METRIZABILITY OF SUBGROUPS OF FREE TOPOLOGICAL GROUPS

SIDNEY A. MORRIS AND H.B. THOMPSON

It is shown that any sequential subgroup of a free topological group is either sequential of order ω_1 or discrete. Hence any metrizable subgroup of a free topological group is discrete.

1. Introduction

It is known that a free topological group is metrizable if and only if it is discrete. Ordman and Smith-Thomas [9] generalized this to show that any non-discrete free topological group which is sequential, is sequential of order ω_1 . We extend this much further by showing that any sequential subgroup of a free (free abelian) topological group is either discrete or sequential of order ω_1 . Thus any metrizable (or even Frechet) subgroup of a free (free abelian) topological group is discrete. We do this by showing that if a subgroup G of a free (free abelian) topological group has a non-trivial sequence y_1, y_2, \ldots converging to e and G contains the free (free abelian) topological group on $(\{\bigcup_{i=1}^{\infty}\{y_i\}\}\cup\{e\})$ and hence also contains the Arhangel'skii-Franklin space S_{ω} [1,9] which is sequential of order ω_1 . This observation also answers

Received 2 May 1985.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 #A2.00 + 0.00.

Question 3.10 of [9] in the affirmative.

2. Preliminaries

DEFINITIONS. Let X be a topological space with distinguished point e, and F(X) a topological group which contains X as a subspace and has e as its identity element. Then F(X) is said to be the *Graev free (free abelian) topological group on* X if for any continuous map ϕ of X into any topological (abelian topological) group H such that $\phi(e)$ is the identity element of H, there exists a unique continuous homomorphism $\Phi: F(X) \to H$ with $\Phi|X = \phi$.

For a recent survey of free topological groups see $[\delta]$.

DEFINITION. We say x_1,\ldots,x_n are the essential elements of the word $w\in F(X)$ if each $x_i\in X$ and $w\in gp\{x_1,\ldots,x_n\}$ but $w\not\in gp\{x_{i_1},\ldots,x_{i_k}\}$ for any proper subset $\{x_{i_1},\ldots,x_{i_k}\}$ of $\{x_1,\ldots,x_n\}$.

The following definitions and examples are based on Franklin [3,4]. See also Engelking [2].

DEFINITIONS. A subset U of a topological space X is said to be sequentially open if each sequence converging to a point in U is eventually in U. The space X is said to be sequential if each sequentially open subset of X is open.

Remarks. A closed subspace of a sequential space is sequential.

A subspace of a sequential space need not be sequential (See Example 1.2 of [3].)

DEFINITIONS. For each subset A of a sequential space X, let s(A) denote the set of all limits of sequences of points of A. The space X is said to be sequential of order 1 if s(A) is the closure of A for every A.

The higher sequential orders are defined by induction. Let $s_{\mathbf{0}}(A) = A$, and for each ordinal $\alpha = \beta + 1$, let $s_{\alpha}(A) = s(s_{\beta}(A))$. If α is a limit ordinal, let $s_{\alpha}(A) = \bigcup \{s_{\beta}(A) : \beta < \alpha\}$. The sequential order of X is defined to be the least ordinal α such that $s_{\alpha}(A)$ is the closure of A for every subset A of X.

Remarks. The sequential order always exists and does not exceed the first uncountable ordinal ω_1 . Sequential spaces of order 1 are also known as *Frechet spaces*. Clearly any metrizable space is a Frechet space however there exist sequential spaces which are not Frechet and Frechet spaces which are not metrizable. Indeed, for each ordinal $\alpha \leq \omega_1$ there exists a sequential space of that order. The key example is due to Arhangel'skii and Franklin [1].

By S_1 we mean a space consisting of a single convergent sequence s_1, s_2, \ldots , together with its limit point s_0 taken as the basepoint.

The space S_2 is obtained from S_1 by attaching to each isolated point s_n of S_1 a sequence $s_{n,1},s_{n,2},\ldots$, converging to s_n . Thus S_2 can be viewed as a quotient of a disjoint union of convergent sequences; we give it the quotient topology. Inductively, we obtain the space S_{n+1} from S_n by attaching a convergent sequence to each isolated point of S_n and giving the resultant set the quotient topology.

Let S_{ω} be the union of the sets $S_1 \subset S_2 \subset S_3 \subset \ldots$, with the weak union topology (a subset of S_{ω} is closed if and only if its intersection with each S_{n} is closed in the topology of S_{n}).

It is **sh**own in [1] that each S_n is sequential of order n and S_ω is sequential of order ω .

