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1. Introduction
In this paper we prove a theorem which gives general conditions under which the

free abelian topological group F( Y) on a space Y can be embedded in the free abelian
topological group F(X) on a space X.

Roughly speaking, the theorem yields three classes of examples. Firstly, if Y is
' nice enough' and is a subspace of X, then F( Y) can be embedded in F(X). For example,
if Y = Rn, for any positive integer n, and X is any completely regular Hausdorff
space containing Rn, then F(Rn) < F(X), For n = 1 and X = [0,1] this yields the
main result of [3]. Secondly, if X is 'nice enough' and there is a continuous one-to-one
mapping of Y into X, then F( Y) < F(X). For example, if X is the Hilbert cube J00,
then a necessary and sufficient condition for F( Y) to be a subgroup of F(X) is that Y
is a submetrizable &u-space. Thirdly, if Y is ' nicely embedded' in X, then F( Y) s$ F(X).
For example, if X = [0, l]n+x and Y is a &w-space which is embedded in X in such a
way that Y c [0,1]™ <= [0, l]»+i = X, then F(Y) < F{X).

2. Preliminaries

We first record the necessary definitions and background results.
A Hausdorff topological space X is said to be a A^-space with ^-decomposition

X = Un-^n if-^n is compact, Xn £ Xn+1 for n = 1,2, 3, . . . and X has the weak topo-
logy with respect to the sets Xn.

Definition. If X is a topological space with distinguished point e, the abelian topo-
logical group F(X) is said to be the (Graev) free abelian topological group on X if

(a) the underlying group of F(X) is the free abelian group with free basis X\{e} and
identity e, and

(b) the topology of F(X) is the finest topology on the underlying group which makes
it into a topological group and induces the given topology on X.

If X ia any completely regular space, then F(X) exists, is unique, and is independent
of the choice of e in X. Further, F(X) is algebraically the free abelian group on -X\{e}-
If X is also Hausdorff, then F(X) is Hausdorff and has X as a closed subspace [5]. For
&w-apace8, one can say rather more:
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THEOREM A [4]. Let X = \JXn be any ka-space with distinguished point e. Then F(X)
is a ka-space and F(X) has ka-decomposition F(X) = Ungpn (-̂ n)> where gpn (-^J ^8 ^
set of words of length not exceeding n in the subgroup generated by Xn.

Remark. It is known [1] that every &u-topological group is a complete topological
group.

Definition. Let X = \jXn
 De a &«rsPace> aQd let Y = \JYnbe& closed&w-subspace of

F(X). Then Y is said to be regularly situated with respect to X if for each natural
number n there is an integer m such that gp (Y) n gpn (Xn) c gpm(7TO).

THEOREM B [4]. If X is a k^-space and Y is a closed subset of F(X) such that Y\{e} is
a free algebraic basis for gp (Y), and Y is regularly situated with respect to X, then gp (Y)
isF(Y).

3. Results

THEOREM 1. Let Xbe any completely regular Hausdorff space, Y = \JYn a ka-space, F a
one-to-one continuous mapping of Y into X, and e any point of T(Yj). / / , for each neN,
is a continuous function

fn: TUY^Y^) U drn(Tn^i)) -* r(Fn) U (X\T(Y))

where Yo= 0, such that
(i) ATO) = r(y),foryedYnJYn),

(ii) fn{F(y)) = ejoryedyjj^),
then d: Y -+ F(X) given by

e(y) = (n+l)V(y)+Ur(y)) for yeY^Y^

extends to an embedding of F( Y) in F(X).

Proof. Initially assume that X is compact. We must show firstly that 0: Y -»• 8(Y)
is a homeomorphism. Let y^y^e Y, yx #= y2. Suppose d(y1) = d(y2). If yx,y2e7B\7n_1,
then (n+l)r(y1)+/n(r(y1)) = ((»+l)r(y,)+/n(r(y,)), and as n > 1, we have
F(y1) = r(y2), which implies that yx = y2, a contradiction. Therefore, without loss of
generality, y1eYn\Yn_1 and y^Y^XY^^, for some nx < n- 1. But

%2) = (n1+l)r(y2)+fni(r(y2)),

and fni(V(y2))er(Ynj) U (X\V(Y)) £ r(Y^_1) U (X\T(Y)),

so that 6(y2) # d(yx) = (n+1) r (^ ) +/n(P(2/1)). Hence 6 is one-to-one.
To see that 0 is continuous, observe firstly that for each »eN and for all

y^(Yn\Yn-1) U dyJJn^), 6{y) = (n+l)T(y)+fn{T(y)).

