Free subgroups of free abelian topological groups

BY E. KATZ

Cleveland State University, Cleveland, OH 4415, U.S.A.

S. A. MORRIS

La Trobe University, Bundoora, Vic. 3083, Australia

AND P. NICKOLAS

University of Wollongong, Wollongong, N.S.W. 2500, Australia

(Received 29 October 1985)

1. Introduction

In this paper we prove a theorem which gives general conditions under which the free abelian topological group F(Y) on a space Y can be embedded in the free abelian topological group F(X) on a space X.

Roughly speaking, the theorem yields three classes of examples. Firstly, if Y is 'nice enough' and is a subspace of X, then F(Y) can be embedded in F(X). For example, if $Y = \mathbb{R}^n$, for any positive integer n, and X is any completely regular Hausdorff space containing \mathbb{R}^n , then $F(\mathbb{R}^n) \leq F(X)$, For n = 1 and X = [0, 1] this yields the main result of [3]. Secondly, if X is 'nice enough' and there is a continuous one-to-one mapping of Y into X, then $F(Y) \leq F(X)$. For example, if X is the Hilbert cube I^{∞} , then a necessary and sufficient condition for F(Y) to be a subgroup of F(X) is that Y is a submetrizable k_{ω} -space. Thirdly, if Y is 'nicely embedded' in X, then $F(Y) \leq F(X)$. For example, if $X = [0, 1]^{n+1}$ and Y is a k_{ω} -space which is embedded in X in such a way that $Y \subseteq [0, 1]^n \subseteq [0, 1]^{n+1} = X$, then $F(Y) \leq F(X)$.

2. Preliminaries

We first record the necessary definitions and background results.

A Hausdorff topological space X is said to be a k_{ω} -space with k_{ω} -decomposition $X = \bigcup_n X_n$ if X_n is compact, $X_n \subseteq X_{n+1}$ for $n = 1, 2, 3, \ldots$ and X has the weak topology with respect to the sets X_n .

Definition. If X is a topological space with distinguished point e, the abelian topological group F(X) is said to be the (Graev) free abelian topological group on X if

(a) the underlying group of F(X) is the free abelian group with free basis $X \setminus \{e\}$ and identity e, and

(b) the topology of F(X) is the finest topology on the underlying group which makes it into a topological group and induces the given topology on X.

If X is any completely regular space, then F(X) exists, is unique, and is independent of the choice of e in X. Further, F(X) is algebraically the free abelian group on $X \setminus \{e\}$. If X is also Hausdorff, then F(X) is Hausdorff and has X as a closed subspace [5]. For k_{ω} -spaces, one can say rather more: THEOREM A [4]. Let $X = \bigcup X_n$ be any k_{ω} -space with distinguished point e. Then F(X) is a k_{ω} -space and F(X) has k_{ω} -decomposition $F(X) = \bigcup_n \operatorname{gp}_n(X_n)$, where $\operatorname{gp}_n(X_n)$ is the set of words of length not exceeding n in the subgroup generated by X_n .

Remark. It is known [1] that every k_{ω} -topological group is a complete topological group.

Definition. Let $X = \bigcup X_n$ be a k_{ω} -space, and let $Y = \bigcup Y_n$ be a closed k_{ω} -subspace of F(X). Then Y is said to be *regularly situated* with respect to X if for each natural number n there is an integer m such that $gp(Y) \cap gp_n(X_n) \subseteq gp_m(Y_m)$.

THEOREM B [4]. If X is a k_{ω} -space and Y is a closed subset of F(X) such that $Y \setminus \{e\}$ is a free algebraic basis for gp (Y), and Y is regularly situated with respect to X, then gp (Y) is F(Y).

