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ABSTRACT. If A and B are nontrivial topological groups, not both discrete,

such that their free product A 11 B is a sequential space, then it is sequential

of order oji.

1. Introduction. In [15], Ordman and Smith-Thomas prove that if the free

topological group on a nondiscrete space is sequential then it is sequential of order

uji. In particular, this implies that free topological groups are not metrizable or

even Fréchet spaces. Our main result is the analogue of this for free products

of topological groups. More precisely we prove that if A and B are nontrivial

topological groups not both discrete and their free product A II B is sequential,

then it is sequential of order ui. This result is then extended to some amalgamated

free products. Our theorem includes, as a special case, the result of [10]. En route

we extend the Ordman and Smith-Thomas result to a number of other topologies

on a free group including the Graev topology which is the finest locally invariant

group topology. (See [12].) It should be mentioned, also, that O.dman and Smith-

Thomas show that the condition of AII B being sequential is satisfied whenever A

and B are sequential fc^-spaces.

2. Preliminaries. The following definitions and examples are based on

Franklin [3, 4] and Engelking [2].

DEFINITIONS. A subset U of a topological space X is said to be sequentially

open if each sequence converging to a point in U is eventually in U. The space X

is said to be sequential if each sequentially open subset of X is open.

REMARKS. A closed subspace of a sequential space is sequential. A subspace of

a sequential space need not be sequential. (See Example 1.8 of [3].)

DEFINITIONS. For each subset A of a sequential space X, let s (A) denote the

set of all limits of sequences of points of A. The space X is said to be sequential of

order 1 if s(A) is the closure of A for every A.

The higher sequential orders are defined by induction. Let so(A) = A, and

for each ordinal a = ß + 1, let sa(A) = s(sß(A)). If a is a limit ordinal, let

sa(A) = (J{sß(A): ß < a}. The sequential order of X is defined to be the least

ordinal a such that sa(A) is the closure of A for every subset A of X.

REMARKS. The sequential order always exists and does not exceed the first

uncountable ordinal wi.   Sequential spaces of order 1 are also known as Fréchet
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spaces. Clearly any metrizable space is a Fréchet space; however, there exist se-

quential spaces which are not Fréchet and Fréchet spaces which are not metrizable.

Indeed, for each ordinal a < wi there exists a sequential space of that order. The

key example is due to Arhangel'skiï and Franklin [1].

By Si we mean a space consisting of a single convergent sequence »j, s2,...,

together with its limit point so taken as the basepoint.

The space 52 is obtained from Si by attaching to each isolated point sn of Si a

sequence sn_i, sn,2,..., converging to sn. Thus S2 can be viewed as a quotient of a

disjoint union of convergent sequences; we give it the quotient topology. Inductively,

we obtain the space Sn+i from Sn by attaching a convergent sequence to each

isolated point of Sn and giving the resultant set the quotient topology.

Let Su be the union of the sets Si C S2 C S3 C • ■ •, with the weak union

topology (a subset of Su is closed if and only if its intersection with each Sn is

closed in the topology of Sn).

It is shown in [1] that each S„ is sequential of order n and Sw is sequential of

order ui.

DEFINITION. Let X be a topological space with distinguished point e, and

FA(X) a topological group which contains X as a subspace and has e as its identity

element. Then FA(X) is said to be the (Graev) free abelian topological group on X

if for any continuous map <f> of X into any abelian topological group H such that

<p(e) is the identity element of H, there exists a unique continuous homomorphism

$: FA(X) — H with $|tf = 0.

For a recent survey of free abelian topological groups see [11].

If in the above definition the word abelian is everywhere deleted we obtain the

definition of the ( Graev) free topological group on the space X.

DEFINITION. Let N be a common subgroup of topological groups A and B. The

topological group A IIjv B is said to be the free product of the topological groups A

and B with amalgamated subgroup N if

(i) A and B are topological subgroups of A11^ B,

(ii) every pair 0i, <j>2 of continuous homormorphism of A and B, respectively

into any topological group H which agree on N extend uniquely to a continuous

homomorphism of A IIjv B into H.

If N = {e}, the identity element, then AIIat B = AU B, the free product of the

topological groups A and B.