DEFINITION. Let F(X) be the Graev free (free abelian) topological group on a Tychonoff space X and Y a subset of F(X). Then Y is said to be regularly situated with respect to X if for each positive integer n there exists an integer m such that $gp(Y) \cap F_n(X) \subseteq gp_m(Y)$, where gp(Y) denotes the subgroup generated by Y, $F_n(X)$ denotes the set of all words in F(X) of length $\leq n$ with respect to X, and $gp_m(Y)$ denotes the set of all words in gp(Y) of length $\leq m$ with respect to Y.

THEOREM A. [Graev.5] Let X be a compact Hausdorff space and Y a compact subspace of F(X) containing e. If $Y\setminus \{e\}$ is a free algebraic basis for gp(Y) and Y is regularly situated with respect to X,

then qp(Y) = F(Y).

In the study of free topological groups the class of $\ k_{\omega}^{}$ -spaces plays a central role.

DEFINITIONS. A Hausdorff space X is said to be a k_{ω} -space [7] if it has a countable family of compact subspaces $X_1 \subseteq X_2 \subseteq \ldots$, such that $X = \bigcup_{n=1}^{\infty} X_n$ and a subset A of X is closed if and only if $A \cap X_n$ is closed for all n. We call $X = \cup X_n$ a k_{ω} -decomposition.

Note that if a subspace A of X is compact, then $A\subseteq X_n$ for some n.

THEOREM B. [5,7] If X is a compact Hausdorff space then F(X) is a k_n -space with k_n -decomposition $F(X) = uF_n(X)$.

We shall use the following result.

LEMMA. [6, p. 127] For any $w \in F(X) \setminus \{e\}$ there is an $l \in F(X)$ and $c \in F(X) \setminus \{e\}$ such that $w = lcl^{-1}$ where c has reduced form $c = x_1 \dots x_n$ with $x_i \in X \setminus \{e\}$ for $i = 1, \dots, n$ for some $n \ge 1$, and $x_1 \ne x_n^{-1}$. Further, for any $t \ge 1$, $w^t = lc^t l^{-1}$ and c^t has reduced form $x_1 \dots x_n x_1 \dots x_n \dots x_n \dots x_n$.

Moreover, either l = e or $le^t l^{-1}$ is the reduced form of w^t .

3. Results

Our first result generalizes Theorem A above and also Lemma 3.6 of [9].

THEOREM 1. Let F(X) be the Graev free topological group on a Tychonoff space X. Let $Y \ni \{e\}$ be a compact subspace of F(X) such that $Y \setminus \{e\}$ is an algebraic free basis for the group it generates. If Y is regularly situated with respect to X, then gp(Y) is the Graev free topological group on Y.

Proof. Let $F(\beta X)$ be the Graev free topological group on the Stone-Čech compactification of X and Φ the continuous injective

homomorphism of F(X) into $F(\beta X)$ induced by the canonical embedding of X in βX .

Clearly $\Phi(Y)$ is a compact subspace of $F(\beta X)$ such that $\Phi(Y)\setminus \{e\}$ is a free algebraic basis for $gp(\Phi(Y))$ and $\Phi(Y)$ is regularly situated with respect to βX . Therefore by Theorem A, $gp(\Phi(Y)) = F(\Phi(Y)) = F(Y)$.

As Φ is a continuous injective homomorphism of $gp(Y) \subseteq F(X)$ onto $gp(\Phi(Y)) = F(Y)$ the topology of gp(Y) is finer than the free topology of F(Y). But this implies gp(Y) = F(Y), as required.

THEOREM 2. Let X be any Tychonoff space and F(X) the Graev free topological group on X. Let y_1, \ldots, y_n, \ldots , be a non-trivial sequence in F(X) converging to e. If $Y = (\bigcup_{n=1}^{\infty} \{y_n\} \bigcup \{e\})$ then gp(Y) has a closed subgroup topologically isomorphic to F(Y).

Proof. By Theorem 1 it suffices to find a subsequence $z_1, \ldots z_n \ldots$, such that the compact space $Z = (\bigcup_{i=1}^{\infty} \{z_i\} \bigcup \{e\})$ is regularly situated with respect to X and $Z \setminus \{e\}$ is a free algebraic basis for gp(Z).

