, hence closed. Finally, there is a finite subgroup E in G such that 

G = GOE (see [6]). Hence [G, G] = [G,,, E][E, E], since G, is abelian. Thus exp V = 

[GO, G] = [GO, E] has finite index in [G, G], and thus exp V = [G, G],. Also, this 

implies that [G, G] is compact, and hence is the closed commutator subgroup G’. 

Then V= L(G’), which is what we had to show. 0 

1.2. Corollary. Let G be a compact Lie group, Z its center, and G’ the closure of its 

commutator subgroup. Then 

(i) Z n G’ is discrete, and 

(ii) Go = Z,,GA. 

We now generalize Corollary 1.2 to the case of arbitrary compact groups, and so 

obtain Theorem 0.3 of the Introduction. 

1.3. Theorem. Let G be a compact group, Z its center, and G’ the closure of its 
commutator subgroup. Then 

(i) Z n G’ is zero-dimensional, and 

(ii) G, = Z,,G& 

Proof. We know that G is a projective limit of compact Lie groups G/N, where N 

ranges through a filterbase X of compact normal subgroups converging to 1. The 

center Z(G/ N) of G/N contains ZN/N and the closed commutator subgroup 

(G/N)’ of G/N is GIN/N. Since quotient morphisms of locally compact groups 
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map components onto components, the identity component of Z n G’ is mapped 

onto 

(ZnG’),N/N=((ZnG’)N/N),=(ZN/NnG’N/N), 

E (Z( G/ N) n (G/ IV)‘)0 by the above remarks. 

Hence, if the last group is singleton for all N, then Z n G’ is singleton. Thus, in 

order to prove (i), it suffices to establish this claim for any compact Lie group, but 

this was indeed established in Corollary 1.2. 

Claim (ii) also has been established for the Lie group case, and hence (G/N),s 

Z(G/N)(G/N)‘, for all IV. This means that (G,N)/NGZ(G/N)(G’N)/N; that 

is, G,c Z,G’, where Z, is the complete inverse image of Z( G/N) in G. It then 

follows that 

Go E l-J { Z,G’: N E X} 

=(n{Z,: NEX})G’ 

(by the compactness of G’, and since {Z,: N E IV} is a filter base) 

= ZG’, since Z = n{ Z, : N E X}. 

This shows that Go E ZG’. Then clearly G,, c (ZG’), = Z,G& E Go, and so G,, = Z,G& 

as asserted. q 

Remark. If we specialize Theorem 1.3 to the case of a connected compact group, 

G, we recover a classical result (see Theorem 0.1.(c)). If G is not connected, this 

result still applies to G,, and yields: 

Go= Z,(G,)(G,)’ (*) 

with Z,(G,) denoting the identity component of the center of G,,. On the other 

hand, Theorem 1.3 gives 

Go= Z,(G)(G’),. (**) 

Observe that Z,(G) E Z,( G,), while ( Go)‘s (G’),. So (**) cannot be deduced from 

(*). Indeed, it is quite possible that Go is abelian, while Go = (G’). and Z,(G) = {0}, 

whereas Z,( G,) = G, and (G,)’ = (0). Similar remarks apply to the zero-dimension- 

ality of Z n G’. 
As a corollary to this theorem we deduce the following result (Corollary 0.5 of 

the Introduction) which we shall exploit in our investigation of the free compact 

group, where the exact sequence obtained will be the characteristic sequence of the 

free compact abelian group. 

1.4. Corollary. Let G be a compact group, Z its center, and G’ the closure of its 

commutator subgroup. Then the groups Z n G’ and G/ZG’ are both zero dimensional, 

and there are exact sequences of compact abelian groups 

O+ Z,,n G’-+ Z,- G/G’= G,-, G,/(G,),+ 0, (11) 

O+ZnG’+Z+G,+G/ZG’+O, (12) 
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Proof. (i) By Theorem 1.3, we have Go E ZG’; by hypothesis, ZG’ E GoG’, so 

G,,G’ = ZG’. By Corollary 0.5, this implies G,, = G/ZG’. 

(ii) Clearly, Z,,(Z n G’) E Z. Now let z E Z. Then z E G,c_ Z,G’ by 1.3. Hence, 

z = zOg with Z~E Z,, g E G’, whence g = zz,’ E Z n G’ and thus z E Z,(Z n G’). 