In order to prove that the free topological group is Hausdorff, Graev [5] in-

troduced a specific topology tq on the free group F(X) on the set X \ {e}. We

refer to this topology as the Graev topology. It is the finest locally invariant group

topology on F(X) which induces the given topology on X. (A topological group is

said to be locally invariant if every neighborhood of e contains a neighborhood of e

invariant under inner automorphisms.) The topology is described and analyzed in

[12]. In particular, Graev shows tq is Hausdorff and so the free topological group

is Hausdorff.

Using a much more delicate and technical argument, Graev [6] proved that if

A and B are any Hausdorff topological groups, then the free product A U B is

Hausdorff. (In [8], Graev's argument is extended to the case of amalgamated free

products, where the subgroup being amalgamated is central.)   Once again Graev
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does this by putting a coarser topology on AU B than the free product topology

and showing this coarser topology is Hausdorff.

3. Results.

LEMMA. Let G be a sequential Hausdorff topological group with identity e and

an infinite subspace Y = U^li{2/n}U{e} where the sequence yn converges to e. Let

FA(X) be the (Graev) free abelian topological group on a set X with distinguished

point e. If there exists a continuous homomorphism 3>: G —> FA(X) such that $\Y

is one-to-one, then G has a closed subspace homeomorphic to Su.

PROOF. First we choose a subsequence {&} of {yi} with the property that, if

oil ' ' ' gZ - o]l ' ' ' gT, for some r>s'£i > • • • '£r '??i ' • • ■ 'r,s e N'the natural nun>

bers, and {&,,..., gir, gh,..., gu} Ç {g,}, then £fc{£fc : 9ik = y} = Y.pi'Hp ■ 93p =

y} for all y G Y; here we adopt the convention that the empty sum is zero. This

subsequence can be chosen as follows. Since Y is infinite and {yi} converges to

e in the Hausdorff group G, deleting some terms and relabelling if necessary we

can assume that yi ^ yj ^ e, for all i, j G N with i ^ j. Since $: G —+ FA(X)

is a homormorphism and 3>|F is one-to-one, it suffices to choose {&} such that

the sequence {$(g¿)} has the required property. Since $: Y —» FA(S) is contin-

uous and one-to-one, the set {z¿: z¿ = $(?/¿),z G N,y¿ G Y} U {e} is compact in

FA(X) and z% ̂  Zj ^ e, for ail i, j G N with i ^ j. Let FA„(x) denote the

set of words in FA(X) of length less than or equal to n with respect to X. Thus

{zi} Q FAN(X), for some TV G N, and in reduced form z% = zj*j,1 • ■ -xt'i'uj, for

some l(i) G N, 0 ^ 6ij G Z, where X^,=i \6ij\ < N, each x^g G X, and i,(J ^ Xitk

for j ^ k. (It is easily proved and certainly in the folklore that any compact subset

of FA(X) is contained in FA^(X) for some TV. This can be proved most easily

by observing that it is true when X is compact, since FA(X) is then a fcw-space

with ^-decomposition FA(X) = \\FAn(X). The noncompact case can then be

established using Stone-Cech compactification in the manner described in [7].)

We shall show how to choose a subsequence Z of the z's such that each z in

this subsequence has an x in its reduced representation which does not occur in the

reduced representation of any other z in the subsequence. This will be done in two

steps.

First, we choose a subsequence of the z's such that each z in this subsequence

has an x in its reduced representation which does not occur in the reduced represen-

tation of any z further along the subsequence. If T Ç N we set S(T) = {xíj : i G

T, 1 < j < l(i)}- Let T Ç N be an infinite subset. Since z¿ ^ Zj for i ^ j,

{zi : i G T} is infinite, and the number of words of length < TV on a finite subset

of X is finite, S(T) is infinite and there is xPyQ G S(T) and an associated infinite

subset T Ç {i: i G T,i > p} such that xVA <fc S(T). Let T0 = N, and choose

Xiltjt G S(To) and associated infinite subset Ti Ç {i; i G To,i > ii} such that

¡Etiji ^ S(Ti). Having chosen xi„jn and Tn we choose Xjn+1,jB+, and associated

infinite subset Tn+i Ç {i: i g Tn,i > in+i} such that Xin+1jn+1 G S(Tn)\S(Tn+i).

We note that in+i GTn\ Tn+\ for each n. This completes the first step.

