TRINITY ... A TALE OF THREE CARDINALS

Joan Cleary and Sidney A. Morris Dedicated to Igor Kluvanek

INTRODUCTION

In this paper we discuss three cardinal numbers associated with a topological group G: the weight of G, $\omega(G)$, the local weight, $\omega_0(G), \text{ and } \theta(G), \text{ the least cardinal of a family of open sets whose intersection is a singleton. It is clear that <math>\theta(G) \leq \omega_0(G) \leq \omega(G)$. We give necessary and sufficient conditions for $\theta(G) = \omega_0(G) = \omega(G)$. In particular they are equal for all σ -compact locally compact Hausdorff groups.

The following notation will be used throughout the paper. If ${\tt G}$ is a topological group, we denote

- (a) the minimal cardinality of a family of open sets having as $intersection \ the \ identity, \ 1, \quad in \ G \ \ by \quad \theta \, (G) \, ;$
- (b) the minimal cardinality of an open basis for G at 1 by $\omega_{\alpha}(G)$;
- (c) the minimal cardinality of an open basis for G by $\omega(G)$.

If H is a topological subgroup of G, we write $H \leq G$.

Note that if H \leq G, then θ (H) \leq θ (G), ω_0 (H) \leq ω_0 (G), and ω (H) \leq ω (G).

PROPOSITION 1 If G is any topological group then $\theta\left(G\right)\,\leqslant\,\omega_{_{0}}\left(G\right)\,\leqslant\,\omega\left(G\right)\,.$

Proof Clearly θ (G) $\leq \omega_0$ (G) and ω_0 (G) $\leq \omega$ (G). So θ (G) $\leq \omega_0$ (G) $\leq \omega_0$ (G).

We note here that if an infinite Hausdorff non-discrete topological group, G, satisfies the second axiom of countability, then $\theta\left(G\right) = \omega_{0}\left(G\right) = \omega\left(G\right) = \overset{\aleph}{0}\,. \quad \text{Thus if } G \text{ is an infinite compact metrizable group, then } \theta\left(G\right) = \omega\left(G\right) = \overset{\aleph}{0}\,.$

DEFINITION Let U(n), n \in IN, be the compact group of n \times n unitary matrices, and define $\mathfrak{U}=\prod_{n=1}^{\infty}$ U(n).

As \mathfrak{U} is compact and metrizable $\omega(\mathfrak{U}) = \theta(\mathfrak{U}) = \omega_0(\mathfrak{U}) = \mathfrak{R}_0$.

COMPACT GROUPS

We use the following refinement of the Embedding Lemma, ([6],P.116) in the proof of Lemma 3. It's proof is analogous to the usual proof.

LEMMA 2 Let $\{(Y_{\underline{i}}, \tau_{\underline{i}}) \mid i \in I\}$ be a family of Hausdorff spaces, and for each $i \in I$, let $f_{\underline{i}}$ be a mapping of a Hausdorff space (X, τ) into $(Y_{\underline{i}}, \tau_{\underline{i}})$. Let $e: (X, \tau) \to \prod_{i \in I} (Y_{\underline{i}}, \tau_{\underline{i}})$ be defined by $e(x) = \prod_{i \in I} f_{\underline{i}}(x)$, for each $x \in X$. Then e is a homeomorphism of (X, τ) onto the space $(e(X), \tau')$ where τ' is the subspace topology, if

- (i) each f, is continuous, and
- (ii) given $x \in X$ and any closed set A not containing x, there is a finite subset $\{i_1,i_2,\ldots,i_n\}$ of I such that the map $F = f_i \times f_i \times \ldots \times f_i : X \longrightarrow \prod_{j=1}^n (Y_i,\tau_j)$ satisfies $F(x) \notin \overline{F(A)}$.

LEMMA 3 Let G be a topological group and $\{H_{\underline{i}} \mid i \in I\}$ an infinite family of Hausdorff groups such that G is topologically isomorphic to a subgroup of the product $\prod_{i \in I} H_{\underline{i}}$. Then there is a subset J of I, with card $J = \omega_0(G)$, such that G is topologically isomorphic to a subgroup of $\prod_{i \in J} H_{\underline{i}}$.