3. Results

THEOREM 1. Let X be any completely regular Hausdorff space, $Y = \bigcup Y_n a k_{\omega}$ -space, Γa one-to-one continuous mapping of Y into X, and e any point of $\Gamma(Y_1)$. If, for each $n \in \mathbb{N}$, is a continuous function

$$f_n \colon \Gamma((Y_n \backslash Y_{n-1}) \cup \partial_{Y_n}(Y_{n-1})) \to \Gamma(Y_n) \cup (X \backslash \Gamma(Y))$$

where $Y_0 = \emptyset$, such that

(i) $f_n(\Gamma(y)) = \Gamma(y)$, for $y \in \partial_{Y_{n+1}}(Y_n)$, (ii) $f_n(\Gamma(y)) = e$, for $y \in \partial_{Y_n}(Y_{n-1})$, then $\theta: Y \to F(X)$ given by

$$\theta(y) = (n+1) \Gamma(y) + f_n(\Gamma(y)) \quad \text{for} \quad y \in Y_n \setminus Y_{n-1}$$

extends to an embedding of F(Y) in F(X).

Proof. Initially assume that X is compact. We must show firstly that $\theta: Y \to \theta(Y)$ is a homeomorphism. Let $y_1, y_2 \in Y, y_1 \neq y_2$. Suppose $\theta(y_1) = \theta(y_2)$. If $y_1, y_2 \in Y_n \setminus Y_{n-1}$, then $(n+1)\Gamma(y_1) + f_n(\Gamma(y_1)) = ((n+1)\Gamma(y_2) + f_n(\Gamma(y_2))$, and as $n \ge 1$, we have $\Gamma(y_1) = \Gamma(y_2)$, which implies that $y_1 = y_2$, a contradiction. Therefore, without loss of generality, $y_1 \in Y_n \setminus Y_{n-1}$ and $y_2 \in Y_n \setminus Y_{n-1}$, for some $n_1 \le n-1$. But

$$\begin{split} \theta(y_2) &= (n_1 + 1) \, \Gamma(y_2) + f_{n_1}(\Gamma(y_2)), \\ f_{n_1}(\Gamma(y_2)) &\in \Gamma(Y_{n_1}) \cup (X \setminus \Gamma(Y)) \subseteq \Gamma(Y_{n-1}) \cup (X \setminus \Gamma(Y)), \end{split}$$

and

so that $\theta(y_2) \neq \theta(y_1) = (n+1) \Gamma(y_1) + f_n(\Gamma(y_1))$. Hence θ is one-to-one.

To see that θ is continuous, observe firstly that for each $n \in \mathbb{N}$ and for all

$$y \in (Y_n \setminus Y_{n-1}) \cup \partial_{Y_n}(Y_{n-1}), \quad \theta(y) = (n+1) \, \Gamma(y) + f_n(\Gamma(y))$$

As Y is a k_{ω} -space, it suffices to show that $\theta|Y_n$ is continuous for all n. We show this by induction, by observing that $\theta|Y_1$ is continuous and that if $\theta|Y_{n-1}$ is continuous, then as $\theta|(Y_n \setminus Y_{n-1}) \cup \theta_{Y_n}(Y_{n-1})$ is continuous, $\theta|Y_n$ is continuous, since

$$Y_n = Y_{n-1} \cup [(Y_n \setminus Y_{n-1}) \cup \partial_{Y_n}(Y_{n-1})]$$

and both Y_{n-1} and $(Y_n \setminus Y_{n-1}) \cup \partial_{Y_n}(Y_{n-1}) = (\overline{Y_n \setminus Y_{n-1}})$ are closed sets.

We now claim that $\theta(Y)$ is a closed subset of F(X). As $\theta(Y) \cap F_n(X) = \theta(Y_n) \cap F_n(X)$, which is compact and hence closed, the k_{ω} -property of F(X) implies that $\theta(Y)$ is closed in F(X). Further the above equality then shows that $\theta(Y)$ is a k_{ω} -space with k_{ω} -decomposition $\bigcup \theta(Y_n)$.

As each $\theta | Y_n$ is a homeomorphism, it follows that $\theta: Y \to \theta(Y)$ is a homeomorphism.

