
NUMERICAL GEOMETRY . . . 

NOT NUMERICAL TOPOLOGY

Joan Cleary and Sidney A. Morris 

(received 18 August, 1983)

1. Introduction

In 1964 0. Gross [2] proved the following little known, but very 
interesting result.

Theorem A Let (X,d) be a compact connected metric space. Then there 
is a unique constant a(X,d) with the property that, given any finite 
collection of points *n £ X , there is a point y € X such

n
that n = £ d(x.,y) * a{X,d) . 

i=1

In 1981 Wolfgang Stadje [4] proved a stronger version of the above 
theorem in which he replaced (X,d) by any compact connected Hausdorff 
space and the metric by any symmetric continuous function f : X * X -*■ B  .

The work by Gross and Stadje generated much interest, and has result
ed in papers by Morris and Nickolas [3], Yost [8], Strantzen [5], Szekeres 
and Szekeres [6], and Wilson [7]. A survey of the known results is given 
in Cleary [l] .

If X is a compact connected Hausdorff space and f is any contin
uous symmetric function / : X * X -+B  which is not identically zero, 
then we define D{X,f) to be the real number sup{| f(x,y)| : x y € X} .
If the space X has at least two points, then the dispersion constant 
n{X,f) (also called the magic number) is defined to be a{Xsf)/D(Xif) , 
where a{X,f) is the number in Stadje's version of Theorem A which 
corresponds to a(X,d) .
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If d is a metric, then D(X,d) is the diameter of the space X 
and it is readily seen that H - m[X,d) < 1 . Gross [2] shows that 
m(X,d) < 1 . For the general case, clearly -1 < m(X,f) 5 1 .

Our main result is Theorem 1 :

Theorem 1 Let X be any compact connected metrizable space. Then for 
each real number m such that % < m < 1 , there is a metric d on X 
such that m[X,d) = m .

This result is particularly interesting as it shows that m(X,d) 
does not depend on the topology, but rather only on the metric. For this 
reason this topic has become known as "numerical geometry" rather than, 
say, "numerical topology".

2. The main results

In this section we will prove Theorem 1. But firstly we prove some 
lemmas which are needed in the proof.

Notation Let (X,d) be a compact connected metric space of diameter 
one. For each non-negative real number X , define

p : (X,d) x (X,d) -*■ JR by p (x,i/) = .
A A Xd(x,t/) + l

Note that (X,p^) is a metric space and is homeomorphic to (X,d) for 
each X .

The proof of the first lemma is straightforward and so is left to 
the reader.

Lemma 1 Let (X,d) be a compact connected metric space of diameter 1 . 
Let e be any real number such that 0 < e < 1 . If X > -̂ * and 
xty € X are such that d{x,y) > e then 1 > p^(x,y) > 1-e .

Lemma 2 Let (X,d) be a compact connected metric space of diameter 1 . 
Then there is a sequence xQJx 1> ...t x^, ... of points of X satisfying 
d(x£,xj) > 2~1' , whenever i > j .
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Proof For z € X and r any positive real number, let B(z,r) denote 
the open ball with centre z and radius r . Let a and b be elements 
of X such that d{a,b) * 1 . We shall prove by mathematical induction 
that there exists a sequence of points » ••• *-n % such
that <2(x-,x.) > 2~v , whenever i > j .

I  J

Let x Q * a . Suppose that x 0>x l> • • •» xn are elements of X such

that d{x-,jc .) > 2~v , whenever i > j and i,j € {0,1,2, ...n} .V J
Clearly

B (x.,2~n~1) n £ (x.,2"n~1) = 0 , for all i i j .* «7
n „ ,

Therefore, as X is connected  ̂ U B(x.,2 ).i=0 t

Let x € *  \ U B(x.,2'n_1) . Clearly d(x , ,x.) > 2'(n+1) for all 
n+1 i=o * n J

j € {1,2, ...,n} and so d(x.,x.) > 2~l , for all i,j € {1,2, ..., n+1} .
1 0

This completes the induction and the proof of the Lemma.

Lemma 3 Let (X,d) be a compact connected metric space of diameter 1 .
If n is any positive integer and \ > 4n+1 then a(X,p^) > 1 - .

Proof By Lemma 2, there are points x l»x 2» ..., x^ in * such that

d(x.,x.) > 2"n , for i i Q .

By Theorem A, there exists a point y in X with the property that

» j, BX(V » ) = a(Jr- V  • t=l

Then d[x^,y) 2 2"^n+1  ̂, for all but at most one i € {1,2, ..., n} .

