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ABSTRACT

It is proved that a compact Hausdorff group is topologically isomorphic to the topological group of
p-adic integers, for some prime number p, if and only if all of its non-trivial proper closed subgroups are
topologically isomorphic.

Introduction and preliminaries

Armacost [1] gives characterizations of some important locally compact abelian
groups in terms of their closed subgroups. One of these (families of) groups is Ap,
the topological group of p-adic integers, where p is any prime number. (See [4, §10;
2] for a description of Ap.) If G = Ap, then its non-trivial proper closed subgroups
are pnG, where n ranges over the set of positive integers. Further, Ap is a compact
Hausdorff totally disconnected group and each of its closed subgroups is open, of
finite index and topologically isomorphic to Ap. Armacost [1] proved that a compact
Hausdorff abelian topological group G is topologically isomorphic to Ap, for some
prime number p, if and only if all of its non-trivial proper closed subgroups are
topologically isomorphic. We prove that the assumption that G is abelian can be
omitted.

In what follows the identity of a group is denoted by 1, [g,h] denotes ghg~lh~l

and Cn the cyclic group of order n, where n is a positive integer. If G is any group
then Z(G) denotes the centre of G. For any subset S of G, gp {S} denotes the subgroup
of G generated by S and gp{5} the closure of gp {S}. The circle group is denoted by T.

Results

LEMMA. Let G be a torsion-free group with its centre Z(G) having finite index in
G. If there exists a prime number p such that every proper subgroup ofG which contains
Z(G) is algebraically isomorphic to Ap, then G is abelian.

Proof. Suppose that G is non-abelian. Then the factor group K = G/Z{G) is not
a cyclic group. Since every factor group of Ap is a finite cyclicp-group, ATis a non-cyclic
p-group all of whose proper subgroups are cyclic. Clearly the only abelian group with
this property is Cp x Cp and it follows from [6, p. 149, Theorem 17] that the only
non-abelian group with this property is the quaternion group of order eight. So there
are two cases to consider.

(I) Assume K is algebraically isomorphic to Cp x Cp. Then

G = gp {a, b, Z(G): a* = c, b* = d, [a, b] = e, c, d, e e Z(G)}.
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Now if ce(Z(G))», then c = /*>, where feZ(G) and so {af~l)p = 1, while af~l * 1.
Thus af~l is a torsion element of G, which is impossible. Hence c$(Z(G))p. Similarly
d${Z{G))v. Thus, c,deZ{G)\{Z(G))p. As Z(G) is algebraically isomorphic to Ap,
Z(G)/(Z(G))P is algebraically isomorphic to Cp. So we must have

d = csgp, \^s^p-\, geZ(G).

Then, by [6, p. 81 (10)],

(ap~sb)p = (ap)p~8bp[b,ap~s]p(p~l) = cp~sde~{p~s)p(p~l)l2 = kp

where keZ(G), if p > 2. Once again we have a torsion element of G, which is a
contradiction.

Ifp = 2, the result follows if e e (Z(G))2. Otherwise d = eg2, e = ch\ for g,he Z(G),
and (ab)2 = ccg2c-ih~2 = a2k2, where keZ(G). So a~1bab = k2; that is,
a - ^ a = fcty"1. Thus a - ^ a = k*b~2. But 6"2 is central, so b2 = A:4/?"2; that is, b* = A:4.
So (bk~lY = 1, and again we have a torsion element. Hence K is not algebraically
isomorphic to Cp x Cp.

(II) Assume that # is algebraically isomorphic to Q, the quaternion group of
order eight. Then G = gp {a, b, Z((7)}, where, since Q has generating relations
a2 = b2 = (ab)2, we have a2 = b2c, and a2 = (a6)V, for c, de Z(G). But a2 = 62c implies
that both a and A commute with a2. So a2 is central in G; that is, a2eZ(G). Hence
£ cannot be algebraically isomorphic to Q.

Thus G must be abelian.

