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§1. Introduction and Preliminaries

WE begin by recording the definition of free abelian topological group.

DEFINITION [5]. Let X be a completely regular Hausdorff space. Then
the abelian topological group F(X) is said to be the (Markov) Free abelian
topological group on X if
(i) X is a subspace of F(X),
(ii) X generates F(X) algebraically, and

(iii) for every continuous mapping <£> of X into any abelian topological
group G there exists a continuous homomorphism <I> of F(X) into G
which agrees with 4> on X.

It is well-known [2, 5] that F(X) exists, is Hausdorff, and that F(X) is
algebraically a free abelian group having free basis X.

Nickolas [7] showed that, in the non-abelian case, the free topological
group on any finite-dimensional compact metrizable space can be embed-
ded (by a topological group isomorphism) in the free topological group on
the closed unit interval /. Little progress, however, has been made on the
analogous problem for free abelian topological groups. Indeed we conjec-
ture that even Fit2) cannot be embedded in F(T). (Note, however, that
F(T) does contain F((0,1)), but the embedding is not an obvious one [3].)

In §2 we construct an embedding of F^S1) in F(t). Of course F(T)
contains many homeomorphic copies of S1, but we need one which is a
free basis for the subgroup, G, that it generates, and we require,
moreover, that the induced topology on G be the free topology.

This result is generalized in two ways in §3, where it is shown that for
each positive integer n both F(Sn) and FdS1)") can be embedded in
F(r), where Sn denotes the n-sphere. To do this we show firstly that if
X, A and B are compact Hausdorff spaces and F(X) is embedded in
F(A), then F(XxB) can be embedded in F(AxB). Using this we prove
that if the embedding of F(X) in F(A) is suitably nice, then F(2X) can be
embedded in F(2.A), where 2 denotes suspension.

We record here some notation and results we shall use later. From the
definition it is clear that the topology of the free abelian topological group
F(X) is the finest group topology on the underlying free group which will
induce the given topology on X. In [1], Graev gives a construction, which
we will outline below, of a group topology on the free abelian group on
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X. (Graev actually constructs a topology on both the free group and the
free abelian group on the set X. In the former case his topology is not the
free topology [6]. In the latter case it is shown in [8] that it is the free
topology, but we shall not use this fact.)

Let X be a completely regular Hausdorff space. Then the topology of X
is determined by a family of pseudometrics {p,: i e I), for some index set
I. Each such p is extended to a pseudometric px on the free abelian group
F on X in the following manner. Let wx, w2 e F. Consider a pair of (not
necessarily reduced) representations of wx and w2 having the same
length; that is w1 = ai + a2 + - • +0*, w2 = bl + b2+-• • + bk, where
au . . . , Ok, bx,..., bk E X U ( - X ) U { 0 } , with 0 denoting the identity of F.
Then Graev defines Pi(wr, w j to be

inf

where the infimum is taken over all such pairs of representations of any
lengths. Here, for xux2eX, we define

p(xlt 0) = p(-xlt 0) = 1,

p(-x1?-x2) = p(x1, x j and

p(x1)-x2) = 2.

The family of all such extended pseudometrices p, determines a Hausdortt
group topology which clearly induces the given topology on X. In §3 we
shall need the following lemma, which is a refinement for abelian groups
of a result of Graev [1, proof of Theorem 1].

LEMMA 1. In the above notation, let wx, w2eF have reduced representa-
tions Wi = X! + X2+- • - + X,,, w2 = y! + y2 + -•- + ym for x x , . . . , %„,
y i , . . . , ym e X U (-X). Then there exists a pair of representations of wx and
vv2, w t = at + a2 + • • • + aK and w2 = bi + b2 + - • • + bk, such that

(i) fc =s n + m,

(ii) Pi(w1, w j = £ p(ai, bj) (that is, the infimum is achieved),

(in) for each j , a, and b, e{x1,..., x^, - x x , . . . , -x^ yu ..., ym,
~~yi. • • •. ~ym, 0} (This list may contain repetitions.)

In contrast with the situation for abstract groups it is not true that every
subgroup of a free abelian topological group is a free abelian topological
group. The following theorem, which is used in §2 and §3, gives a positive
result in this direction. (While we state the result for compact spaces, an
appropriate analogue holds for k*, -spaces [4].) Firstly we need some
notation. If Y is a subset of F(X), the subgroup generated by Y is
denoted by gp(Y); gpn(Y) denotes the subset of gp(Y) consisting of those
elements of reduced length less than or equal to n with respect to Y.
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DEFINITION. Let Y be a compact subset of F(X). Then Y is said to be
regularly situated with respect to X if for each positive integer p there
exists a positive integer q such

gPp(X)ngp(Y)£gpq(Y) (*)

To verify condition (*) it suffices to show:

For each positive integer n there exists a

positive integer m such that whenever vvegp(Y) ^

has reduced length n with respect to Y, its

reduced length with respect to X is at least m.

