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The Hilbert cube is defined to be the product of a countably infinite family {I,: n = 1,2,...}
of homeomorphic copies of the closed unit interval [0,1]. That it is compact follows, of course,
from Tychonoff’s Theorem which says that any product of compact spaces is compact. Our proof
of the compactness of the Hilbert Cube is, however, of a very different flavor from the usual
proofs of Tychonoff’s Theorem. We call the proof elementary because it can be easily understood
by the average student of topology and also because (when written out with some care) it avoids
the Axiom of Choice. The approach is as follows.

Define the Cantor space, G, in the usual way so that it is seen to be a closed subspace of [0, 1]
and so is compact. Next, observe that each point in G has a unique ternary representation
X® . a,/3" with a, € {0,2}, for each n. For each positive integer n, define 4, to be the discrete
space {0,2}. Then it is easily verified that the mapping ¢ from the product space [1{_,4, onto G
given by

M8

¢'((a1aaz,---,an,...)) =

Gn
3’!

n=1

is a homeomorphism. (See [1, p. 104].)
Now we state two lemmas, the proofs of which are quite straightforward.

LEMMA 1. For each positive integer n, let G, be homeomorphic to the Cantor space G. Then the
product space 113_,G, is homeomorphic to G.

Lemma 1 follows from the fact that a countable product of a countable product of copies of
{0,2} is homeomorphic to a countable product of copies of {0, 2}. (There is nothing special about
{0,2} in this statement, it is equally true for any topological space: [1, p. 102].)

LEMMA 2. There exists a continuous mapping y of the Cantor space onto [0, 1].

This content downloaded from 128.235.251.160 on Sat, 13 Dec 2014 06:47:31 AM
All use subject to JSTOR Terms and Conditions




564 [November

Lemma 2 is obtained by observing that the mapping 8: 1'[ 14, = [0,1] given by

a,
0((ay,ay,...,a,,...)) =

2n+1

is continuous [1, p. 104] and surjective. The required map xp = § o ¢!, where ¢ is as above.
We can now prove the main result.

THEOREM. The Hilbert cube is compact.

Proof. With G, and I, as above, Lemma 2 implies that there is a continuous mapping xp,, of
G, onto I, for each positive integer n. Thus there is a mapping ¥ of I1%.,G, into 13,7, given
by

\I,((gl’gzr-"gn"")) = (‘pl(gl)"l’z(gz)’-""Pn(gn)"")

where g, € G,, for each n. It is easily verified that ¥ is continuous and surjective. Caution is
required when proving surjectivity, so as to avoid the Axiom of Choice. Let (x;, X5,...,X,,...) €
IT_11,. Observing that (i) each G, has an ordering inherited from [0, 1], (ii) each G, is a closed
subset of [0,1], and (iii) each ¢, : G, — I, is surjective, we can let g, be the smallest element of
G, such that ¥, (g,) = x,. Then

Y((81582s-98ns--)) = (X1 Xp5ueey Xyyetn).

Then Lemma 1 says that II_ ;G, is homeomorphic to the Cantor space, and so it is compact.
Thus the Hilbert cube IIX_;I, is a continuous image of a compact space and hence is compact.

The above approach has several advantages The Cantor space has been introduced not as an
oddity, but rather as a tool. Also, it is now but a small step (see [1, p. 104]) to show that the
n-cube [0,1] X - -+ X[0,1] is a continuous image of [0,1]—so space filling curves appear quite
naturally. Another advantage, and this is quite subjective, is that it is a good idea to spend some
time on countable products before moving on to uncountable products. Finally, one can proceed
to prove that every compact metric space is homeomorphic to a subspace of the Hilbert cube,
from which one can then deduce that any countable product of compact metric spaces is compact
and also that every compact metric space is a continuous image of (a closed subspace of) the
Cantor space. (See [2].)
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