We choose the subsequence as follows. Let βX , $F(\beta X)$, and Φ be as in the proof of the previous result. As $\Phi(Y)$ is a compact subspace of $F(\beta X)$ and $F(\beta X)$ is a k_{ω} -space, $\Phi(Y) \subseteq F_N(\beta X)$ for some N, by Theorem B and the note that precedes it. Hence $Y \subseteq F_N(X)$ for this N. Therefore there is a subsequence of distinct words z_1, \ldots, z_n, \ldots , each of which lies in $F_M(X) \setminus F_{M-1}(X)$ for some fixed $M \le N$. By the Lemma in §2 we can find reduced words l_i and c_i with $c_i \ne e$ such that $z_i^t = l_i c_i^t l_i^{-1}$, for $t = 1, 2, \ldots$, and either this is the reduced form of z_i^t or $l_i = e$ and $z_i^t = c_i^t$ in reduced form. Since the l_i have lengths $i \le M$ we can choose a subsequence of $i \le 1, \ldots, i \le N$, for which the $i \le 1, \ldots, i \le N$ we can choose a subsequence of $i \le 1, \ldots, i \le N$ we can choose a subsequence of $i \le 1, \ldots, i \le N$, for which the $i \le 1, \ldots, i \le N$ we can choose a subsequence of $i \le 1, \ldots, i \le N$ we can choose a subsequence of $i \le 1, \ldots, i \le N$ we can choose a subsequence of $i \le 1, \ldots, i \le N$ we can choose a subsequence of $i \le 1, \ldots, i \le N$ we can choose a subsequence of $i \le 1, \ldots, i \le N$ we can choose a subsequence of $i \le 1, \ldots, i \le N$ we can choose a subsequence of $i \le 1, \ldots, i \le N$ we can choose a subsequence of $i \le 1, \ldots, i \le N$ which the $i \le 1, \ldots, i \le N$ we can choose a subsequence of $i \le 1, \ldots, i \le N$ which the $i \le 1, \ldots, i \le N$ which there are infinitely many distinct $i \le 1, i \le 1$ and relabelling we assume the sequence $i \le 1, \ldots, i \le N$ satisfies $i \le 1, i \le 1$

 $l_i \neq l_j^{-1}$ and $l_i \neq e$ for all i and $j \neq i$, or we can choose a subsequence of the z_i such that, with relabelling, $l_i = l$, a fixed word, for all i.

If l_i = l for all i, the c_i are all distinct and have fixed length and we choose a further subsequence of z_1, \ldots, z_n, \ldots , as follows. Let a_1, \ldots, a_q be the essential elements of l. We now choose a subsequence of the c_i 's.

Let $X_1 = \{x \in X \setminus \{a_1, \dots, a_q\} : x \text{ is an essential element of } z_i$

for some $i \ge 1$. Since each $z_i \in F_N(X)$ and the z_i are distinct, X_1 is countably infinite. Define $G(z_i)$, i = 1, 2, ..., inductively as follows. Let $G(z_1) = \{x \in X_1 : x \text{ is an essential element of } z_1.\}$ Having defined $G(z_i)$, for $1 \le i \le k$, let $\mathit{G}(z_{k+1}) \ = \ \{x \ \in \ \mathit{X}_1 \backslash \bigcup \ \underset{i=1}{\overset{k}{\underset{i=1}{\longleftarrow}}} \ \mathit{G}(z_i) \ : x \quad \text{is an essential element of} \quad z_{k+1}\} \ .$ Thus $G(z_i) \cap G(z_j) = \emptyset$ for all $i \neq j$, $\bigcup_{i=1}^{\infty} G(z_i) = X_1$, and $G(z_i)$ has at most N elements for each i. So $G(z_i) \neq \emptyset$ for an infinite number of z_i . Deleting the z_i for which $G(z_i) = \emptyset$ and relabelling the sequence thus obtained, we can assume that $G(z_i) \neq \emptyset$ for all i. Now given any subsequence T of z_1, \ldots, z_n, \ldots , and z_i, \ldots, z_i there exists $j \in \{1, ..., N+1\}$ and $x \in G(z_i)$ and a subsequence T_1 of Tsuch that x is not an essential element of any term z_1 of T_1 . This follows since $z_k \in F_N(X)$ for all terms z_k of T and the $G(z_i)$. are non-empty and pairwise disjoint for $j \in \{1, ..., N+1\}$. Denote the sequence z_1, \ldots, z_n, \ldots by S_1 and let z_{i_1} be the first term of S_1 for which there exists $b_1 \in {\it G(z_{i_1})}$ and a subsequence S_2 of S_1 such that b_1 is not an essential element of any term of S_2 . Let z_i be the first term of S_2 for which there exists $b_2 \in G(z_i)$ and a

subsequence S_3 of S_2 such that b_2 is not an essential element of any term of S_3 . Continue this process inductively. Relabelling z_i as z_j and c_i as c_j , we obtain a sequence z_1,\ldots,z_n,\ldots , converging to e. Further, as $b_i \notin \{a_1,\ldots,a_q\},\ b_i$ is an essential element of c_i but b_i is not an essential element of c_j for $j \neq i$. So $z_i = lc_i l^{-1}$ and $c_i = d_i^{-1} f_i g_i$ where b_i is not an essential element of d_i or g_i , and f_i begins and ends with elements from the set $\{b_i,b_i^{-1}\}$. Moreover this is the reduced form of c_i with respect to X provided d_i^{-1} is deleted if $d_i = e$ and g_i is deleted if $g_i = e$.