Trivially, Z,, n G = Z, n (Z n G). 
(iii) This follows by duality from the exactness of the sequences (11) and (12) 

in Corollary 1.4. Cl 

We observe that the exact sequence (11) of Corollary 1.4 is a good candidate for 

the characteristic sequence of G,. 

1.6. Lemma. With the notation of Proposition 1.4, the following conditions are 

equivalent: 

(I) The exact sequence (11) is the characteristic sequence of G,. 

(II) 77re group Z,” is divisible. 

(III) For each ,y E im lA E Z,^ and each natural number, n, the element has an nth 

root in Z,^. 

(IV) For each continuous morphism $ : G + U( 1) and each natural number, n, there 

is a character C#J : Z,+ U(1) such that the diagram 

commutes with p,,(z) = z”. 

Proof. In order to see the equivalence of (I) and (II) we observe that the exact 

sequence (11) is the characteristic sequence of G, if and only if Z, is projective in 

the category of compact abelian groups, and this holds precisely when its character 

group Zg is divisible or, equivalently, Z, itself is torsion free. (See [5, Remark 

2.1.21.) Trivially, (II) implies (III). We now show the converse implication: The 

exact sequence 

O+ZOnG’+Z,,+ G, 

has the following exact sequence as dual: 

O*Z,-,nG’^+Z,^+G,^. (12) 

By Theorem 1.3, the group Z, n G’ is zero-dimensional. Hence its character group 

Z, n G”’ is a torsion group. From this and the exactness of sequence (12) it follows 

that every element of Z, has some power in im CA. In order to prove (II), we let 

x E Z,” and let n be a natural number. Then there is a number m such that x”’ E im 5”. 

By condition (III), there is a 4 E Z, such that 4,” = xm. Since Z, is torsion free, 

4” = x follows. 
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Now we show that the conditions (III) and (IV) are equivalent. If q : G + G, = 

G/G, denotes the quotient map, then every $ : G + U(1) factors uniquely through 

q, since U( 1) is abelian. Because q 0 incl = 5 with incl : Z,+ G, condition (IV) is 

equivalent to saying that for every character x : G, -+ U( 1) and every natural number 

n there is a character 4 E 2, such that x 0 i’= 4”. But this statement is exactly 

condition (III). 0 

1.7. Lemma. 7’he conditions (I) through (IV) of Lemma 1.6 are implied by thefollowing 

condition 

(III*) If 5: 2 + G, is given by l(g) = gG’, then for every element x E im x” E ZA 

and every natural number n then element x has an nth root in ZA. 

This condition in turn is implied by 

(V) For each morphism $: G + U(1) and each natural number n, there is an 

irreducible representation rr : G + U(n) such that +(g) = det n(g) for all g E G. 

Proof. Trivially, (III*) implies (III). Now we show that (V) implies (IV*), where 

condition (IV*) arises from condition (IV) simply by replacing Z, by Z throughout. 

Since the equivalence of (III*) and (IV*) follows exactly as in Lemma 1.4, this will 

prove our assertion. Suppose that a morphism II, : G * U( 1) and a natural number 

n are given. Let n : G+ U(n) be the irreducible representation according to (V). If 

g E Z, then by the irreducibility of rr and Schur’s Lemma, r(g) is of the form 4(g)& 

with the n x n identity matrix E, and a complex number 4(g). Now 4: Z+ U(1) 

is a character, and for g E Z we have det r(g) = 4(g)“, as asserted in (IV). Cl 

In the next section we shall show that the lifting condition (V) is indeed satisfied 

by free compact groups. 

The situation of condition (V) is illustrated in the following diagram: 

2. The center of a free compact group 

In order to prove Theorem 0.6 of the Introduction we now verify condition (V) 

of Lemma 1.7 for the free compact group G = FX. 
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2.1. Lemma. Let G = FX be the free compact group on a compact space X with a base 

point and at least two further distinct points a and b. Then condition (V) of Lemma 

1.7 is satisfied. 

Proof. Let s: U(l)+ U(n) be defined by s(z) =diag(z, 1,. . . , 1). Thus 

(i) det’s(z) = z. 