Since \ > 4n+1 , Lemma 1 implies that p^(x^,y) > l - 2 -n-1 for all 

but at most one i € {1,2, .
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a(X,p ) = i \ pA x ^ y )  > ^  (l-2-n->) 
i-1

’ 5 ‘ ‘ I ’

We also need the following proposition of Yost [8] .

Proposition 1 Let X be a compact connected Hausdorff space and let 
f : X x x R  be a continuous symmetric function. Fix atb € ]R with 
a 5 b . If, given any x 1,x2, ... x^ € X , t/iere £8 a point y € * 
sucft tftat

n
a - n £ - *

i=l

then a S a(X,f) < 2> .

Lemma 4 Let (*,<2) 2>e a compact connected metric space of diameter 1 . 
27ien a(^,p^) is a continuous function of the parameter X .

Proof Clearly, p^{x,y) = is a continuous function of X ;

that is, given any e > 0 , for each x,y € X there is a 6 > 0 such
that if |X - X | < 6  then |p, (x,y) - p. [x,y) I < e . Indeed, since

Ai A2
X is compact, there is a 6 > 0 such that for all x,y € X , if 
!̂ i - X2 | ^ <5 then | p^ (x,y) - p^ (x,y) | < e . So for all x,y € X ,

(«,z/) - e ^ Ca?,2/) S Px (x,y)+e . Now choose any x 1 ,x2, ..., x^ € X . 

Then, by Theorem A, there is a point y € X such that

n

n X x (xi-^ m •

n
and so, aCST.p, ) - £ - b  I ix.,y) < a(X,p. ) + e . It follows from 

Ai n i=l 2 1 Ai
Proposition 1 that a(X,p^ ) - e 5. a(X,Q^ ) < a(X,p^ ) + e .
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So, given any e > 0 , there is a 6 > 0 such that if |Xj - X2| < 6 

then |a(JT,p̂  ) )| 5 e . Hence a(*,p^) is a continuous

function of X .

We now prove a special case of Theorem 1.

Lemma 5 Let (X,d) be a compact connected metric space with diameter 1 . 
Then there is a metric p on X such that (*,p) is homeomorphic to 
(.X,d) and a(X,p) * H .

Proof Let a and b be points in X such that d{a,b) - 1 .
As d : {a} x X -*■ B  is continuous and X is connected, there is a point 
c € X such that d(a,c) = h . So d(b,c) > *s . Define p : X x X -*■ JR 
by p(c,x) = min{p(x,i/)} , for all x ( X and 
p(x,z/) = min{d(x,2/), p(e,x) + p(c,y)} , for all x,y € X . It can be 
easily verified that p is a metric on X .

We now show that %d(x,y) < p(x,j/) < d(x,i/) , for all x,y € X , 
from which it follows that (*,p) is homeomorphic to (X,d) . Suppose 
that p(x,i/) = p(x,<?) + p(t/,c?) ; that is, d(x,y) > p(x,y) = p(x,c) ♦ p(y,c) . 
If p (x,c) = d[x,c) and p(y,c) = d(y,c) then p(x,c) + piy.c) = 
d(x,c) *d(y,c) > d{x,y) , and so p(x,j/) =* d{x,y) . If p(x,<?) t d[x,c) 
then p(x,y) > H Z lsd(.x,y') . Similarly, if p(y ,c) i d{y,c) , then 
p(x,y) £ H > hd{x,y) . So Hd(x,y) < p(x,z/) < d{x,y) for each x,yiX . 
Hence (X,p) is homeomorphic to {X,d) .

Now p(a,b) = min{d(a,fc) , p(a,c) + p(b,c)} = 1, and p(x,jy) < d[x,y) 
for all x,y £ X, so D{X,p) = 1 .

Since p(x,c) < h for all x € X, a{X,p) 5 \ . Hence a(*,p) 
must be equal to *s .

Proof of Theorem 1 Since X is metrizable, there is a metric, d , on 
X with D(X,d) = 1. Let a{X,d) = b . So fc € [% , 1) .

We shall prove the theorem in two parts. In (i) we show that for 
each real number a € [h ,b) , there is a metric on X such that
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a(X,6t) = a, and (*,5t) is homeomorphic to [X,d) . In (ii) we prove 

the analogous result for each a € [£>,1) .