As Y is a &u-space, it suffices to show that d\Yn is continuous for all n. We show this by
induction, by observing that 8\YX is continuous and that if ^|Fn_1 is continuous, then
as 0\(Yn\Yn_-i) U SFn(J

r
n_1) is continuous, 6\Yn is continuous, since

Yn = Fn_2 u [(Fn\7n_1) u dTniTn.i)]

and bothFn.! and (Fn\7n_a) U 5Fn(7n_1) = (7B\7B_1) are closed sets.
We now claim that 0( Y) is a closed subset of F{X). As0(Y)n Fn(X) = 6(Yn) n Fn(X),

which is compact and hence closed, the A^-property of F(X) implies that d{ Y) is closed
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in F(X). Further the above equality then shows that 6(Y) is a &w-space with ka-
decomposition \Jd(Yn).

As each 6\Yn is a homeomorphism, it follows that 8: Y->6(Y) is a homeomorphism.
The next step is to show that 6{ Y)\{e) is an algebraically free basis for the group it

generates, and that 0{ Y) is regularly situated with respect to X. Let w be any word
in gp (6( Y))\{e} with reduced representation in gp (0( Y))

w = ?»!%!) + m2 d(y2) + ...+ml (9(2/,)
(1)

The length of w with respect to 6( Y) is 2<=i \mi\ • Now as no T(yt) can cancel F(y,-) for
j =t= i, the length of w with respect to X is at least

|m1|(n1+ 1) + ...\mt\ (n, + 1 ) - [m^ - \m2\ - . . . - |m,|

= Im!! + ... + |m,|.

Thus the length of w with respect to X is greater than or equal to the length of w with
respect to 6 (Y); that is,

gP(W)ngp n (X) £ gp n (0 (7 ) ) . (2)
From this we see that 6( Y)\{e} is algebraically a free basis for gp (6( Y)).
To prove that 6( Y) is regularly situated with respect to X, we shall extend (2) to

gp (d( Y)) n gPn(X) s gPn(0(rn)). (3)

To do this, consider a word w, as in (1), and suppose, without loss of generality, that

2/i.y2. •••.2/8erni\yBi_1 and

We claim that, after all possible cancellation, at least one of the following must
appear in the reduced representation of w with respect to X:

In the word w consider the block

where, without loss of generality, m1 is greater than or equal to m2, ...,m8.
Step 1 is to observe that, since Y is one-to-one, no T(yi), i = 1,...,«, can be cancelled

out by r(yy), for j =f= i.
Step 2 is to observe that no/n (F^)) ,^ > s, can cancel out a F ^ ) , for i = 1,...,«.
Step 3 is to consider the case when for all

i,j = 1,...,« and » *i,/»1(r(y<)) */ni(F(t/y)).

It is readily seen using steps 1 and 2 that, since m1 ^ max {m2,..., mg}, in the reduced
representation of w, m1 nx T(y1) must appear.

Step 4 is to consider the case when /ni(F(?/f)) =/ni(F(t/;/)), for some t,je(l, . . . ,«},
t 4= j . Then at most 8 - 1 of F ^ ) , . . . , F(y8) can equal one o f / ^ F ^ ) ) , . . . . / ^ (F^) ) , and
so for some ke{l, ...,s},

*/Bl(r(yr))f for r = i,...,«.
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Hence the term mk(n1+l)r(yk) appears in the reduced representation of w. This
completes the proof that 6( Y) is regularly situated with respect to X.