The group S/l(n) is topologically generated by two elements g and h (see for 

example [S, Proposition 41). Since SU(n) is path-connected there is a continuous 

function fO: X + SU( n) such that 

(ii) fo(a) = gsMa))-‘, f,(b) = hs(x(b))-‘. 
Now let f(x) = fO(x)s(x(x)). Then 

(iii) detf(x) =x(x) by (i), and 

(iv) f(a) = g, f(b) = h by (ii). 

By the universal property of F, there is a representation rr : FX + U(x) with 

(v) 7rlx =f: 

Then 7r (FX) contains SU( n), since {f(a), f (b)} topologically generates SU( n ). 

Hence rr is irreducible. By (iii) and (iv), however, det 0 7r and x agree on X, hence 

+(g) = det r(g) for all g E FX, which was to be shown. 0 

This information gives us Theorem 0.6 of the Introduction, the major result of 

this paper for free compact groups. 

2.2. Theorem. For any compact space X the following sequence is the characteristic 

sequence of the free compact abelian group, F,X: 

0 + Z,,( FX) A F’X + Z, (FX) 5 F,Z + F,, + 0, (13) 

where Z,,(FX) is the identity component of the center of the free compact group, FX, 

where F’X denotes the closure of the commutator subgroup of FX, where F,X = 

FX/ F’X and F,,X = F,X/( F,X),, and where C(g) = gF’X. 

Proof. If X has at least three points, then by Lemmas 2.1 and 1.6 and Corollary 

1.5 the proof is completed. If X has one point, then all groups in sight are singleton, 

and the assertion is true by default. There remains the case of two points. Then FX 

is abelian and thus agrees with the free compact abelian group F,X. In this case, 

F’X = (0) and Z = FX, whence Z, = (F,X),, and the sequence in question becomes 

O+ (F,X),+ F,X ---, F,,X + 0 

which is the characteristic sequence of F,X by [5,2.2.4 (ii)]. 0 

In [5] we have a complete structure theory of F,X and all terms of the characteristic 

sequence of F,X. Now we have obtained the characteristic sequence (13) of F,X 



K.H. Hofmann, S.A. Morris / Free compaci groups 227 

starting from the free compact group FX. This allows us now to clarify the structure 

of all terms of (13). 

2.3. Theorem. ne character groups of the terms of the sequence (13) are given by 

(i) (ZdFX) A F’X)^ = Q/ZOH’(X, Z) = Q/ZOH’(X, Z)red. 
(ii) &(FX)^ = C(X, Q) G (Q”)max(2Ko~“‘(X)Ho)~ 

Proof. For Part (i), see [5, Theorem 2.2.41, for Part (ii) see [5, Theorem 2.2.4, Remark 

2.2.5, and Theorem 1.5.4(ii)]. I? 

Remark. The structure of F,X and F,,X are precisely described in [5], notably in 

Theorem 1.5.4, and Corollary 1.5.3(n), respectively. For instance (F,,X)” = 

G&X, Q/z). 

Lemma 2.1 gives more. Indeed let us first record the following fact on the duality 

of abelian groups: 

2.4. Definition and Remark. Let A be a (discrete) abelian group and G = A” its 

dual group. For a subgroup B of A, let BL denote its annihilator in G. Let D(A) 

denote the subgroup of all divisible elements of A; that is, all elements a E A for 
- 

which the equation n . x = a is solvable in A for all n E Z. Then, if tor( G) denotes 

the closure of the torsion subgroup of G, we have 

i;;;(G) = D(A)I. 

Now we utilize Lemma 2.1 to record the following result: 

2.5. Theorem. If 5 : ZFX + F,X is as in Theorem 2.2, then 

G(Z) c Z n F’X. 

Proof. We let 4”’ denote the dual of 5. Then a character X: Z+ U(1) of Z is in 

l^(F,X) if and only if there is a morphism $: FX + U(1) such that x = $I )Z. 

Condition (V) of Lemma 1.7 clearly states for G = FX that every element of C”( F,X) 

is a divisible element in Z”. Thus 

l’(F,X) s D(Z^). 

But by the exactness of sequence (13) of Theorem 2.2, we have 

lA( F,X) = (Z n F’X)I. 
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Consequently, we have 

(2 n F’X)l& D(Z^). 

