117

TRINITY ... A TALE OF THREE CARDINALS

Joan Cleary and Sidney A. Morris

Dedicated to Igor Kluvanek

1. INTRODUCTION

In this paper we discuss three cardinal numbers associated with a
topological group G : the weight of G, w(G), the local weight,
wo(G), and 60(G), the least cardinal of a family of open sets whose
intersection is a singleton. It is clear that 6(G) < wO(G) < w(G) .
We give necessary and sufficient conditions for ©6(G) = wo(G) = w(G) .

In particular they are equal for all o-compact locally compact Hausdorff

groups.

The following notation will be used throughout the paper. If G
is a topological group, we denote
(a) the minimal cardinality of a family of open sets having as
intersection the identity, 1, in G by 6(G);
(b) the minimal cardinality of an open basis for G at 1 by wO(G);

(c) the minimal cardinality of an open basis for G by w(G).

If H is a topological subgroup of G, we write H < G.

Note that if H S G, then 6(H) < 6(G), W, (H) < w,(6), and

w(H) S w(Ge).
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PROPOSITION 1  If G <s any topological group then

0(G) < wo(G) < w(G).

Proof cClearly 6(G) S w,(G) and wy(G) S w(G). So

0@ <w, @ <w@. ,

We note here that if an infinite Hausdorff non-discrete topological

group, G, satisfies the second axiom of countability, then

0(G) = wO(G) = w(G) = RO. Thus if G is an infinite compact metrizable

group, then #H(G) = w(G) = xo'
DEFINITION Let U(n), n € N, be the compact group of nXn unitary

o
matrices, and define M = ﬂl U(n) .
n=
As Ul is compact and metrizable w(l) = 6() = 0 @) = N;.

2. COMPACT GROUPS
We use the following refinement of the Embedding Lemma, ([6],P.116)

in the proof of Lemma 3. It's proof is analogous to the usual proof.

LEMMA 2 Let {(v,,T,) | i € 1} be a family of Hausdorff spaces, and
for each i € 1, let £, be a mapping of a Hausdorff space (X,T)
into (Yi,ri). Let e : (X,T) —*igI(Yi,ri) be defined by
e(x) = E fi(x), for each x € X. Then e <s a homeomorphism of

i€r
(X,T) onto the space (e(X),t') where t' <s the subspace topology,

if
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(1) each £, <is continuous, and
(ii) given x € X and any closed set A not containing x,
there is a finite subset {il’iz""’in} of I such that

) n
the m F==£Ff xf X,..xf, :X—T_(Y Lsfi
ap ST i j=1( ij,tij) satisfies

F(x) ¢ F@@).

LEMMA 3 Let G be a topological group and {H; | i € 1} an infinite
family of Hausdorff groups such that G <is topologically isomorphic to
a subgroup of the product biglﬂi- Then there is a subset J of I,
with card J = wy(G), such that G <is topologically isomorphic to a

subgroup of T H, .
i€J

Proof without loss of generality, consider G to be a subgroup of

MH . Let B= {Bk | x € XK} be a basis for G at the identity, 1,
i€r
such that card K = 0,(G). For each k € K there exists an Ok such
that O, N G C B where O, =0 X O  X,..Xx0 X T H,

k -k k ki ke kn iEI\{kl,kz,.f.kn}

is a member of the natural basis for TIT H, at the identity. For each
i€x

k € K put gy = {kl,kz,...,kn} and J= UJ

k€k

Then, as each J is

k* k

finite, card J = card K = w,(G) .

Let P : T H,—T H, be the natural projection mapping. We need
i€r + ieg t
to show P : G—P(G) is a homeomorphism. As each pi H G-—*Hi given
by p.(x) =p,.( Tx,) =x,, is continuous, condition (i) of the
1 liEIl 1
Embedding Lemma is satisfied. To see condition (ii) holds, we need

consider only the identity 1 and any closed set A in G such that

1 $ A. Then 1 € G\A which is open, and so there is a Bk € B such
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that 1 € Bk N G. Therefore there is a basic open neighbourhood Ok

such that 1 € Ok N G; that is

1€ (Ok X 0, %X...X O ) N G. Define

x T H,
. kK, ko €Nk ko, nk )

n n
F:G— TH by F(x) = T P X for x € G. Then
=1 kj Yy (x) 591 kj( ).