The sequence Z we seek will be a subsequence of that chosen in the previous

paragraph. Let K, U Ç {in : n G N} be finite and infinite subsets, respectively.

As S(K) is finite, U is infinite, and xlpjp ^ xim,jm, f°r all P ¥" m, there is an
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infinite subset U Ç {ip: ip g U,ip > k for ail k G K) such that Xi »■ ̂  S(K),

for ail ip G U. Let Ki — {ii}, Ui = {ip: p G N,ip > k for ail k G Ki} and

set xini,jni = xiuii- Having chosen z,„m,¿„m, Km, and Um let 7„m+1 be the first

element of Um'Km+i — Km U {¿nm+1} and choose the associated infinite subset

Um+i Ç {ip'- ip G Um,ip > k for all k G Km+i} such that xipjp $ S(Km+i) for

all ip G Um+i. This gives the required sequence Z = {zin   }.

Now set gm = yinm ■ By deleting terms and relabelling the z¿j's, <5¿,/s and z¿'s, if

necessary, can assume that i„m = to and j„m = 1, for all to 6 N so that zm = $(gm)

and zm = z^i' • • • £„7//™) in reduced form, where xmti does not occur in the

reduced representation of Zk, for all k / to. Suppose now zf ' • • • zfr = z1]1 ■ ■ ■ z7s-
*• 1 *r Jl Js

Since a;mji occurs only in the reduced form of zm and e\,..., er, rji,..., ns G N

then J2ki£k'- zik = zm} = J2p{r¡P- zjp = zm}, as required. Note that YJi=\ £% =

£¿=i »?« in this case- Set Y' = WiiiiOi} e {el-
We shall produce a closed embedding 9: Sw —► G analogous to that of Ordman

and Smith-Thomas [15, Theorem 3.7]. As in Ordman and Smith-Thomas enu-

merate the sequences of Sw as follows.  Denote the single sequence of Si by ¿i =

si,s2, S3,_Denote the sequence of S2 converging to si by t2 — si,i, 81,2, «1,3,_

Use a diagonalization process to enumerate all sequences of Su. The limits of the

sequences £3, £4, £5, ¿6, h, h, ■ ■ ■ are respectively 81,1, s2, 81,1,1,81,2, S2,i, S3,.... The

function 9 is constructed to map each sequence £¿ to the set of "words'1 of length

precisely i with respect to Y' \ {e} in G: that is, elements of G which can be ex-

pressed as a product of exactly i members of Y' \ {e} counting multiplicities. Let

6(s0) = e, 0(si) = gx,

d(si1,...,in,m) =0(su,...,lri)g3m,

where j = /—length in G with respect to Y' \ {e} of #(s¿i,¿„) and / is such that the

sequence £¡ converges to St,,...,tn- Then

Oih) = 9i9i,9ig2,gi93,---,

6(h) = gUii9i92,g2.93,---,

6(ti) = 02ffl,ff2ff2iff2i,3<"->

e(h) = glgl,glgl,g\gl, ■ ■ ■,
d(t6) = 9ig2g\,gig2g2,g\g2gt, ■ ■ ■ ■

Clearly 9 is continuous. We show 9 is one-to-one. Suppose

*(*,.ir) = o!l---ot: = oli---9l- = e(sjl, ...j.)

for some r,s, ei,... ,£r,Vi, ■■■ ,Vs e N and glt,... ,glr,gn,... ,gJs G {gt}. By the

first part of the proof J?k=l £k = J2l=i Vk - I, say, so that «<,,..'.,», = sjfc,,...,k„,m G
t¡ and 8j,,...j, = 8is¡,...,km,n € £;, some ¿1,..., kv, m,n G N. By the first part of the

proof to = n and thus 9 is one-to-one. Now set f = 3> o 9: Sw -* FA(X). Noting

that $\Y is one-to-one the argument in [15], which carries over directly to the

abelian case, shows that f is a closed embedding. Therefore, 9 is an embedding of

Su into G. We now show 9 is a closed mapping. Let w G 0(SU); then there exists a

sequence wn G 0(SW) such that wn converges to w. Thus $(wn) converges to $(w).