Let $P: \prod_{i \in J} H_i \to \prod_i H_i$ be the natural projection mapping. We need $i \in I$ i $i \in J$ i be the natural projection mapping. We need to show $P: G \to P(G)$ is a homeomorphism. As each $p_i: G \to H_i$ given by $p_i(x) = p_i(\prod_{i \in I} x_i) = x_i$, is continuous, condition (i) of the Embedding Lemma is satisfied. To see condition (ii) holds, we need consider only the identity 1 and any closed set A in G such that $1 \notin A$. Then $1 \in G \setminus A$ which is open, and so there is a $B_k \in B$ such

that 1 \in B $_k$ \cap G. Therefore there is a basic open neighbourhood 0 $_k$ such that 1 \in 0 $_k$ \cap G; that is

$$\textbf{1} \in (\textbf{0}_{k_1} \times \textbf{0}_{k_2} \times \ldots \times \textbf{0}_{k_n} \times \underset{i \in \textbf{I} \setminus \{k_1, k_2, \ldots, k_n\}}{\textbf{H}_i}) \text{ \cap G. Define}$$

$$F: G \rightarrow \overset{n}{\underset{j=1}{\Pi}} H_{k_{j}} \quad \text{by} \quad F(x) = \overset{n}{\underset{j=1}{\Pi}} P_{k_{j}}(x) \,, \quad \text{for} \quad x \in G. \quad \text{Then}$$

$$\begin{split} & \text{F(1)} \ \in \ \text{O}_{k_1} \times \ \text{O}_{k_2} \times \ldots \times \ \text{O}_{k_n} \text{ which is open and } \quad \text{F(A)} \ \cap \ (\text{O}_{k_1} \times \ \text{O}_{k_2} \times \ldots \times \ \text{O}_{k_n}) = \emptyset \\ & \text{which implies} \quad \overline{\text{F(A)}} \ \cap \ (\text{O}_{k_1} \times \ \text{O}_{k_2} \times \ldots \times \ \text{O}_{k_n}) = \emptyset. \quad \text{Hence} \quad \text{F(1)} \ \notin \overline{\text{F(A)}} \ , \end{split}$$

and so by our Embedding Lemma, P is a homeomorphism of G onto P(G). As P is also a homomorphism we have that G is topologically isomorphic to P(G), a subgroup of $\prod_{i \in J} H_i$.

The countable case of the above result was used by Brooks, Morris and Saxon [2, Corollary 6].

Using a similar argument to the proof of Lemma 3, we obtain a stronger result for compact groups.

LEMMA 4 Let G be a compact group and $\{H_{\underline{i}} \mid \underline{i} \in I\}$ an infinite family of Hausdorff groups such that G is topologically isomorphic to a subgroup of the product $\prod_{\underline{i} \in I} H_{\underline{i}}$. Then there is a subset J of I, with card $J = \theta(G)$, such that G is topologically isomorphic to a subgroup of $\prod_{\underline{i} \in I} H_{\underline{i}}$.

Proof Again, consider G to be a subgroup of $\prod_{i \in I} H_i$, and let $\Phi(G) = \{U_k \mid k \in K\}$ be a family of open sets of G such that $A \cap U_k = \{1\}$. For each $A \in K$ there is an $A \cap U_k = \{1\}$.

open set O_k such that $O_k \cap G \subseteq U_k$ where $O_k = O_{k_1} \times O_{k_2} \times \dots \times O_{k_n} \times \prod_{\substack{i \in I \setminus \{k_1, k_2, \dots k_n\}}} \text{is a member of the}$ natural basis for $\prod_{\substack{i \in I \ i \in I}} I$ at the identity. For each $k \in K$ put $J_k = \{k_1, k_2, \dots, k_n\} \text{ and } J = \bigcup_{\substack{k \in K}} J_k. \text{ Then card } J = \text{card } K = \theta(G).$

Let $P: \Pi H_i \to \Pi H_i$ be the natural projection mapping. Then $i \in I$ $i \in J$ i $i \in J$ is a continuous injective homomorphism. As G is compact, G is topologically to P(G), from which the result follows.

The next lemma is an immediate consequence of the Peter-Weyl Theorem ([7], P.62).

LEMMA 5 If G is a compact Hausdorff group, then it is topologically isomorphic to a subgroup of a product of copies of the group 11.

THEOREM 1 [3, 28.58] Let G be an infinite compact Hausdorff group. Then $\theta(G) = \omega_0(G) = \omega(G)$.

Proof By Lemma 5, we can, without loss of generality, assume that G is a subgroup of $\mathfrak{U}^{\operatorname{card}\, \mathtt{I}}$, for some index set I. But using Lemma 4 we have that G is topologically isomorphic to a subgroup of $\mathfrak{U}^{\Theta\,(G)}$.

So
$$\omega(G) \leq \omega(\mathfrak{U}^{\theta(G)})$$

$$= \max \{ \omega(\mathfrak{U}), \theta(G) \}$$

$$= \max \{ \aleph_0, \theta(G) \}$$

$$= \theta(G), \text{ as } \theta(G) \text{ is infinite.}$$

But $\theta(G) \leq \omega(G)$ from Proposition 1. Thus $\theta(G) = \omega(G)$, from which it follows that $\omega_0(G) = \theta(G) = \omega(G)$.