The next step is to show that $\theta(Y) \setminus \{e\}$ is an algebraically free basis for the group it generates, and that $\theta(Y)$ is regularly situated with respect to X. Let w be any word in gp $(\theta(Y)) \setminus \{e\}$ with reduced representation in gp $(\theta(Y))$

$$w = m_1 \theta(y_1) + m_2 \theta(y_2) + \dots + m_l \theta(y_l)$$

= $m_1[(n_1 + 1) \Gamma(y_1) + f_{n_1}(\Gamma(y_1))] + \dots + m_l[(n_l + 1) \Gamma(y_l) + f_{n_l}(\Gamma(y_l))].$ (1)

The length of w with respect to $\theta(Y)$ is $\sum_{i=1}^{l} |m_i|$. Now as no $\Gamma(y_i)$ can cancel $\Gamma(y_j)$ for $j \neq i$, the length of w with respect to X is at least

$$|m_1|(n_1+1)+\ldots|m_l|(n_l+1)-|m_1|-|m_2|-\ldots-|m_l|$$

$$\geq 2|m_1|+\ldots+2|m_l|-|m_1|-\ldots-|m_l|$$

$$=|m_1|+\ldots+|m_l|.$$

Thus the length of w with respect to X is greater than or equal to the length of w with respect to $\theta(Y)$; that is,

$$\operatorname{gp}(\theta(Y)) \cap \operatorname{gp}_n(X) \subseteq \operatorname{gp}_n(\theta(Y)).$$
 (2)

From this we see that $\theta(Y) \setminus \{e\}$ is algebraically a free basis for $gp(\theta(Y))$.

To prove that $\theta(Y)$ is regularly situated with respect to X, we shall extend (2) to

$$\operatorname{gp}(\theta(Y)) \cap \operatorname{gp}_n(X) \subseteq \operatorname{gp}_n(\theta(Y_n)).$$
 (3)

To do this, consider a word w, as in (1), and suppose, without loss of generality, that

$$y_1, y_2, \dots, y_s \in Y_{n_1} \setminus Y_{n_1-1}$$
 and $y_{s+1}, \dots, y_{l_1} \in Y_{n_1-1}$.

We claim that, after all possible cancellation, at least one of the following must appear in the reduced representation of w with respect to X:

$$m_1(n_1+1)\Gamma(y_1), m_1n_1\Gamma(y_1), m_2(n_1+1)\Gamma(y_2), m_2n_1\Gamma(y_2), \dots, m_s(n_1+1)\Gamma(y_s), m_sn_1\Gamma(y_s).$$

In the word w consider the block

$$m_1[(n_1+1)\Gamma(y_1)+f_{n_1}(\Gamma(y_1))]+\ldots+m_s[(n_1+1)\Gamma(y_s)+f_{n_1}(\Gamma(y_s))],$$

where, without loss of generality, m_1 is greater than or equal to m_2, \ldots, m_s .

Step 1 is to observe that, since Γ is one-to-one, no $\Gamma(y_i)$, i = 1, ..., s, can be cancelled out by $\Gamma(y_i)$, for $j \neq i$.

Step 2 is to observe that no $f_{n_j}(\Gamma(y_j))$, j > s, can cancel out a $\Gamma(y_i)$, for i = 1, ..., s. Step 3 is to consider the case when for all

$$i, j = 1, ..., s$$
 and $i \neq j, f_{n_1}(\Gamma(y_i)) \neq f_{n_1}(\Gamma(y_j))$.

It is readily seen using steps 1 and 2 that, since $m_1 \ge \max\{m_2, ..., m_s\}$, in the reduced representation of $w, m_1 n_1 \Gamma(y_1)$ must appear.

Step 4 is to consider the case when $f_{n_1}(\Gamma(y_i)) = f_{n_1}(\Gamma(y_j))$, for some $i, j \in \{1, ..., s\}$, $i \neq j$. Then at most s - 1 of $\Gamma(y_1), \ldots, \Gamma(y_s)$ can equal one of $f_{n_1}(\Gamma(y_1)), \ldots, f_{n_1}(\Gamma(y_s))$, and so for some $k \in \{1, ..., s\}$,

$$\Gamma(y_k) \neq f_{n_1}(\Gamma(y_r)), \text{ for } r = 1, \dots, s.$$

Hence the term $m_k(n_1+1)\Gamma(y_k)$ appears in the reduced representation of w. This completes the proof that $\theta(Y)$ is regularly situated with respect to X.