We now show that in both cases ($l_i=l$ for all i and $l_j \neq l_i \neq l_j^{-1}$ for all $i \neq j$) the set Z is regularly situated with respect to X and $Z \setminus \{e\}$ is a free algebraic basis for gp(Z). We do this by verifying the following: if $w_n \in gp(Z)$ has reduced form $z_{i_1}^{\epsilon_1} \dots z_{i_n}^{\epsilon_n}$ with respect to Z, where $\epsilon_j = \pm 1$, $1 \leq j \leq n$, then the length of w_n with respect to X is at least n. We proceed by induction.

If all the l_i are distinct the induction hypothesis is that, with respect to X, w_n has reduced form $l_i u_i c_i^{\epsilon_n} l_i^{-1}$ where u_n , $n \geq 2$, contains the words $c_{i_1}^{\epsilon_1}, \ldots, c_{i_{n-1}}^{\epsilon_{n-1}}$ and $u_1 = e$. This is clear for n = 1. so assume it is true for n = k.

Let $w_{k+1} \in gp(Z)$ have reduced form $z_{i_1}^{\epsilon_1} \dots, z_{i_k}^{\epsilon_k} z_{i_{k+1}}^{\epsilon_{k+1}}$ with respect to Z. Thus $w_{k+1} = w_k z_{i_{k+1}}^{\epsilon_{k+1}} = l_{i_1} w_k c_{i_k}^{\epsilon_k} l_{i_k}^{-1} l_{i_k} c_{i_{k+1}}^{\epsilon_{k+1}} l_{i_{k+1}}^{-1}$. Let $l_{i_k}^{-1} l_{i_{k+1}} = v$ and $l_{i_k}^{-1} l_{i_k} = v$

length, w_{k+1} has reduced form l_i $u_{k+1}c_i$ l_{k+1}^{-1} , with respect to X.

(Note that if $z_i^{\epsilon_k} = z_{i+1}^{\epsilon_{k+1}}$ then v = e and $c_i^{\epsilon_k} = c_{k+1}^{\epsilon_{k+1}}$ so no capacillation can occur between e^{ϵ_k} and $e^{\epsilon_{k+1}}$.) This resultates the

cancellation can occur between $c_i^{\epsilon}{}_k$ and $c_{i_{k+1}}^{\epsilon}$.) This completes the proof for the case of distinct l_i .

Assume now that $l_i=l\neq e$ for all i. Let $h_{i_n}=g_{i_n}$ if $\epsilon_n=1$ and $h_{i_n}=d_{i_n}$ if $\epsilon_n=-1$. The induction hypothesis is that w_n has representation $lu_nf_{i_n}^{\epsilon_n}h_{i_n}t^{-1}$ where u_n , $n\geq 2$, contains the words $f_{i_1}^{\epsilon_1}$,..., $f_{i_{n-1}}^{\epsilon_{n-1}}$ and $u_1=t^{-1}$ where $t=d_{i_1}$ if $\epsilon_1=1$ and $t=g_{i_1}$ if $\epsilon_1=-1$. The induction hypothesis further asserts that this representation is reduced, with respect to X, provided the term h_{i_n} is deleted if $h_{i_n}=e$ and the term u_1 is deleted if $u_1=e$. Let $w_{k+1}\in gp(Z)$ have reduced representation $z_{i_1}^{\epsilon_1}\dots z_{i_k}^{\epsilon_k}z_{i_{k+1}}^{\epsilon_{k+1}}$ with respect to z. Thus $w_{k+1}=v_kz_{i_{k+1}}^{\epsilon_{k+1}}$. We consider the case $\epsilon_{k+1}=1$; the case $\epsilon_{k+1}=-1$ is similar. Thus $w_{k+1}=lu_kf_{i_k}^{\epsilon_k}h_{i_k}t^{-1}ld_{i_{k+1}}^{-1}f_{i_{k+1}}g_{i_{k+1}}t^{-1}$.