Hulanicki [3] proved that card $G=2^{\theta(G)}$ for G, any infinite compact Hausdorff group, or any infinite connected locally compact Hausdorff group. Elsewhere we shall give quite a different proof of a more general result. Here we point out a corollary to this result and Theorem 1.

THEOREM 2 [3, 28.58] Let G be any infinite compact Hausdorff group. Then $card G = 2^{\theta(G)} = 2^{\omega_0(G)} = 2^{\omega(G)}$.

ALMOST CONNECTED GROUPS

DEFINITION A locally compact Hausdorff group is said to be *almost* connected if the group G/G_0 is compact, where G_0 is the connected component of the identity. (See [1].)

Of course, the class of almost connected groups includes the class of compact Hausdorff groups and the class of connected locally compact Hausdorff groups.

THEOREM 3 Let G be any infinite almost connected group. Then $\theta(G) = \omega_0(G) = \omega(G) \quad \text{and} \quad \text{card } G = 2^{\theta(G)} = 2^{\omega_0(G)} = 2^{\omega(G)}.$

Proof By Mostert ([7], Theorem 8) G is homeomorphic to $G_0 \times G/G_0$. The Iwasawa Structure Theorem ([6], p.118) says that the connected locally compact Hausdorff group G_0 is homeomorphic to $\mathbb{R}^n \times K$,

where K is a compact group, $\mathbb R$ is the topological group of real numbers with the usual topology, and n is a non-negative integer. As G/G_0 is compact, we have that G is homeomorphic to $\mathbb R^n \times K'$ where K' is the compact Hausdorff group $K \times G/G_0$.

If K' is finite, then clearly $\theta\left(G\right)$ = $\omega_{0}\left(G\right)$ = $\omega\left(G\right)$ = \aleph_{0} , and card G = 2 $^{\aleph_{0}}\!.$

If K' is infinite, then $\theta(G)=\theta(\mathbb{R}^n\times K')=\theta(\mathbb{R}^n)\times \theta(K')$. Since $\theta(\mathbb{R}^n)={}^{\aleph_0}$ we have that $\theta(G)=\theta(K')$. Similarly, $\omega_0(G)=\omega_0(K') \quad \text{and} \quad \omega(G)=\omega(K'). \quad \text{Then, by Theorem 1, we have}$ $\theta(G)=\omega_0(G)=\omega(G).$

Further, card G = card
$$\mathbb{R}^n \times \text{card } K'$$

= $2^{\aleph_0} \times 2^{\theta(K')}$
= $2^{\aleph_0 + \theta(K')}$
= $2^{\theta(K')}$.

Hence, card $G = 2^{\theta(G)} = 2^{\omega_0(G)} = 2^{\omega(G)}$.

4. THE GENERAL CASE

For G, any topological group, we denote the least cardinality of a family of compact sets whose union is G by $\gamma(G)\,.$

LEMMA 6 Every locally compact Hausdorff group has an open almost connected subgroup.

Proof Let G be any locally compact Hausdorff group and let G_0 be the component of the identity. Let $f: G \to G/G_0$ be the quotient mapping. Then the quotient group G/G_0 is a locally compact totally disconnected group and so has a basis of compact open subgroups, ([7],p.21). Take one such compact open subgroup, K. Then $f^{-1}(K) = H$ is an open subgroup of G. As H is open and therefore closed, $G_0 \subseteq H$, and so $H_0 = G_0$. This implies $H/H_0 = H/G_0 = K$. Hence H is a locally compact Hausdorff group, and H/H_0 is compact, from which the result follows.

THEOREM 4 Let G be any infinite locally compact Hausdorff group. Then (i) $\omega_0(G) = \theta(G)$; (ii) $\omega(G) = \max\{\omega_0(G), \gamma(G)\}$ and (iii) card $G = \max\{2^{\omega_0(G)}, \gamma(G)\}$.

Proof (i) Let H be an open almost connected subgroup of G. Then $\omega_0^-(H)=\theta^-(H)$ by Theorem 3. We show that $\omega_0^-(G)=\omega_0^-(H)$ and $\theta^-(G)=\theta^-(H)$, from which the result will follow.

Let B_0 be a basis for H at the identity with card $B_0=\omega_0^-(H)$. Then B_0^- is also a basis for G at the identity. So $\omega_0^-(G) \leqslant \omega_0^-(H)$, and hence $\omega_0^-(G)=\omega_0^-(H)$.

Let Φ (H) be a family of open sets in H whose intersection is the identity. Then Φ (H) is also a family of open sets in G whose intersection is the identity, as H is open. So θ (G) \leq θ (H), and hence θ (G) = θ (H).