(i) By Lemma 5, there is a metric p on X such that a(X,p) = h and 
(tf,p) is homeomorphic to {X,d) . For each real number, t , such that 
t € [0,1], define the metric 6^ by 6̂ (x,z/) = td(x,y) + (l-t)p(x.J/) »

where x,y € X . Let a and b be the points of X defined 
in the proof of Lemma 5 such that d(a,b) = 1 . Then p(q,fc) = 1 . 
So 6t (a,b) = 1.1 + (1-t). 1 = 1 . Also &t(x,y) = td(x,y) + (l-t)p(x,y) <d{x,y)

for all x,y 6 X 3 since p(x,y) < d{x,y) for all x,y € X .
Therefore Z?(̂ ,6^) = 1 .

When t = 0 we have 60(x,z/) = p(x,y) . so a(*,60) = h ■

When t = 1 we have 61(x,y) = d(x,y) and thus a(iSf,6j) = b . Clearly

6^ is a continuous function of t , and it can easily be shown using

Proposition 1 that is also a continuous function of t .

Therefore, as t varies over [0,l], a(^,6^) takes on all values

between h and b .

(ii) When X = 0, p^ (x,y) = p„ (x,y) = d(x,y) and so a(*,p0) = b .

By Lemma 2 , as X tends to infinity , a(Z,p^) approaches 1 . Since

a(X,Qy) is a continuous function of X , for each real number a€[2?,l) ,

there is a metric p^ on X (with £>(̂ ,p̂ ) = 1) such that a(*,p^)=a

and C^.p^) is homeomorphic to (X,d) .

Hence, from (i) and (ii) , for any real number a such that 
h ^ cl < 1 , there is a metric d on X such that a{X,d) - a. As 
D[X,d) = 1 , a{X,d) - m{X,d) , which completes the proof.

We now tackle the analogous problem when the metric d is replaced 
by any continuous symmetric function / : X x X -*■ J? .
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Theorem 2 Let X be a compact connected Hausorff space. Then 
for each real number m € [-1,1] there is a continuous symmetric 
function f : X x X -+H such that m{X,f) = m .

Proof Firstly, X is a compact Hausdorff space and therefore is com
pletely regular. So there is a continuous pseudo-metric p on X such 
that D{X,p) = 1 . Since X is compact, there are points a,b € X such 
that p(a,b) = 1 . As p : {a} x X -*■ JR is continuous and X is con
nected there is a point c € X such that p(a,e) - h . So pQ>,c) > H . 
Now define the function g : X x X-+JR by g{x,y) - p{x,c)p(ij,c)p{x,y) 
for x,y 6 X. Then g is continuous and symmetric. Now g(a,b) > h 
and so D[X,g) > 0 . So we can define the continuous symmetric function

f0 : X x j? by f0(x,y) = • Hence Z>{X,f0) = 1 . Now

choose any x ltx 2, ..., x^ € X . Then we have / (x̂ ,<?) = 0 for each

i - 1,2, ..., n , and so
,  n
— 7 / (X.,C) » 0 . n . L , ■'o v

So, for any given collection of points Xj,x2, ..., x^ € X, the point 
c € X has the property that

1 n
n I f0 = 0 . 

i-1

So the number zero satisfies the conditions of Theorem A. As a (*,/’„) 
is unique, a(.X,f0) must equal zero.

Let / : X x X -*■ B  be the continuous symmetric function defined 
by fx - 1 f°r all x >y t X • Then clearly aiX, ^ ) * m{X,f^) = 1 .

For each t € [0,l] define the continuous symmetric function 
Pt : X x X - + M  by pt ix,y) = t f̂  {x,y) + (1-t) f0 (x,z/) for x,y € X .

Since X is compact there are points xx ,xz € X such that ^(;c1»x 2) =1 

Also p^(x,y) < 1 for all x,y € X . Therefore D{X,p^) = 1 .
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When t * 0 we have p Q(x,i/) = /0(x,i/) , and so a(X,p0) = 0 .

When t = 1 we have pl (x,y) = fx (x,y) . So a[X,px) = 1 . Using

Proposition 1 it can be readily shown that a{X,p ) is a continuous

function of the parameter t . Therefore, as t varies over the inter
val [0,1], a(X,p.) takes on all values between zero and one inclusive.

Now, if a € [-1,0] then -a € [0,l] . So, from the above argu
ment, there is a continuous symmetric function h : X x X -*■ B  such that 
a{X,h) = -a . Define the continuous symmetric function f : X  x X -*■ B  
by f[x,y) = -h{x,y) for all x,y € X . Then clearly a{X,f) - a .

So we have proved that for each number a € [-1,1] there is a 
continuous symmetric function f : X * X - + B  such that a{X,f) = a .
Also, each of these functions satisfies D{X,f) - 1 . So a[X,f) -m[X,f) . 
This proves the theorem.