As \J™=i{<b(wn)} U {$(u>)} is compact in FA(X) it is contained in FA^(X) for

some TV. Let un G Sw satisfy 9(un) = wn. As f(un) = $(wn) and f(Sw)nFAN(X)
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consists of TV convergent sequences there exists «„, of un converging to u G Sw such

that w„t = 9(un>) converges to 9(u) = w G 9(SW). Thus 9(SW) is closed and 9 is a

closed embedding.    D

The following proposition is an immediate consequence of the Lemma and Propo-

sition 1 of [12] and is of interest in its own right. (Proposition 1 of [12] yields that

the quotient group of the free group with the Graev topology by the commutator

subgroup is the free abelian topological group.)

PROPOSITION. Let X be any Tychonoff spaces with distinguished point e and

F(X) the free group on the set A"\{e} which has e as its identity element. Let tq be

the Graev topology on F(X) with respect to X. If t is any sequential group topology

on F(X) which is finer than tq, and induces a nondiscrete topology on X, then

(F(X),r) has Sw as a closed subspace. Hence (F(X),r) is not a metrizable space

or even a Fréchet space. In particular, (F(X),tq) and the (Graev) free topological

group on X are not Fréchet.

THEOREM l. If A and B are nontrivial topological groups not both discrete such

that A LI B is sequential, then A U B is sequential of order wi. In particular, AU B

is not metrizable or a Fréchet space.

PROOF. Let K(A, B) be the cartesian subgroup of A U B: that is, the kernel of

the homomorphism A U B —* A x B. Then K(A, B) is algebraically a free group

on the set {a~1b~1ab: a G A\{e},b G B\{e}}. Graev [6] showed that the induced

topology on K(A, B) is finer than the Graev topology on the free group on a space

X, where X is a continuous one-to-one image of the subspace Y — {a~1b~1ab: a G

A \ {e}, bG B\ {e}} oí AU B. (See the proof of Theorem 1 of [8].) As K(A, B)

is a closed subgroup of A U B it is sequential. Note that K(A, B) is not discrete

since A and B not both discrete and the maps A —* K(A,B) and B —* K(A,B)

respectively given by a h-► a~1b~^labi and b i—> a1"1£»~1ai6 are continuous and one-

to-one for fixed ai G A\{e} and ¿>i G 5\{e}. Thus K(A, B) satisfies the conditions

of the above Proposition and so has a closed subspace homeomorphic to Sw. Thus

AU B has a closed subspace homeomorphic to Sw< as required.    D

COROLLARY. Let A and B be nontrivial topological groups having a common

closed normal subgroup TV which is not an open subgroup of A. If A Un B is

sequential, then it is sequential of order oji .

PROOF. Let 7 be the canonical open continuous homomorphism of AUn B onto

A/N U B/N. As A UN B is sequential, so too is its quotient group A/N U B/N.

Noting that A/N is not discrete, the above theorem implies that A/N U B/N

is sequential of order wi. Since 7 is a quotient mapping this implies A U^ B is

sequential of order toi.    G

REMARK. The condition that TV not be open in A cannot be deleted. For

example, if A = B = T x Z2 and TV = T, where Z2 is the discrete cyclic group

with two elements and T is the circle group with the usual compact metric group

topology, then by [9, Proposition 4], vtHjv B is homeomorphic to T x Z2 x Z2 x D,

where D is a discrete group. This is clearly metrizable and hence of sequential

order 1.
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REMARK. We have improved upon Theorem 2 of Morris [10] in two different

ways. First our amalgamated subgroup TV is a normal subgroup rather than a cen-

tral subgroup. Second, we consider sequential conditions rather than metrizability.

In Morris and Thompson [14] it is shown that if G is a subgroup of a free

topological group and G is a sequential space, then it is sequential of order uii or

is discrete. This suggests the following

OPEN QUESTION. Let G be a nondiscrete closed subgroup of the free product

of two nontrivial topological groups A and B such that G is not contained in a

conjugate of A or a conjugate of B. If G is a sequential space is it sequential of

order wi?

We note that the answer to this question is in the affirmative if A and B are

both fc^-groups and G is metrizable. This is so because A U B is then a fc^-group

as is its closed subgroup G. But as every metrizable fc^-space is locally compact, G

is locally compact. It then follows from [13] that G is either discrete or contained

in a conjugate of A or a conjugate of B.
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