(ii) If G is compact $\omega(G) = \omega_0(G)$ from Theorem 3, and $\gamma(G) = 1$, which implies $\omega(G) = \max\{\omega_0(G), \gamma(G)\}$. So assume G is non-compact. Let $\{g_{\underline{i}} \mid i \in I\}$ be a complete set of coset representatives of H in G, and let card I = m. We show firstly that $\omega(G) = \max\{\omega(H), m\}$. Let B be a basis for H. It is clear that $\{g_{\underline{i}}B \mid B \in B, i \in I\}$ is a basis for G as H is open. Thus $\omega(G) \leq \max\{\omega(H), m\}$. We know that $\omega(H) \leq \omega(G)$, and, as each coset is open and must contain a basic open set of G, $\omega(G) \geq m$. Hence $\omega(G) = \max\{\omega(H), m\}$.

As H is almost connected, it is homeomorphic to $\mathbb{R}^n \times K$, where K is a compact group and $n \in \mathbb{N}$. Therefore $\gamma(H) \leqslant \aleph_0$. Let $\{A_n \mid n \in \mathbb{N}\}$ be a family of compact sets whose union is H. Then $\{g_iA_n \mid i \in I, n \in \mathbb{N}\}$ is a family of compact sets whose union is G, and therefore $\gamma(G) \leqslant \max\{\aleph_0, m\}$. Let $\{K_j \mid j \in J\}$ be a family of compact sets whose union is G and with card $J = \gamma(G)$. Then each K_j , being compact, is contained in the union of a finite number of cosets; that is, $K_j \subseteq \bigcup_{k=1}^m g_{i_k}$ for $m_j \in \mathbb{N}$. So $\gamma(G) = \operatorname{card} J \geqslant m$. Now, clearly, $\gamma(G) \geqslant \aleph_0$, and so we get $\gamma(G) = \max\{\frac{\aleph_0}{m}, m\}$.

Finally, we have $\omega(G) = \max\{\omega(H), m\}$ $= \max\{\omega_0(G), m\}, \text{ as } \omega(H) = \omega_0(H) = \omega_0(G)$ $= \max\{\omega_0(G), m, \aleph_0\}, \text{ as } \omega(G) \text{ is infinite}$ $= \max\{\omega_0(G), \gamma(G)\}.$ (iii) If G is compact we already have that $\text{card G} = 2^{\omega_0\,(G)} = \{\max \ 2^{\omega_0\,(G)}, \gamma\,(G) \} \quad \text{from Theorem 2, so again assume }$ G is non-compact. Then $\text{card G} = \text{card H.m} = \max\{2^{\omega_0\,(H)}, m\} = \max\{2^{\omega_0\,(G)}, \gamma\,(G) \}.$

We note that Hulanicki's Fundamental lemma is a corollary to the above theorem.

COROLLARY 1 ([4], p.67) If G is an infinite locally compact Hausdorff group, then card G \geqslant 2 $^{\theta$ (G) . //

COROLLARY 2 Let G be an infinite locally compact Hausdorff group. Then the following are equivalent

(i)
$$\omega(G) = \omega_0(G)$$
; (ii) $\gamma(G) \leq \omega_0(G)$.

COROLLARY 3 ([3], p.100) If G is an infinite σ -compact locally compact Hausdorff group, then $\omega(G) = \omega_0(G) = \theta(G)$.

COROLLARY 4 ([4], p.69) If the locally compact Hausdorff group, G, is $2^{\theta(G)}$ -compact, then card G = $2^{\theta(G)}$.

REFERENCES

- [1] R.W. Bagley and M.R. Peyrovian, A note on compact subgroups of topological groups, Bull. Austral. Math. Soc. 33 (1986), 273-278.
- [2] M.S. Brooks, Sidney A. Morris, and Stephen A. Saxon, Generating varieties of topological groups, Proc. Edinburgh Math. Soc. 18 (2), (1973), 191-197.

- [3] Edwin Hewitt and Kenneth A. Ross, Abstract Harmonic Analysis II, Springer-Verlag, Berlin, 1970.
- [4] A. Hulanicki, On cardinal numbers related with locally compact groups, Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys. 6 (1958), 67-70.
- [5] Shizuo Kakutani, On cardinal numbers related with a compact abelian group, Proc. Imp. Acad. Tokyo 19 (1943), 366-372.
- [6] John L. Kelley, General topology, Springer-Verlag, New York, 1955.
- [7] Sidney A. Morris, Pontryagin duality and the structure of locally compact abelian groups, Cambridge University Press, Cambridge 1977.
- [8] Paul S. Mostert, Sections in principal fibre spaces, Duke Math J. 23 (1956), 57-71.

Department of Mathematics La Trobe University Bundoora Vic. 3083 Australia