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METRIZABILITY OF FREE PRODUCTS

OF TOPOLOGICAL GROUPS
SIDNEY A. MORRIS

Abstract

It is shown that the free product, G * H, of topological groups G and H is a metrizable topo-
logical group if and only if G, H and G = H have the discrete topology. It is also shown that if 4
is a closed central subgroup of iupological groups G and H, then the free product of G and H with
A amalgamated is metrizable precisely when A4 is open in G and in A,

§ 1. Introduction and Preliminaries

Definition. Let 4 be a common subgroup of topological groups G and H. The topological
group G=* AH is said to be the free product of the topological groups G and H with
amalgamated subgroup A if

(i) G and H are topological subgroups of G*, H,

(ii) G U H generates Ga;iH algebraically, and

(ili) every pair ¢, ,9, of contiiuous homomorphisms of G and H respectively

into any topological group D, which agree on A, extend to a continuous
homomorphism of G+, H into D.

It is readily seen thatif G, H exists, then it is unique. Existence, itself, is not so
easy to deal with, When A4 = {e} , G*;{H is simply the free product of the topological
groups G and H, and a standard category theory argument yields that G * H exists for
all G and H. In this paper we shall concern ourselves only with the case that 4 is a closed
central subgroup of Hausdorff groups G and H. For this case, existence of G* AH was
proved in Khan and Morris [10]. Other cases have been handled in Katz and Morris
[6,7,8].

Having established the existence of G*AH, the main question, then, is to describe
the topology of G*AH in terms of G, H and A. Even when A4 = (e} , Graev [4]
found that it was a non-trivial task to establish that G and H Hausdorff implies & * H
is Hausdorff. Extending Graev’s argument, Khan and Morris [10] showed that if 4 is
a closed central subgroup of Hausdorff groups G and H, then Ga:‘lH is Hausdorff.
In the proofs of our two theorems, we use the details of the Graev proof {4] and the
Khan-Morris proof [10].
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The free product G * H has been extensively examined and it is known, for
example, that G = H is not a locally compact group or a complete metric group unless
it is discrete. On the other hand, if G and H are k. ,-groups than G * H isa ks
group [5,17].

Definition. A Hausdorff space X issaid to be a k,-space and have k,-decomposition
X=UX,, if X; CX, CX;3C..., each X, iscompact and a subset 4 of X is

closed in X if and only if 4 N X,, is compact for all n.

As examples of k,spaces we have all compact Hausdorff spaces, all countable
CW-complexes and all locally compact o-compact Hausdorff spaces [2].

We record the following result :

Theorem A [12]. Let X=UJX, bea k,space and G a Hausdorff group which is
generated algebraically by X and is such that the topology of G is the finest group
topology which induces the same topology on X. Then G isa k,space with k,,-
decomposition G = Ugpy, (X)), where gp, (X, isthe product in G of n copies of
XUX1'Ule), and e denotes the identity element.

So if G and H are k_,-groups then, knowing that G * H is Hausdorff and that
the topology of G = H is the finest topology on the underlying group which induces the
given topology on G U H, we see that G * H isa k,-group.

Definition. Let X be a topological space with distinguished point e. Then the topo-
logical group F{X) issaid to be the {Graev) free topological group on X if

(i) X isasubspace of F(X ) with e the identity element of F(X),

(ii) X generates F(X) algebraically, and

(iii) for every continuous map ¢ of X into any topological group G such that
¢(e) is the identity of G, there exists a continuous homomorphism of
F(X) into G which extends ¢.

If in the above definition we replace “group” everywhere by “abelian group” then
we have the definition of the (Graev) free abelian ropological group on X, denoted by
FA(X).

It is known [14] that F(X) and FA(X) exist and are unique (up to isomor-
phism) if and only if X is completely regular. As a corollary of Theorem A we have
the result which we shall use later :

Theorem B. If X isa k,-space then F(X) and FA(X) are k,spaces.

If G and H are topological groups then the underlying group of G * H isthe
algebraic free product of the underlying groups [17, 13]. The kernel of the canonical
homomorphism of G * H onto the direct product G x H is called the cartesian
subgroup of G * H. It clearly contains all the elements g 'hgh g€ G, h €H.
Indeed it is a free group on the set (g h™'gh: g €G, h€H}\ (e). (See [17] and
[13].) We denotetheset (g' A gh:g€G, hEH )by [G, H]J.
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§ 2. Results

Theorem 1. Let G and H be any topological groups with G # {e} and H # [e}.
Then G * H is metrizable if and only if G and H, and hence also G * H, have the
discrete topology.

Proof. If G and H are discrete, then G * H is discrete and so is metrizable.