THEOREM A[l]. Let X and Y be compact Hausdorff spaces, with Y a
subspace of F(X). If Y is a free algebraic basis for gp(Y) and Y is regularly
situated with respect to X, then gp(Y) is the free abelian topological group
on Y.

In general, for any compact Hausdorff space X, there exist many
Hausdorff group topologies on the free abelian group on X which induce
the given topology on X. Observe, however, that since gpn(X) is compact
in all of these topologies, it inherits the same topology in each.

Finally, note that any compact subspace Y of the free abelian topologi-
cal group on a compact Hausdorff space X lies in gpn(X) for some n [1].

§2. Embedding F(S') in F(I)
Our copy of S1 in F(T) will consist of the union of two homeomorphic

copies of I which coincide at the end points. The first copy of -I is
A={[x/5] + [(x + 2)/5]+[(x + 4)/5]: x e l ) where the operations of addi-
tion and division inside the brackets [] are taken in R. So x/5, (x + 2)/5,
(x + 4)/5, all belong to /. On the other hand the operation of addition
outside the brackets refers to addition in the free abelian topological
group F(T). So [x/5] + [(x + 2)/5] + [(x + 4)/5] is a word of reduced length
three in F(J). The second copy of I is B = {[x/5] + [(x2+2)/5] +
f_(x3 + 4)/5]: x e I}. Of course x2 = x • x and x3 = x • x • x, where the mul-
tiplication is taken in R.

Let K = AUB. Then K is homeomorphic to S1. We shall show that the
subgroup, gp(-K), of F{t) generated by K is F(SX). By Theorem A it
suffices to show that K is a free algebraic basis for gp(K) and K is
regularly situated with respect to I.

Let w = x + (y + 2)/5 + (z + 4)/5 be any element of K. From the defini-
tion of K we see that xe [0,1/5], (y+ 2)/5e[2/5, 3/5], and (z + 4)/5e
[4/5,1]. We shall represent w by the ordered triple (x, y, z). As the
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intervals involved are disjoint we see that if (x, y, z) € K then its first
coordinate x [respectively, its second coordinate y] cannot equal the
second [respectively, first] or third coordinate of any (x1( y1; zt) e K.

We now proceed to show that K is regularly situated with respect to 7.
We shall do this by verifying that condition (**) of §1 is satisfied.

Let w belong to gp(K) have the form w = a1w1 + a2w2 + - • • + akwk

where each a, is an integer, w, = (x,, yh zt)eK, and w,=£ wjt for i^j. Put
k

n — S l̂ i I, so n is the length of w with respect to K.
i - i

To measure the possible cancellation in gp(K) we introduce the follow-
ing notion.

DEFINITION 1. An (x, y)-sequence from w is a maximal
|,, w^, • • •, Wj, with ij,j= iq for p^q such that either

sequence

= X ( 3 ,(a) xj, = xh, yh = yh, x,, = x^, yu = ŷ  and so on, or (b) y,, = y
yi3 = Vu, xu = *i, and so on.

We define (y, z)-sequences similarly.
The following diagram may be helpful in picturing (x, y)-sequences.
We project K into the "(x, y)-plane". Then A is represented by the

straight line and B by the curved line. An (x, y)-sequence zig-zags, as
shown, from one side of the figure to the other. An (x, y)-sequence of
type (a) starts at au while one of type (b) starts at a2.

Note that a sequence can be of length one.

LEMMA 2.
(i) An element of K can occur in at most one (x, y)-sequence.
(ii) Distinct (x, y)-sequences do not have any point in common.
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(iii) In (i) and (ii) above (x, y)-sequences can be replaced by (y, z)-
sequences.

(iv) An (x, y)-sequence and a (y, z)-sequence can have at most two points
in common.

Proof, (i), (ii) and (iii) are obvious.

Suppose that an (x, y)-sequence and a (y, z)-sequence have a point in
common. Then this point is of the form (x, x, x) or (x, x2, x3). Firstly
consider the case where it has the form (x, x, x). Then a routine calcula-
tion shows that the first coordinate of every element in the (x, y)-
sequence is x2n for some integer n and the first coordinate of every
element in the (y, z)-sequence, except perhaps (x*, x, x*), is x21"3",. for
non-zero integers m and k. Clearly then the (x, y)-sequence and the
(y, z)-sequence have at most two points in common. The case where the
common point has the form (x, x2, x3) is similarly handled. This completes
the proof of the lemma.