Let $h_i d_{k}^{-1} = v$ in reduced form with respect to X and $u_{k+1} = u_k f_{i_k}^{\epsilon_k} v$. If $f_{i_k}^{\epsilon_k} = f_{i_{k+1}}$ then $c_{i_k}^{\epsilon_k} = c_{i_{k+1}}$. Then by choice of c_i and f_i , $f_{i_k}^{\epsilon_k} v f_{i_{k+1}}$ is in reduced form with respect to X, except possibly v = e, and the result follows. Otherwise the result follows by noting that $f_{i_k}^{\epsilon_k}$ ends in $b_{i_k}^{\delta_k}$ and $f_{i_{k+1}}$ begins with $b_{i_{k+1}}^{\delta_{k+1}}$, where

 δ_k , $\delta_{k+1} \in \{-1,1\}$ and $b_{i_k} \neq b_{i_{k+1}}$.

If $l_i=e$ for all i we repeat the previous argument deleting the l's and l⁻¹'s. This completes the proof. \Box The following Theorem generalizes Theorem 3.9 of [9].

THEOREM 3. Let F(X) be the Graev free topological group on a Tychonoff space and G a subgroup of F(X). If G is a sequential space then it is sequential of order ω_1 or is discrete.

Proof. As G is sequential its sequential order is $\leq \omega_1$. Either G is discrete or G contains a non-trivial sequence $y_1,\ldots y_n,\ldots$, convergent to a point $y\in G$. Multiplying the $y_i's$ by y^{-1} and relabelling $y^{-1}y_i$ as y_i we can assume the sequence y_1,\ldots,y_n,\ldots , converges to e. By Theorem 2, $G\supseteq F(Z)$ which is a k_ω -group and hence closed. Thus by Theorem 3.7 of [9], G contains S_ω a space of sequential order ω_1 . Hence G is sequential of order ω_1 .

COROLLARY 1. Let F(X) be the Graev free topological group on a Tychonoff space X and G a metrizable or Frechet subgroup of F(X). Then G is discrete.

Remark. The analogue of Theorem 2 for Graev free abelian topological groups is also true.

Proof. Once again there exists an integer N such that $y_i \in F_N(X)$, for all i. As in the proof of Theorem 2, since each y_i has only a finite number of essential elements it is possible to choose a subsequence z_1, \ldots, z_n, \ldots , such that b_i is an essential element of z_i but not of any z_j , $j \neq i$. It is obvious in the abelian case that if $Z = \{z_1, \ldots, z_n, \ldots\}$ or $\{e\}$, any word w in gp(Z) has reduced length with respect to X greater than or equal to its reduced length with respect to $Z \setminus \{e\}$. Hence gp(Z) is the free abelian topological group on Z, as required.

As a consequence of this we see that the analogues for Graev free abelian topological groups of Theorem 3 and Corollary 1 are also true. (Note that the proof of the abelian analogue of Theorem 3.7 of [9] is similar to the non-abelian case.)

Finally we note that it is easily verified that the analogues for Markov free topological groups [8] of Theorems 2 and 3 and Corollary 1 are also valid.

References

- [1] A.V. Arhangel'skii and S.P. Franklin, "Ordinal invariants for topological spaces", *Michigan Math. J.* 15 (1968), 313-320.
- [2] Ryszard Engelking, General topology, (Mathematical Monographs, 60 P.W.N. Polish Scientific Publishers, Warsaw 1977).
- [3] S.P. Franklin, "Spaces in which sequences suffice", Fund. Math. 57 (1965), 107-115.
- [4] S.P. Franklin, "Spaces in which sequences suffice II", Fund Math. 61 (1967), 51-56.
- [5] M.I..Graev, "Free topological groups", Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 279-324 (Russian), English transl. Amer. Math. Soc. Translation no. 35,61 pp. (1951), Reprint, Amer. Math. Soc. Transl. (1) 8 (1962), 305-364.
- [6] A.G. Kurosh, *Theory of Groups*, Vol. 1 (Chelsea Publishing Company, New York, 1960).
- [7] John Mack, Sidney A. Morris and Edward T. Ordman, "Free topological groups and the projective dimension of a locally compact abelian group", *Proc. Amer. Math. Soc.* 40 (1973), 303-308.
- [8] Sidney A. Morris, "Free abelian topological groups", Categorical Topology Proc. Conference Toledo, Ohio, (1983) 375-391 (Heldermann Verlag, Berlin, 1984).
- [9] Edward T. Ordman and Barbara V. Smith-Thomas, "Sequential conditions and free topological groups", *Proc. Amer. Math. Soc.* 79 (1980), 319-326.

Department of Mathematics, La Trobe University, Bundoora, Vic. 3083 Australia.

Department of Mathematics, University of Queensland, St. Lucia, Qld. 4067, Australia.