Conversely, assume G = H is metrizable but not discrete. Then the cartesian sub-
group gp[G, H], with the induced topology 7 is metrizable. Let 7, be the topo-
logy induced on [G, H] by 7. Asthemap (G * H)x (G *H)—> G * H given by
(x,y)=>x'yxy, x €EG * H,y €G *H is continuous, the restriction of this map to
G x H is continuous: that is,

GxH-S—([G HJ 1), where 0(g h)=g"h™ gh

is continuous. The kernel of the latter map is G x {e) U (e} x H, so there is an induced
continuous map ¢ from the smash product G A H— (/G, HJ, 7;). (Recall that the
smash product G A H is the quotient topological space obtained by identifying all the
elements of the set G x {e} U (e} x H. Then ¢ extends to a continuous homomor-
phism ¢ from the free topological group F(G AH) on GAH into (gp/G, H], 7).

Graev [4] proves that if G and H are Hausdorff topological groups then G * H
is Hausdorff. He does this by putting a Hausdorff topology 7, on the set [G, H],
extending this topology to a locally invariant topology 73 on gp[G, HJ, and then
topologizing G * H as the product G x H x (gp[G, H], 73 ). (That this gives a topo-
logical group topology is not easy to show.)

Graev’s topology, 73, is described in [3], [16], [10] and [4] and is clearly the
finest locally invariant topology on gp/[G, HJ, which will induce the topology 7, on
[G. H]. From this it follows that if we factor out the commutator subgroup then the
resultant group (gp/G, Hf, 73)/ 8 (gp[G, HJ) is the free abelian topological group
FA([G,H],1,) onthespace ([G,H[,73).

Returning to Graev's proof that G * H is Hausdorff, it is completed by observing
that the topology of G * H must be finer than that of G x Hx (gp[G,H], 73),and

so is Hausdorff. In particular, then, (gp[G, H/, 7) has a finer topology than
(gp[G,H/,73). Sowe have a sequence

F(GAH) —2— ([G,H].7) —1> (&[G H],T3)
where & and I' are continuous algebraic isomorphisms.

Now factor out the commutator subgroup of each term, and note that F(G AH )/
S(F(GAH)) = FA(GAH). Sowe have

FA(GAH) —2 s (ep[G.H]. 1)/ (g0 G, H] ) ——s FA([G,H], 72)

where @, and T'; are the induced continuous algebraic isomorphisms.
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Now G A H and ([G, H/, 7, ) each contain a copy of G and I'; ®, maps the
copy in G A H onto the copy in (fG, H], 7,). As G * H was assumed to be non-
discrete, then either G or H is non-discrete. Without loss of generality, assume it is
G. So G isnon-discrete and metrizable and so contains a convergent sequence

oo (= =]
5 - such that g, +E and g, # e, forany n. Let S be the set (ng][gn]_)

U {e} . Then S isacompact subspace of G. By Theorem 1.10 of [15] the subgroup
A of FA(G A H) generated by § is topologically isomorphic to FA(S), and the
subgroup B of FA(/G, Hj, 7, ) generated by § is also topologically isomorphic to
FA(S) As I'y®,(A) = B it follows that ®,(A4) is topologically isomorphic to
FA(S).

We have assumed that G * H is metrizable so its subgroup (gp/G, H], 1) is
metrizable. There the quotient group (gp[G,H],7)/8 (gp[G, H] ) is metrizable, since
it is Hausdorff. (It is Hausdorff since I'; is a continuous one-to-one map of it into the
Hausdorff space FA4 (G, H], 73 ).) Thus its subgroup &, (4) is metrizable. But &, (4}
is topologically isomorphic to FA(S), and so is a k,space (Theorem B) A k,-space
which is metrizable is locally compact [2]. So the free abelian group &, (4} has a
locally compact Hausdorff group topology. By Dudley [1] this implies that the topology
is discrete — which is a contradiction, since the topology of § is not discrete. Hence
G * H is not metrizable and non-discrete.

As an extension of the above theorem we have

Theorem 2. Let A4 be a common closed central subgroup of topological groups G and
H with A # G and A ¥ H. Then the amalgamated free product G* AH is metrizable
if and only if A is an open subgroup of G and of H, and both G and H are metri-
zable.

Proof. If G and H are metrizable and 4 is openin G and in H, then by Proposition
4 of [11]; G*AH is homeomorphic to {GxAH) x D, where D isa discrete group and

GxAH is the amalgamated direct product of G and H. Then, as GxAH is a Hausdorff
quotient of G x H, [9], it is metrizable. Hence G AH is metrizable,

Conversely, assume that G* AH is metrizable. Then replacing the Graev construc-
tion of the topology of G * H by the Khan-Morris construction [10], an argument
analogous to that in Theorem 1 show that the quotient groups G/4 and H/A are both
discrete.

This implies that A is open in both G and H. Of course G*AH metrizable also implies
that G and H are metrizable, and the proof is complete.

Remark. It should be noted that Theorem 2 generalizes Theorem 7 of [11], the proof
however is quite different. Theorem 7 of [11] says that unless 4 isopenin G and H,
GuH is not a complete metric group. This is proved by showing that if it were, then a
certain free group would be a complete metric group — which is impossible unless it is
discrete [1]. However as free groups do admit metrizable group topologies the same
argument could not have been used to show that G*AH is not metrizable.
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