Thus we have proved the theorem for the case when X is compact.

It remains to consider the case when X is not compact. Here let $\beta: X \to \beta X$ be the embedding of X in its Stone-Čech compactification βX . Then β extends to a continuous one-to-one homomorphism $\beta: F(X) \to F(\beta X)$. As $\beta: X \to \beta X$ is an embedding, $\beta: \Gamma(Y) \to \beta(\Gamma(Y))$ is a homeomorphism. Defining $\theta: Y \to F(X)$ as earlier, we see that gp $(\theta(Y))$ is algebraically free on $\theta(Y) \setminus \{e\}$. Also applying the theorem as proved so far with X, Γ, f_n replaced, respectively, by $\beta X, \beta \Gamma, \beta f_n$, and with Y as before, we obtain a map $\theta': Y \to F(\beta X)$ which extends to an embedding of F(Y) in $F(\beta X)$. Clearly $\theta' = \beta \theta$, and the fact that θ' extends to an embedding of F(Y) in $F(\beta X)$ then implies that θ extends to an embedding of F(Y) in F(X).

An important special case of Theorem 1 is when Y is a subspace of X and Γ is the natural embedding:

COROLLARY 1. Let X be any completely regular Hausdorff space, $Y = \bigcup Y_n$ a k_{ω} -space which is a (not necessarily closed) subspace of X, and e any point of Y_1 . If for each $n \in \mathbb{N}$ there is a continuous function

$$f_n: Y_n \setminus Y_{n-1} \cup \partial_{Y_n}(Y_{n-1}) \to Y_n \cup X \setminus Y,$$

where $Y_0 = \emptyset$, such that

(i) $f_n(y) = y$, for $y \in \partial_{Y_{n+1}}(Y_n)$,

(ii) $f_n(y) = e$, for $y \in \partial_{Y_n}(Y_{n-1})$,

then $\theta: Y \to F(X)$ given by

$$\theta(y) = (n+1)y + f_n(y), \text{ for } y \in Y_n \setminus Y_{n-1}$$

extends to an embedding of F(Y) in F(X).

As a consequence of the proof of Theorem 1, we obtain:

COROLLARY 2. In the notation of the above theorem, if each f_n maps

$$\Gamma((Y_n \backslash Y_{n-1}) \cup \partial_{Y_n}(Y_{n-1}))$$

into $\Gamma(Y_n)$ then gp ($\Gamma(Y)$) has a subgroup topologically isomorphic to F(Y).

Roughly speaking, Corollary 2 implies that if Y is a subspace of X and Y is 'nice enough', then gp(Y) contains F(Y), irrespective of the space X. For example, this is the case when $Y = \mathbb{R}^n$.

COROLLARY 3. Let X be any completely regular Hausdorff space and n any positive integer. If X has \mathbb{R}^n as a subspace, then F(X) has $F(\mathbb{R}^n)$ as a topological subgroup.

Proof. \mathbb{R}^n has k_{ω} -decomposition $\bigcup Y_n$, where $Y_n = \{x \in \mathbb{R}^n : |x| \leq n\}$, and the domain of f_n must then be $\{x \in \mathbb{R}^n : n \geq |x| \geq n-1\}$. We take *e* as the origin in \mathbb{R}^n and define $f_n(x) = (|x| - n + 1)x$. Verification of the required properties of f_n is routine, and it then follows from Corollary 2 that $gp(\mathbb{R}^n)$ contains $F(\mathbb{R}^n)$.

Example. $F([0, 1]^n)$ contains $F(\mathbb{R}^n)$ as a topological subgroup.

The case n = 1 of this example is the main result of [3].

COROLLARY 4. Let X be any completely regular Hausdorff space, n any positive integer, and \mathbb{R}^n a subspace of X. If Y is any closed subspace of \mathbb{R}^n , then F(X) has F(Y) as a topological subgroup.

350

Proof. By Corollary 3, F(X) contains $F(\mathbb{R}^n)$. As $F(\mathbb{R}^n)$ contains F(Y) (for example, because Y is regularly situated with respect to \mathbb{R}^n), F(X) contains F(Y), from which the result follows.