Thus we have proved the theorem for the case when X is compact.
It remains to consider the case when X is not compact. Here let fi: X -> fiX be the

embedding of X in its Stone-Cech compactification fiX. Then /? extends to a con-
tinuous one-to-one homomorphism /?: F(X) -> F(fiX). As ft: X->• fiX is an em-
bedding,/?: F(Y)-+fi(r(Y)) is a homeomorphism. Defining*?: Y -> F(X) as earlier, we
see that gp (0( Y)) is algebraically free on 6( Y)\{e}. Also applying the theorem as proved
so far with X, T,fn replaced, respectively, by fiX, /?F, /?/„, and with Y as before, we
obtain a map 6': Y-> F(fiX) which extends to an embedding of F(Y) in F(BX).
Clearly 0' = fid, and the fact that 6' extends to an embedding of F( Y) in F(ftX) then
implies that 6 extends to an embedding of F( Y) in F(X). \

An important special case of Theorem 1 is when Y is a subspace of X and F is the
natural embedding:

COROLLARY 1. Let X be any completely regular Hausdorff space, Y = \JYn a ku-space
which is a {not necessarily closed) subspace of X, and e any point ofYx. If for eachneN
there is a continuous function

/ . : Yn\Yn-i u Syjy^) ->rn u X\Y,
where Yo = 0, such that

(i) fn(y)=y,forye8YnJYn),

then 6:Y^> F(X) given by

d(y) = (n+l)y+fn(y), for

extends to an embedding of F( Y) in F(X). \
As a consequence of the proof of Theorem 1, we obtain:
COROLLARY 2. In the notation of the above theorem, if each fn maps

into T(Yn) then gp (F( Y)) has a subgroup topologically isomorphic to F( Y). |
Roughly speaking, Corollary 2 implies that if Y is a subspace of X and Y is ' nice

enough', then gp( Y) contains F(Y), irrespective of the space X. For example, this
is the case when Y = Rn.

COROLLARY 3. Let X be any completely regular Hausdorff space and n any positive
integer. If X has Rn as a subspace, then F(X) has -F(Rn) as a topological subgroup.

Proof. R™ has ^-decomposition \jYn, where Yn = {xeRn: \x\ ^ n), and the domain
of/„ must then be {xe Rn: n ^ \x\ ^ n — 1}. We take e as the origin in Rn and define
fn(x) = (\x\ — n+ l)x. Verification of the required properties of fn is routine, and it
then follows from Corollary 2 that gp (Rn) contains jF(Rn). |

Example. F([0, l]n) contains F(Rn) as a topological subgroup.
The case n = 1 of this example is the main result of [3].

COROLLARY 4. Let X be any completely regular Hausdorff space, n any positive integer,
and R" a subspace of X. If Y is any closed subspace of Rn, then F(X) has F(Y) as a
topological subgroup.



Free subgroups of free abelian topological groups 351

Proof. By Corollary 3, F(X) contains F{Rn). As F(Rn) contains F( Y) (for example,
because Y is regularly situated with respect to Rn), F(X) contains F{ Y), from which
the result follows. |

COROLLARY 5. Let X be any completely regular Hausdorff space and Zv Z2,..., Zn,... a
countably infinite family ofpairwise disjoint compact subspaces of X. If Z = U n Zn is the
disjoint union of Zv Z2,..., then F(X) has F(Y) as a topological subgroup.

Proof. Let F be the natural one-to-one continuous mapping of Z onto

5 Zn c F{X).
n=l

Putting Yn = U?=i^i, w e see that dYJJn-\) = 0 , for all » > 1. Thus we can put each
fn equal to the identity mapping and the conditions of the theorem are satisfied. |

Example. Let X be any infinite completely regular Hausdorff space. Taking the Zt in
Corollary 5 to be distinct singleton sets, we see that F(X) contains F( Y), where Y is
a countably infinite discrete space.

To date, our examples were all such that the mappings fn were as in Corollary 2.
We now consider a different situation. Suppose that X is any completely regular
Hausdorff space, Y = \JYn is a &M-space, and F is a continuous one-to-one mapping
of Y into X. Suppose further that each T(Yn) is 'nicely embedded' in the following
sense: for each n, there is a positive integer k = k(n) and a subspace Tn of X homeo-
morphic to [0, l]k such that V(Yn) s Tn. For convenience identify Tn with [0, l]fc and
suppose, without loss of generality, that e = (0,0, ...,0), for all k. Further, suppose
that for each y eYn, T(y) = (yv ...,yk_x, 0)e [0,1]*.