By duality, the claim of the theorem follows. 0 

2.6. Theorem. If in addition to the hypothesis of Theorem 2.5, X is connected then 
- 
tor( Z) = Z n F’X. 

Proof. If X is connected, then FX is connected and F’X is semisimple. Then 

Z n F’X is the center of a compact connected semisimple group; that is, there is a 

surjective morphism S+ FX, where S is a direct product of a family of simple 

simply connected compact Lie groups. Since the center of a compact semisimple 

Lie group is finite, ZS has a dense torsion subgroup. Consequently, ZF’X = Z n F’X 
- 

has a dense torsion subgroup. Thus Z n F’X G tar(Z). But the converse containment 

follows from Theorem 2.5. Hence the theorem is proved. 0 

- 
2.7. Open Question. Does tar(Z) = Z n F’X hold for all compact pointed spaces X? 

We shall now show that the center, Z, of a free compact group, FX, is contained 

in the identity component, FOX, of FX. For this purpose, recall that F,X = FX/F,X 

is the free compact zero-dimensional (that is, profinite) group over the compact 

pointed space X (see [3]). The following is an observation of a category theoretical 

nature (see [3, Proposition 1.4(iii)]). 

2.8. Proposition. For a compact space X, let X/corm be the zero-dimensional space 

of all components ofX. Then the quotient map yx : X + X/corm induces an isomorphism 

Fzyx : F,X + F(X/conn). 

Proof. Let nx : X + F,X be the front adjunction. Since F,X is a zero-dimensional 

space, nx factors through yx :X + X/corm; that is, there is continuous function 

4 : X/corm + F,X such that qx = 4yx. By the universal property of F,(X/conn) 

there is a unique morphism 4’: F,(X/conn)+ F,X such that 4’yx,conn = 4. Now 

77x = 4Yx = 4J’~x,connYx = 4’( Fy, ) qx. By the uniqueness in the universal property, 

this implies +‘(Fyx) = id, and since Fy, is surjective, this proves the claim. 0 

The following result appears in [4]. The work of Mel’nikov [7] contains a more 

general result for a more special class of spaces, namely, one point compactifications 

of discrete spaces. 
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2.9. Theorem. Let X be a compact pointed space with at least three points. Then the 

center Z of the free compact group FX is contained in the identity component F,X. 

Proof. First we note that it suffices to show that the center of the free compact 

zero-dimensional group F,X is singleton; for ZF,X/ F,X is contained in the center 

of F,X. The proof of this claim is by contradiction. We assume that F,X contains 

a central element z0 # 1. Then we find a finite quotient q: FX + G with z = q(z,) # 0. 

If we denote q(e(X)) by Y, then Y is a generating set of G. The next step utilizes 

a familiar lifting technique based on the universal property of F,X. 

Claim 1. Let E be a finite group and p: E + G a quotient morphism. If s: Y + E 

is any function satisfying ps = id y, then there is a unique morphism Q : FX + E with 

pQ = q. The subgroup im Q of E is generated by s(Y) and centralizes Q(z,,). 

Proof of Claim 1. By the universal property, the function sqe: X+ E determines 

a unique morphism Q : FX + E with Qe = sqe. Then pQe =psqe = qe, and by the 

uniqueness aspect of the universal property, pQ = q follows. Since FX is topologi- 

tally generated by e(X) and since E is discrete, the group im Q is generated by 

Q(e(X)) = sqe(X) = s(Y). Since z0 is central in FX, then z = Q(z,,) is central in 

im Q. This completes the proof of Claim 1. 

Our objective is to obtain a contradiction by choosing the parameters E and s. 

For this purpose we consider a finite-dimensional vector space M over a finite field 

K and assume that G operates linearly on M on the left. Then M is a G- and a 

K (G)-module, where K(G) is the group ring of G over K. We take for E the 

semidirect product E = M X, G; that is, the Cartesian product with the multiplication 

(m, g)( n, h) = (m + gn, gh). The first application results from taking M = K(G) with 

multiplication on the left as the action. 

Claim 2. For each y E Y there is a natural number a with a y* = z. 