COROLLARY 5. Let X be any completely regular Hausdorff space and $Z_1, Z_2, ..., Z_n, ... a$ countably infinite family of pairwise disjoint compact subspaces of X. If $Z = \coprod_n Z_n$ is the disjoint union of $Z_1, Z_2, ...,$ then F(X) has F(Y) as a topological subgroup.

Proof. Let Γ be the natural one-to-one continuous mapping of Z onto

$$\prod_{n=1}^{\infty} Z_n \subseteq F(X).$$

Putting $Y_n = \prod_{i=1}^n Z_i$, we see that $\partial_{Y_n}(Y_{n-1}) = \emptyset$, for all $n \ge 1$. Thus we can put each f_n equal to the identity mapping and the conditions of the theorem are satisfied.

Example. Let X be any infinite completely regular Hausdorff space. Taking the Z_i in Corollary 5 to be distinct singleton sets, we see that F(X) contains F(Y), where Y is a countably infinite discrete space.

To date, our examples were all such that the mappings f_n were as in Corollary 2. We now consider a different situation. Suppose that X is any completely regular Hausdorff space, $Y = \bigcup Y_n$ is a k_ω -space, and Γ is a continuous one-to-one mapping of Y into X. Suppose further that each $\Gamma(Y_n)$ is 'nicely embedded' in the following sense: for each n, there is a positive integer k = k(n) and a subspace T_n of X homeomorphic to $[0, 1]^k$ such that $\Gamma(Y_n) \subseteq T_n$. For convenience identify T_n with $[0, 1]^k$ and suppose, without loss of generality, that $e = (0, 0, \ldots, 0)$, for all k. Further, suppose that for each $y \in Y_n$, $\Gamma(y) = (y_1, \ldots, y_{k-1}, 0) \in [0, 1]^k$.

COROLLARY 6. Under the above conditions, F(X) has a subgroup topologically isomorphic to F(Y).

Proof. It suffices to show that Y has the mappings of Theorem 1. In what follows, note that Γ is a homeomorphism on each compact set Y_n .

Fix $n \in \mathbb{N}$. By Tietze's Theorem, there exists a continuous map

$$\Phi \colon \Gamma((Y_n \backslash Y_{n-1}) \cup \partial_{Y_n}(Y_{n-1})) \to I^{k-1}$$

such that for $\Gamma(y) = (y_1, \ldots, y_{k-1}, 0) \in \Gamma(\partial_{Y_{n+1}}(Y_n))$, $\Phi_n(\Gamma(y)) = (y_1, \ldots, y_{k-1})$, and for $\Gamma(y) = (y_1, \ldots, y_{k-1}, 0) \in \Gamma(\partial_{Y_n}(Y_{n-1}))$, $\Phi_n(\Gamma(y)) = (0, 0, \ldots, 0) \in I^{k-1}$. It is easily derived from Tietze's Theorem that if C is closed in a metric space Z, then there exists a continuous map $\delta: Z \to [0, 1]$ such that $C = \delta^{-1}(\{0\})$. Let

$$Z = \Gamma((Y_n \setminus Y_{n-1}) \cup \partial_{Y_n}(Y_{n-1}))$$
$$C = \Gamma(\partial_{Y_{n+1}}(Y_n) \cup \partial_{Y_n}(Y_{n-1})).$$

and

The required functions f_n are given by

$$f_n(\Gamma(y)) = (\Phi_n(\Gamma(y)), \delta(\Gamma(y))), \quad y \in (Y_n \setminus Y_{n-1}) \cup \partial_{Y_n}(Y_{n-1}).$$

As an immediate consequence of Corollary 6 we have

COROLLARY 7. If Y is a k_{ω} -space which is a subspace of $[0, 1]^n$, then F(Y) is topologically isomorphic to a subgroup of $F([0, 1]^{n+1})$.

For example if Y is any open subset of $[0, 1]^n$, then [5] Y is a k_{ω} -space and so $F([0, 1]^{n+1})$ contains F(Y).

Since any separable metrizable space of dimension n is contained in $[0, 1]^{2n+1}$, we then obtain

COROLLARY 8. If Y is a metrizable k_{ω} -space with dim (Y) = n, then F(Y) is topologically isomorphic to a subgroup of $F([0, 1]^{2n+2})$.