F(1) €0_Xx0

Xeow i i =
X, k< XOk which is open and F(a) N (Oklx 0, X...X0, ) @

2 n ko kn

which implies F(A) N (0O, X0 _X...x 0_) = @. Hence F(1) { F(A),

ks ko k.
and so by our Embedding Lemma, P is a homeomorphism of G onto P(G).
As P is also a homomorphism we have that G is topologically

isomorphic to P(G), a subgroup of mH,.

i€ex oy

The countable case of the above result was used by Brooks, Morris

and Saxon [2, Corollary 6].

Using a similar argument to the proof of Lemma 3, we obtain a

stronger result for compact groups.

LEMMA 4 Let G be a compact group and {H, | i € 1} an infinite
family of Hausdorff groups such that G <is topologically isomorphic to
a subgroup of the product iEIHi. Then there is a subset J of I,
with card J = 6(G), such that G <s topologically isomorphic to a

subgroup of T H,.
ieg *

Proof Again, consider G to be a . subgroup of 'EIHi' and let
il
®(G) = {Uk [ k € K} be a family of open sets of G such that

card ¢ (G) = 6(G) and n Uk = {1}. For each k € K there is an
kEK
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open set O such that O neGec U, where

0, =0 X O X...X O X m Hs is a member of the
ko Tk Tk, ky etk Kk vek )
natural basis for m Hi at the identity. For each k € K put
i€I
3 = {kl,kz,...,kn} and J = UJ. Then cardJ = card K = 6(G).

k€K

Let P : TT H,— Tl H, Dbe the natural projection mapping. Then
ier v i€
P:G—1T Hi is a continuous injective homomorphism. As G is
i€J
compact, G 1is topologically to P(G), f£from which the result follows.”

The next lemma is an immediate consequence of the Peter-Weyl

Theorem ([7], P.62).

LEMMA 5 If G <& a compact Hausdorff group, them it is topologically

isomorphic to a subgroup of a product of copies of the group .

THEOREM 1 [3, 28.581 Let G be an infinite compact Hausdorff group.

Then ©(G) = 'mO(G) = w(G).

Proof By Lemma 5, we can, without loss of generality, assume that G

. card T . .
is a subgroup of 1 , for some index set I. But using Lemma 4 we

have that G is topologically isomorphic to a subgroup of HG(G).

So w(G) < w(ﬂe(G))

max {w () ,0(c)}

max {NO,G(G)}

1

6(G), as 6(G) is infinite.
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But 0(G) < w(G) from Proposition 1. Thus 6(G) = w(G), from
which it follows that wo(G) = 0(G) = w(G). Y

Hulanicki [3] proved that card G = ZG(G)

for G, any infinite
compact Hausdorff group, or any infinite connected locally compact
Hausdorff group. Elsewhere we shall give quite a different proof of a

more general result. Here we point out a corollary to this result and

Theorem 1.

THEOREM 2 [3, 28.58] Let G be any infinite compact Hausdorff group.
0(G) _ juwo(G) _ S (6)

Then card G = 2
3. ALMOST CONNECTED GROUPS

DEFINITION A locally compact Hausdorff group is said to be almost
connected if the group G/Go is compact, where G0 is the connected

component of the identity. (See [1].)

Of course, the class of almost connected groups includes the class
of compact Hausdorff groups and the class of connected locally compact

Hausdorff groups.

THEOREM 3 Let G be any infinite almost connected group. Then

8(G) = 0y (G) = w(@ and card G = 2°(®) = 200 (@ _ (@)

Proof By Mostert ([7], Theorem 8) G is homeomorphic to G, X G/G.

The Iwasawa Structure Theorem ([6], p.118) says that the connected

locally compact Hausdorff group G, is homeomorphic to r® XK,
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where K is a compact group, IR is the topological group of real
numbers with the usual topology, and n is a non-negative integer.
As G/G0 is compact, we have that G is homeomorphic to r" x X'

where K' is the compact Hausdorff group K X G/Go.

If X' is finite, then clearly 6(G) = w, (6) = w(e) = )

®
card G = 2 0,

0’ and

If K' is infinite, then 6(G) = 6(R"x K') = 6(R™) x 6(K').

]

Since 9(1Rn) = &0 we have that 6 (G) G(K') . Similarly,

it

w(K') . Then, by Theorem 1, we have

Wy (G) =wy (K') and w(G)

0 (G) =w0(G) = W(G) .