Proof of Claim 2. We apply Claim 1 with E = K(G) x, G, and p = prZ: E -+ G; 

furthermore we take s : Y + E to be defined by s(y) = (1, y) for all y E Y. If we write 

Q(zO) = (c, z) and recall that (c, z) is centralized by im Q, hence in particular 

commutes with all elements (1, y), we obtain (1 + yp, yz) = (1, y)(c, z) = (c, z)( 1, y) = 

(c + z, zy), whence 1 + yc = c + z. This may be written as 

I-z=(l-y)c for all yE Y. (14) 

In the group ring K(G) the element c is of the form C rg. g with rg = r(g) E K and 

the summation extended over all g E G. One observes that the relations (14) then 

are equivalent to the equations 

(i) r(y-‘) = r( 1) - 1, 

(ii) r(y-‘z) = r(z) + 1, (1% 

(iii) r(y-‘g) = r(g) for all g # 1, z, yE Y. 

Assume now that the claim is false. Then we would find a y E Y such that no power 

of y equals z. We consider the coefficients r(g) for g in the cyclic subgroup 



230 K.H. Hofmann, S.A. Morris / Free compact groups 

(1, y-i, y-*, . . . ) y-“+I >, where n is the order of y. From (15)(i) and (iii), we conclude 

inductivelythatr(y-“)=r(l)-lform=l,..., n and thus arrive at the contradiction 

r(1) = r(y-“) = r( 1) - 1. This proves Claim 2. 

In order to conclude with a contradiction, after Claim 2 it suffices to find a finite 

quotient map Q : FX + H such that Q(z,J is not contained in the subgroup generated 

by some y E Q(e(X)). 

Claim 3. The group FX is nonabelian and q : FX + G is a nonabelian finite 

quotient with z = q(z,) f 1. Apply Claim 1 with E = K(G) x, G and p = pr,: E + G 

and with s : Y -+ E defined by s(y) = (0, y) for all y E Y with the exception of one 

u E Y for which we define s(u) = (u, u). Then H = im Q is a finite quotient of FX 

with the property that for at least one generator Q(e(X)) of H the element Q(zO) 

is not in the subgroup generated by Q(e(x)). 

Proof of Claim 3. Since FX is nonabelian, there are finite nonabelian quotients 

G of the required sort. Moreover, the generating set Y has to contain, outside 1 

and U, at least one other element u. Suppose now by way of contradiction, that 

Q(z,) = (c, z) equals So = (0, 0)” = (0, u”) f or some natural number a. By Claim 

1,then(u,u)=s(u)commuteswith(c,z)=(0,v”),whence(u,uu”)=(u,u)(O,v”)= 

(0, u’)(u, u) = (u%, u”u). This implies u% = u and thus ua = 1, which entails z = 1 

in contradiction with the choice of q. Thus any x with e(x) = u satisfies the conclusion 

of Claim 3. 

By the remark preceding Claim 3, and since X has at least three points and FX 

is therefore nonabelian, the proof of the Theorem is now complete. 0 

By Corollary 1.5 we now obtain the following result. 

2.10. Theorem. For any compact pointed space X, the following conclusions hold: 

(i) (ZFX)(F’X)=(F,X)(F’X); that is, F,,= FX/(ZFX)(F’X). 

(ii) (ZFX) = (Z,,FX)(ZFX n F’X),(Z,FX) n F’X = (Z,FX) n ((ZFX) n F’X). 

(iii) F,X is a direct product of Z,( FX) and F,X n F’X tf and only if H’(X, Z) is 

divisible. 

Proof. Statements (i) and (ii) follow from Corollary 1.5. In order to prove (iii) we 

observe that H’(X, Z) is divisible if and only if Q/Z@ H’(X, Z) = (0) which, by 

Theorem 2.3(i), means Z,( FX) n F’X = (0). The result then follows from (ii) and 

Theorem 1.3. 0 

2.11. Corollary. Let X be a connected comjact pointed space such that H’(X, Z) is 

divisible. Then the free compact group FX is the direct product of the free compact 

abelian group F,X and its commutator subgroup F’X. 

For a lattice diagram of the situation of Theorem 2.10, see the lattice diagram in 

Corollary 1.5. 
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We summarize all of our results on the center of a free compact group on a 

compact pointed space X in the following lattice diagram: 
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