COROLLARY 6. Under the above conditions, F(X) has a subgroup topologically iso-
morphictoF(Y).

Proof. I t suffices to show that Y has the mappings of Theorem 1. In what follows,
note that F is a homeomorphism on each compact set Yn.

Fix neN. By Tietze's Theorem, there exists a continuous map

«]>:r((rn\rn_1)u sYn{Yn-,)) -*/*-1

such that for r(y) = ^ , . . . , ^ , 0 ) 6 ^ ^ ( 7 , , ) ) , ^JX(y)) = (y^-^k-x), and for
= {ylt..., yk-v 0) e F(aFn(7n_1)), ®n(T(y)) = (0,0,.... 0) eI"'1. I t is easily derived

from Tietze's Theorem that if C is closed in a metric space Z, then there exists a
continuous map 8: Z -> [0,1] such that C = 5-x({0}). Let

Z = F((7n\7n_1) u BrJX^i))

The required functions fn are given by

Uny)) = (<J>.(r(y)),my))), 2/e(7n\7n_1) u aFn(rn_x). I
As an immediate consequence of Corollary 6 we have

COROLLARY l.IfYisa ka-space which is a subspace o/[0,1]", then F{ 7) is topologically
isomorphic to a subgroup of F([0,l]n+1). \

For example if 7 is any open subset of [0, l ] n , then [5] 7 is a &u-space and so
F([0, l]n+1) contains F(Y).
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Since any separable metrizable space of dimension n is contained in [0, l ] 2 n + 1 , we
then obtain

COROLLARY 8. IfYis a metrizable k^-space with dim (Y) = n, then F( Y) is topologically
isomorphic to a subgroup of F([0, l]2n+2).

Corollary 6 clearly remains true if k = k(n) is Ho, with the obvious notational
changes.

We denote the Hilbert cube, the countably infinite product of unit intervals, by 700.
Since any metrizable &w-space is separable and hence a subspace of/00, we obtain the
following:

COROLLARY 9. If Y is a metrizable ku-space, then F(I™) contains F( Y). \
In the theorem below, we shall give a characterization of the closed subgroups of

.F(/°°), but first we need a lemma.
Recall that a topological space X is said to be submetrizable if it admits a continuous

metric; that is, if there exists a metric on X which induces a topology no finer than the
given topology.

LEMMA. A ka-space Y = (J^n ** submetrizable if and only ifeachYn is metrizable.

Proof. If Y is submetrizable, then the compactness of each Yn implies that it is
metrizable.

Conversely, assume that each Yn is metrizable. I t suffices to show that there is a
continuous one-to-one mapping of Y into 7°°, and for this it is enough to show that
there exists a countable family of continuous maps of Y into / = [0,1] which separates
points. As each Yn is metrizable, there is a countable family of continuous maps of Yn

into 7 which separates points, and since Y is a A^-space, and hence normal, Tietze's
Theorem shows that each map in this family extends to a continuous map of Y into I.
Observing that each pair of points in Y lies in some Yn, we see that the result follows. |

THEOREM 2. Let Y be a completely regular Hausdorff space. Then F( Y) is topologically
isomorphic to a closed subgroup of T^/") if and only if Y is a submetrizable ku-space.

Proof. Firstly assume that F(Y) is a closed subgroup of /^(Z00). Then, since 700 is
compact, F(IX) is a &w-space and hence its closed subgroup F( Y) is a &w-space. As
7°° is compact metrizable, so too is each Fn(I

x) metrizable. Hence, by the above
Lemma, T^/") is submetrizable. Thus the subspace Y of Ftf™) is submetrizable.

Conversely, assume that Y is a submetrizable &w-space. By the proof of the above
Lemma, there exists a continuous one-to-one mapping of Y into 700. Corollary 6 (with
k = k(n) replaced by Ho) then implies that F(Y) is topologically isomorphic to a
subgroup of F(7°°). |

Remark. Note that the conditions of the theorem do not demand that Y itself be
metrizable. For example, Y = F([0,1]) is not metrizable [6] but satisfies the conditions
of the theorem.

Example. Let Y be a submetrizable &u-space. Then F(F(Y)) is topologically iso-
morphic to a closed subgroup of
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