Further, card G = card R x card K'
=2 B0k 0D

SNt (")

L8

8(G) w, (G) w(G)
2 =270 = 2 .
/7

Hence, card G =

4. THE GENERAL CASE
For G, any topological group, we denote the least cardinality of

a family of compact sets whose union is G by v(G).

LEMMA 6  Every locally compact Hausdorff group has an open almost

connected subgroup.
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Proof rLet G be any locally compact Hausdorff group .and let G,

be the component of the identity. Let £ : G-—*G/GO be the quotient
mapping. Then the quotient group G/Go 1is a locally compact totally
disconnected group and so has a basis of compact open subgroups,
([71,p.21). Take one such compact open subgroup, K. Then £fIK) =H
is an open subgroup of G. As H is open and therefore closed,

Gy € H, and so H; = Gy. This implies H/Ho = H/G, = K. Hence H is
a locally compact Hausdorff group, and H/Ho is compact, from which
the resulf follows. Y,

THEOREM 4 Let G be any infinite locally compact Hausdorff group.
Then (i) w,(G) = 0(6); (i1) w(G) = max{wo(G), Y(G)} and

©o (@ vie1.

(iii) card G = max{2
Proof (i) Let H be an open almost connected subgroup of G.
Then wo(H) = O0(H) by Theorem 3. We show that wo(G) = wo(H) and

6(G) = 6(H), from which the result will follow.

Let B° be a basis for H at the identity with caxd B0=tuo(H).
Then B, is also a basis for G at the identity. So w, (G). < w, (H),

and hence wo(G) = wo(H)-

Let ©®(H) be a family of open sets in H whose intersection is
the identity. Then @&(H) is also a family of open sets in G whose
intersection is the identity,as H is open. So 6(G) < 6(H), and hence

8(G) = 6(H).
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(ii) If G is compact (G) =w0(G) from Theorem 3, and
Y(G) = 1, which implies w(G) = max{wO(G), Y(G)}. So assume G is non-
compact. Let {g:.L ] i € I} be a complete set of coset representatives
of H in G, and let card I = m. We show firstly that
w(G) = max{w(H),m}. Let B be a basis for H. It is clear that
{giB | B€B, i €1} is a basis for G as H is open. Thus
w(G) < max{w(H),m} We know that w(H) S w(G) , and, as each coset is
open and must contain a basic open set of G, w(G) 2 m. Hence

w(G) = max{w(H) ,m}.

As H is almost connected, it is homeomorphic to ]Rn XK,
where K is a compact group and n € N . Therefore vY(H) < Ry,
Let {An | n € N} be a family of compact sets whose union is H.
Then {giAn I i €I, n€ N} is a family of compact sets whose union
is G, and therefore vY(G) < max{¥ ,m}. Let {Kj | 3 €3} bea
family of compact sets whose union is G and with card J = Y(G).
Then each Kj' being compact, is contained in the union of a finite

ma

J
number of cosets; that is, K. < U g, H for m. € IN. So
J 7 k=1 "1y J

card J 2 m. Now, clearly, vY(G) = No’ and so we get

]

Y (G)

Y(G) = max{ No,m}.

Finally, we have w(G) = max{w(H) ,m}
= max{w, (G) ,m}, as w(H) =w, (H) =w,(G)
= max{w (G),m, B}, as w(G) is infinite

= max{w0 ®.,y@1 .
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(iii) If G 1is compact we already have that

w 0 (G) 0 (G)

w
card G = 2 ={max 2 /Y(G)} from Theorem 2, so again assume

G is non-compact. Then

wo(H)'m} wg (G)

card G = card H.m = max{2 = max{2 Y(G) . Y

We note that Hulanicki's Fundamental lemma is a corollary to the

above theorem.

COROLLARY 1 ([4], p.67) If G 4is an infinite locally compact
S 6 (G)

Hausdorff group, then card G Z 2 .

COROLLARY 2 1et G be an infinite locally compact Hausdorff group.

Then the following are equivalent

(1) w(G) = wy(G); (i) v(e) < wo(G)'”

COROLLARY 3 ([31, p.100) If G is an infinite o-compact locally

compact Hausdorff group, then w(G) = wy(G) = G(G).”

COROLLARY 4 ([4], p.69) If the locally compact Hausdorff group, G,

6(G
is 2e(G)—compact, then card G = 2 ¢ ).
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