Corollary 6 clearly remains true if k = k(n) is \aleph_0 , with the obvious notational changes.

We denote the Hilbert cube, the countably infinite product of unit intervals, by I^{∞} . Since any metrizable k_{ω} -space is separable and hence a subspace of I^{∞} , we obtain the following:

COROLLARY 9. If Y is a metrizable k_{ω} -space, then $F(I^{\infty})$ contains F(Y).

In the theorem below, we shall give a characterization of the closed subgroups of $F(I^{\infty})$, but first we need a lemma.

Recall that a topological space X is said to be *submetrizable* if it admits a continuous metric; that is, if there exists a metric on X which induces a topology no finer than the given topology.

LEMMA. A k_{ω} -space $Y = \bigcup Y_n$ is submetrizable if and only if each Y_n is metrizable.

Proof. If Y is submetrizable, then the compactness of each Y_n implies that it is metrizable.

Conversely, assume that each Y_n is metrizable. It suffices to show that there is a continuous one-to-one mapping of Y into I^{∞} , and for this it is enough to show that there exists a countable family of continuous maps of Y into I = [0, 1] which separates points. As each Y_n is metrizable, there is a countable family of continuous maps of Y_n into I which separates points, and since Y is a k_{ω} -space, and hence normal, Tietze's Theorem shows that each map in this family extends to a continuous map of Y into I. Observing that each pair of points in Y lies in some Y_n , we see that the result follows.

THEOREM 2. Let Y be a completely regular Hausdorff space. Then F(Y) is topologically isomorphic to a closed subgroup of $F(I^{\infty})$ if and only if Y is a submetrizable k_{ω} -space.

Proof. Firstly assume that F(Y) is a closed subgroup of $F(I^{\infty})$. Then, since I^{∞} is compact, $F(I^{\infty})$ is a k_{ω} -space and hence its closed subgroup F(Y) is a k_{ω} -space. As I^{∞} is compact metrizable, so too is each $F_n(I^{\infty})$ metrizable. Hence, by the above Lemma, $F(I^{\infty})$ is submetrizable. Thus the subspace Y of $F(I^{\infty})$ is submetrizable.

Conversely, assume that Y is a submetrizable k_{ω} -space. By the proof of the above Lemma, there exists a continuous one-to-one mapping of Y into I^{∞} . Corollary 6 (with k = k(n) replaced by \aleph_0) then implies that F(Y) is topologically isomorphic to a subgroup of $F(I^{\infty})$.

Remark. Note that the conditions of the theorem do not demand that Y itself be metrizable. For example, Y = F([0, 1]) is not metrizable [6] but satisfies the conditions of the theorem.

Example. Let Y be a submetrizable k_{ω} -space. Then F(F(Y)) is topologically isomorphic to a closed subgroup of $F(I^{\infty})$.

352

REFERENCES

- D. C. HUNT and S. A. MORRIS. Free subgroups of free topological groups. Proc. Second Internat. Conf. Theory of Groups, Canberra 1973, Lecture Notes in Math. vol. 372 (Springer-Verlag, 1974), 377-387.
- [2] E. KATZ and S. A. MORRIS. On metrizable k_{ω} -spaces. Math. Chronicle 12 (1983), 119-122.
- [3] E. KATZ, S. A. MORRIS and P. NICKOLAS. A free subgroup of the free abelian topological group on the unit interval. Bull. London Math. Soc. 14 (1982), 399-402.
- [4] J. MACK, S. A. MORRIS and E. T. ORDMAN. Free topological groups and the projective dimension of a locally compact abelian group. Proc. Amer. Math. Soc. 40 (1973), 303-308.
- [5] S. A. MORRIS. Free abelian topological groups. In Categorical Topology, Proc. Conference Toledo, Ohio, 1983 (Heldermann-Verlag, 1984), 375-391.
- [6] S. A. MORRIS and H. B. THOMPSON. Metrizability of free topological groups. Bull. Austral. Math. Soc. 33 (1986), 103-112.