3. Extension of Yost's results

In this section we extend some results of Yost [8]. We begin with 
a result of Yost but give a new more elementary proof. The result is 
then generalized below.

Proposition 2 Let (X,dx) be a compact connected metric space with 
D[X,d ) = D > 0 and m(X,dl) > h . Let i.I,dz) be a closed interval 
of length D with the Euclidean metric. Then there is a wedge X v I 
which has a metric p such that p|X = dl , p|J = d2 and m(X v I,p) = h

Proof Since X is compact there are points a,b € X such that 
dx (a,b) = D . Identify a € X with an endpoint of I . Then 
y = X v J is a compact connected space with topology x .

dj 0x,y) , for x,y € X

Define p : Y x Y -*-B by p{x,y) = - d2 {x,y) , for x,y i I

dx (x,a)+d2 {a,y) , for x € X , y 1 1 .
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Then p on Y which induces the topology t . Now p(a,y) < D for 
all y € Y and so from Proposition 1, it follows that a(Y,p) < D. 
Clearly the diameter of Y is 2D. Therefore m(7,p) 5 % . Hence 
m(Y,p) = % .

This can be generalized as follows:

Corollary Let [X,dx) be a compact connected metric space with 

D(X,dl) = D > 0 and m(X,d1) - b > % . Then for each m £ Ps, fc] there

is a wedge X v I , where (I,d2) is a closed interval with the Euclidean 
metric, with metric 6 such that 6 1AT * d , 6| Y = d2 and m(X v 1,6) - m .

Proof Let (7,p) be the compact connected metric space in the proof of 
Proposition 2 with m(Yxp) = *5 . For each X € Eo.l] let be

a closed interval of length \D with the Euclidean metric, and let 
Y^ = X v 2^ be obtained by identifying an endpoint of 7^ with a Z X

where d l(a,b) = D for some b i X . For each X € [0,l] define

6 : Y^ x Y^ ■* B  by

djte.J/) , for x,y € X

6(x,y) = - dz(x,y) , for x,y € Ix

d x (x,a) + d2 (a,y) , for x i X  , y €

Then for each X € [0,l] , 6 is a metric on Y^ . When X * 0 ,

m(Yy6) = mtf.dj = b . When X = 1 , m(Y^,6) = m{Y,p) = H ■

Using Proposition 1, it can be easily shown that the mapping 
X -*■ m(Y^,6) is continuous. Hence for each m € [*5 ,2?] there is a

compact connected metric space with m(y^,6) = m .

Theorem 3 Let E be any normed space with d being the metric 
determined by the norm. Let X be any compact connected subset 
of E with m{X,d) = b . Then for each m ( [h , b] there exists
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a closed interval I - [e,f] c E such that (i) d|l is the Euclidean 
metric, (ii) X fl J * {e} , and (iii) m(X U I,d) = m .

Proof Without loss of generality, let D{X,d) = 1 , 0,e € X and 
d{0,e) = 1. For each X € [0,l] , let I^ be the closed interval

{x : x = e + \ke : 0 < k < 1} . Clearly fl X = {e} for each X 6 [0,l] ,

since if it were not the case D[X,d) would be greater than one. When 
X = 0 , I0 U X = X and so m{X U IQ ,d) = b . When X = 1 , i(0,2e) = 2 

and d(x,y) < d(x,e) +d(e,y) < 2 for each x,y € X U 1̂  . Therefore 

D{X U J ,d) - 2 . Now d(e,x) < 1  for all x € X U II , and so 

a{X U I ,d) < 1 . It then follows that m(X U 1̂  ,d) = H . Again, using 

Proposition 1 it is easily shown that m[X U lyd) varies continuously

with X . Hence, for each m € [H , &] there is a closed interval 
I = [e,/] with m(X U I ,d) = m ; X fl J = {e} and when restricted to I ,

the metric d is the Euclidean metric.

Remark 1 Since every metric space can be isometrically embedded in a 
normed vector space, Corollary 1 can be deduced from the above theorem.

Remark 2 Yost [8] shows that if E is any finite dimensional normed 
vector space then the set {m{X,d) : X is a compact connected subset of 
E and d is the metric induced by the norm} has an upper bound strictly 
less than one. He calls the supremum of this set k[E) . Yost then 
proceeds to show that the set : X is a compact connected subset of £}
is the whole interval [ fc(̂ )] . This result is a trivial consequence of 
Theorem 3.
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Added in Proof David Yost has pointed out that part (i) of the proof of 
Theorem 1 can be omitted simply by applying Lemma 5, at the beginning of 
the proof, to find a metric p such that a(X,p) = h and hence b = h .
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