We observe that if wit, wh,... ,wit as in Definition 1 is an (x, y)-
sequence from w = a1w1 + a2w2+- • • + akwk, and if (a) of Definition 1
applies then the reduced form of w with respect to I contains the symbols
aiiyii; 'f (b) applies, it contains a^x,,. In addition the reduced form
contains either a^ or a ^ , depending on the parity of /. Thus we obtain
the following:

LEMMA 3. Each (x, y)-sequence, even one of length one, contributes at
least two letters to the reduced form of w, different from those contributed by
any other (x, y)-sequence. The analogous result holds for (y, z)-sequences.

PROPOSITION 1. K is regularly situated with respect to I in F(T).

Proof. Consider the word w, as earlier. We wish to show that not too
much cancellation occurs in it. The proof splits initially into two cases.

Case (a). Suppose that there are at least n' distinct w('s. (Recall that

n = I hi-)

Subcase 1. Suppose that the number of (x, y)-sequences is >n*. Then
by Lemma 2 the reduced form of w with respect to J is of length at least

Subcase 2. Suppose that there are at most n* (x, y)-sequences. As
there are at least n* distinct Wj's and the (x, y)-sequences form a partition
of the w, 's, there must be an (x, y)-sequence S of length at least n*. By
Lemma 2 each (y, z)-sequence has at most two points in common with S.
But every element of S must lie in some (y, z)-sequence, so there are at
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least £n* (y, z)-sequences. By Lemma 3, then, the reduced form of w with
respect to / is of length at least nK

. Case (b). Suppose that there are strictly less than n* distinct w,'s. (So
Qearly, then, l a ^ n * , for some j .

Subcase 1. Suppose that there is an (x, y)-sequence in which either the
first or the last symbol has |a,| s= n*. Then by Lemma 3 the reduced length
of w is ^n*.

Subcase 2. Suppose that every (x, y)-sequence has its first and last
symbols satisfying |oi|<n*. Let S be an (x, y)-sequence
wh, wh,...,wip,..., wk with | a j > ni.

Consider w^ _,. Then either its first coordinate or its second coordinate
is equal to the corresponding coordinate of w^. Then in the reduced form
of w with respect to I, tyy, or rijX, appears, where n, ~5z\a^_, —aj . Continu-
ing this process we see that the reduced form of w with respect to I has at

6 a S | a a | + | a a 3 | + - • • \<kv.l-<k.\

>n^—n^ letters

Putting the cases together we see that condition (**) of §1 is satisfied and
so K is regularly situated with respect to I in F(7), completing the proof
of the proposition.

Since a set Y satisfying condition (**) of §1 is clearly a free algebraic
basis for gp(Y) we have the following corollary.

COROLLARY 1. K is a free algebraic basis for gp(K).

By Theorem A, Proposition 1, and Corollary 1, we obtain the main
result of this section:

THEOREM 1. F(I) has a closed subgroup topologically isomorphic to

§3. Embedding F(S°) in F(F)

DEFINITION 2. Let the free abelian topological group F(X) be topologi-
cally isomorphic to a subgroup of F(A) for some spaces X and A, with
<t>: F(X)—>F(A) being an embedding. For xeX, \et<p(x) have reduced
representation with respect to A given by <f>(x) = exai + - • • + enan where
Oj 6 A and e( = ±1 for each i. Then <f> is said to be an orderly embedding if

n

Y. £| is independent of x.
i-i
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Remark. The embedding of F(Sl) in F(T) constructed in the proof of
Theorem 1 is an orderly embedding.

THEOREM 2. Let X, A and B be compact Hausdorff spaces. If there is an
embedding <f> of F(X) in F(A) then there exists an embedding 0 of
F(XxB) in F(A xB). Further, if <p is an orderly embedding then ^ is an
orderly embedding.

Proof. Firstly let A and B be metric spaces, with the metrics on A and
B being dA and dB, respectively. Define a metric p on AxB by
p((a1,b1),(a2,b2)) = dA(aua2) + dB(b1,b2) for a1a2eA and bub2eB.
We also denote Graev's extension of p to F(A x JB) by p, and, similarly,
Graev's extension of dA to F(A) by dA. As indicated in §1, dA does not
define the topology of F(A), but it does, however, induce on each gpn(A)
the same topology as does the free topology of F(A). Thus dA restricted
to X defines the given topology of X. Define a metric pj on XxB by
Pi((*i, Zh), (*2, *>2)) = dA(xi, xj + dgibubi) for Xj,x2eX and bub2eB.