THEOREM. Let G be an infinite compact Hausdorff group. Then the following are
equivalent:

(i) G is topologically isomorphic to Ap;
(ii) all non-trivial closed subgroups ofG are topologically isomorphic to G;

(iii) all non-trivial proper closed subgroups ofG are topologically isomorphic.

Proof. By [2, Theorem 1.10], (i) implies (ii), while (ii) clearly implies (iii). So it
suffices to prove that (iii) implies (i).

Assume (iii) is true. Let g be any element of G, and let Sg denote the closure of
gp {g}. Then Sg is a compact Hausdorff abelian group having the property that all of
its non-trivial proper closed subgroups are topologically isomorphic. So by [2,
Theorem 1.10], Sg is topologically isomorphic to Ap. Therefore, from our assumption,
all non-trivial proper closed subgroups of G are topologically isomorphic to Ap. This
implies, in particular, that G is torsion-free.

Let C(G) be the component of 1. As Ap is totally disconnected, while C(G) is
connected, either C(G) = G or C(G) = {1}.

If C(G) = G, then G is a compact connected Hausdorff group. So, by the
Peter-Weyl Theorem [5, pp. 62-65], G has a closed normal subgroup Af such that G/N
is a connected Lie group (indeed a closed subgroup of a unitary group). Further, by
[3, p. 159] each x e G/N\ies in a closed subgroup Ax topologically isomorphic to a torus
Tn, for some positive integer n. Let <f> be the quotient mapping of G onto G/N. Then
<f>~l{A^) is a closed non-trivial subgroup ofG. If ^'^A^ ^ G, then it is topologically
isomorphic to Ap. But then Tn would be a quotient group of Ap, which is impossible
as all of the closed subgroups of Ap have finite index. So <ft~l(A^) = G; that is, G/N
is topologically isomorphic to Tn. If {Nt:iel} is the family of all closed normal
subgroups of G such that G/N is a Lie group, then the Peter-Weyl Theorem implies
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that G is topologically isomorphic to a subgroup of n i e / G/N^ But as each G/Nt is
topologically isomorphic to Tn< it is abelian, and hence G too is abelian. Then by (iii)
and [2, Theorem 1.10], G is topologically isomorphic to Ap. This is a contradiction,
since G was assumed to be connected.

Therefore C(G) = {1}; that is, G is totally disconnected. Then, by [4, Theorem 7.7]
G has a basis at the identity consisting of compact open normal proper non-trivial
subgroups. Each of these subgroups is topologically isomorphic to Ap. Let B be any
one of these subgroups and E any non-trivial proper closed subgroup of G. Then
B 0 E is a closed subgroup of B. But B is topologically isomorphic to Ap, and so each
of its non-trivial closed subgroups is also open in B. If B n E = {1}, then {1} would
be open in E, and so E would be discrete. But this is not so, because E is topologically
isomorphic to Ap. Hence B n E is open in B, and hence also in G. As £ is a union
of cosets of B n E, E is open in G. Because G is compact, this implies E has finite
index in G.

To sum up so far, we have shown that G is torsion-free and every non-trivial proper
closed subgroup is open, has finite index in G, and is topologically isomorphic to Ap.

Suppose that g and h belong to G and are such that gh ^ hg. Put Sg — gp {g},
$h = gpW. X = gp {g, h) and /= Sg n Sh. Then F, being the intersection of two open
subsets of G, is open in G. As G is not discrete, F is non-trivial. As every element of
Fcommutes with g and h, Fis a subgroup of Z ^ ) . Hence Z(A') is a non-trivial proper
closed and open subgroup of A'of finite index. Observe that any proper subgroup of
X which contains Z{X) is a union of cosets of Z(X) and so is open (and closed) in
X. Hence the subgroup is topologically isomorphic to Ap. Thus X satisfies the
conditions of the Lemma, and so is abelian. But this is a contradiction. Therefore,
for all g and h in G, gh = hg; that is, G is abelian. Then by (iii) and [2, Theorem 1.10],
G is topologically isomorphic to Ap.
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