Let <£: F(X) —» F(A) be the given embedding, where for x e X, <£(x) =
e1a1 + -• • + enart for ^ i ^ e A and e 1 ; . . . , en = ±1, and where
e1a1 + - • • + enan is in reduced form with respect to A. As X is compact
we know the last paragraph of §1 that <f>(X)c. gr^,(A) for some N. Thus
n=£N for each xeX. We define 4>: XxB^F(AxB) by <S>(x,b) =
e1(a1,6) + - • • + en(an, b), beB. It is readily seen that <P is one-to-one,
that <!>{X x B) is a free algebraic basis for the group it generates, and that
4>(XxB) is also regularly situated with respect to A x B . Thus to prove
that the subgroup generated by $(XxB) in F(AxB) is F(XxB), it
suffices, by Theorem A, to show that O is continuous (and therefore a
closed embedding, since X x B is compact).

Let (JCJ, bj and (x2, b^ be elements of X x B such that Pi((xub1),
(x2,b2))<8<l for some 8>0 . We shall show that
pC^Xj, bj, *(x2, b2))<(2N+1)5, so that <I> is seen to be continuous. For
i = l and 2 let xi = enail + - • • + einiai^ be reduced representations with
respect to A. Recall that the Graev extension of a metric (see §1) involves
an infimum, and that this infimum is achieved for some representations
*i ==T?utyi + ' • • + T}lmuim, v = l and 2, of xt and x2, where vtjeA and
T)y = ±1, / = 1 , . . . , m and m « n 1 + n2«2N. As Pi((x!, bx), (x2, bz))<5<
1 we can immediately deduce that -niy = T)2J for / = 1 , . . . , m and that

m

VtrfO. So PiCCx!,^), (x2, f>2))=I ^ ( u ^ u ^ H d H O ! , b2)<5. Observe
/-i

that for J = 1,2, <P(xi,bi) = Till(vn,bi) + -• • + -nlm(vim,bi). (This is not
quite as obvious as at first appears.) Using these representations of
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!, bi) and <£(x2, b^), we see that

/ - i

Hence <J> is continuous. So O: Xx.B^*F{A xB) extends to an embed-
ding <&: F(XxB)->F(AxB) . Clearly if </> is orderly then * is an
orderly embedding.

If A and B now are arbitrary compact Hausdorff spaces, their to-
pologies are determined by families {pA} and {pa} of continuous
pseudometrics. By considering, as above, all possible pairs pA, PB in place
of dA, dB, we obtain the desired result.

COROLLARY 2. If for any positive integer n, Xu X2,... ,Xn, Au A2,
. . . , A,, are compact Hausdorff spaces and there are embeddings 4>i of
F(Xj) in FiAf), for each i = 1,2,. . . , ,n, then there is an embedding <& of
F(XjXX2X' • xX,,) in F(AiXA2x- • xA,,). Further, if each <k is an
orderly embedding then <£> is an orderly embedding.

COROLLARY 3. There is an (orderly) embedding of FdS1)") in F(D for
each n.

THEOREM 3. Let X and A be compact Hausdorff spaces. If there is an
orderly embedding of F(X) in F(A), then there is an orderly embedding of

in F(2A), where 2 denotes the suspension.

Proof. Consider the diagram

XX

in which O is the embedding given by Theorem 2 whose extension to an
isomorphism on F(Xx7) is orderly, where qx is the canonical quotient
mapping, and where <JA is the extension of the canonical quotient
mapping of A x / onto 2A. By the assumption of orderliness there is a
unique (well-defined) one-to-one mapping ^ (as shown) making the
diagram commute. Then ty°qx = qA°<&, and since q^ ° <I> is continuous
and qx is an identification, ^ is continuous, and so is a closed embedding.
It is easy to check that ^(2X) is a set of free generators and is regularly
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situated in F(SA), so that its extension ¥ : F(SX) -»• F(SA) is a closed
embedding, which, further, is orderly.

COROLLARY 4. For each positwe integer n, there is an (orderly) embed-
ding of F(Sn) in F(r),

Proof. This follows immediately from Theorem 3 upon noting that
2S""1 is homomorphic to Sn, and SI""1 is homeomorphic to I".

Remark. While Corollaries 3 and 4 are stated for Markov free abelian
topological groups, the analogous results for Graev free abelian topologi-
cal groups [1] can be easily deduced.
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