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The main problem in the theory of amalgamated free products of 
topological groups is ascertaining whether the free product of two Hausdorff 
topological groups, G and H , with a closed subgroup, A , amalgamated, 
G*^H , is necessarily Hausdorff. Katz and Morris [3,4,5] have given affirm­
ative answers when G and H are fe^-groups and A is a compact subgroup, 
a normal subgroup or the product of a compact subgroup and a normal subgroup. 
Ordman [12] gave an affirmative answer for some locally invariant groups.
The only papers dealing with amalgamated free products of arbitrary Hausdorff 
groups G and H are Khan and Morris [7,8] where Hausdorffness is proved 
when A is a central subgroup of G and H.

In this note we reduce the problem of Hausdorffness to that of existence. 
We show that if A is a normal subgroup of Hausdorff groups G and H , 
and exists then 6*^# is Hausdorff. This result is then applied
to give an easy proof of the Khan-Morris [7] result mentioned above.
Another consequence is that if 4 is a closed normal subgroup of a Hausdorff 
group G , then G*^G is Hausdorff.

Definition. Let A be a common subgroup of topological groups G and H.

The topological group G * is said to be the free product of the topo­
logical groups G and H with amalgamated subgroup A if

(i) G and H are topological subgroups of 6*^# »

(ii) G U H generates algebraically, and

(iii) every pair (t)1>(t)2 continuous homomorphi sms of G and H , 
respectively, into any topological group D , which agree on
A , extend to a continuous homomorphism $ of into D.
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Remarks, (i) We note that basic category theory does not imply that the 
topological amalgamated free product of topological groups G and H exists, 
because the definition requires that G and H be topological subgroups 
of G*aB.

(ii) If exists then the underlying group is the algebraic 
amalgamated free product of the underlying groups. (The standard reference 
for algebraic amalgamated free products is [9].)

(iii) If A is the group with one element, then is simply 
G*H , the free product of the topological groups G and H. [1,2,11,13].

The fundamental theorem of free products of topological groups is:

Theorem (Graev [l]). If G and H are Hausdorff topological groups then 
G*H exists and is Hausdorff.

We now state our result.

Theorem. Let A be closed normal subgroup of Hausdorff topological groups 
G and H. If exists then it is Hausdorff. Also A is a closed

subgroup of •

Proof. Let $ be the canonical continuous homomorphism of G onto G/A 
and <J>2 the canonical continuous homomorphism of H onto H/A. As 
G/A*H/A exists and contains G/A and H/A , <J>1 and $ can be considered 
as maps of G and H , respectively, into G/A*H/A. Thus there exists a 
continuous homomorphism 4> of £*.// into G/A*H/A. By Graev's Theorem 
above, G/A*H/A is Hausdorff and therefore the kernel of $ is a closed 
subgroup of G*^H . But the kernel is A. As A is Hausdorff it is a 
T -space and therefore the identity element is closed in A and hence also 
in (An element of is representable in the form ghk where
g is in G , h is in H and k is a product of commutators [g,a] or 
[h3a~\.) Thus G *H is a -space and consequently a Hausdorff group 
(Proposition 3 of [10].)
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So we have now reduced the question of Hausdorffness of G*^H to that 
of existence. The following Lemma gives a necessary and sufficient condition.

Lemma. Let A be a subgroup of topologioal groups G and H. Then 
G*^H exists if and only if there is a topological group F and continuous 
homomorphisms 0 : G -*■ F and ty : H -*■ F such that 0 and ip agree on A } 
and 6 : G Q(G) and ip : H -*■ \p(H) are topological group isomorphisms.

Proof. It is well-known that the category of topological groups has co­
products and so G*H exists. Let 6 be the canonical homomorphism of 
G*H onto the algebraic amalgamated free product of the underlying groups 
of G and H. We denote this by H. Let t  be the quotient topology
on Gjĵ  H under the map 6. Then (Gll̂ H,t) , as a quotient of a topo­
logical group, is itself a topological group. It is readily seen this 
topological group satisfies conditions (ii) and (iii) of the definition of
G*AH . We now show that it also satisfies (i).
A

Now observe that the maps 0 and iji extend to a continuous homo­
morphism $ : G*H F and $ factors through to gi-ve a continuous 
homomorphism y : ( G -* F such that yS = But $ : G -*■ 'J'(G) is 
a topological group isomorphism, since $|<? = 0. Thus 6 : G -*■ 6(G) is a 
topological group isomorphism. Similarly 6 : H -+ 6(H) is a topological 
group isomorphism. Thus (Gn. H,t) also satisfies condition (i) and so is

< V -
We can now deduce the Khan-Morris result [7] for central amalgamations.

Corollary 1. If A is a closed central subgroup of Hausdorff topological 
groups G and H then G*^H exists and is Hausdorff.

Proof. The result immediately follows from the Theorem and the Lemma by 
putting F equal to the direct product of the topological groups G and 
H with A amalgamated. (See [6].)
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Corollary 2. If G is a subgroup of a Hausdorff group H and A is a 
closed normal subgroup of G and H , then G*^H exists and is Hausdorff.

Proof. Apply the Theorem and Lemma with F = H.

Corollary 3. Let A be a closed normal subgroup of Hausdorff groups G 
and H , such that G*AH exists. Then (G*AH)*AG exists and is Hausdorff.

Proof. This follows from Corollary 2 by replacing H there by » and
observing that if A is a closed normal subgroup of G and H then it is also 
a closed normal subgroup of jp •

Remark. Of course under the conditions of Corollary 3 we can similarly 
show that

r V . > ‘xV V " ; *A
where each K. = G or H , exists and is Hausdorff.

Corollary 4. If A is a closed normal subgroup of a Hausdorff group G 
then exists and is Hausdorff.

Remark. Of course under the conditions of Corollary 4, we can show that 
(... ((G*^G)*^G) * ... ) *^G exists and is Hausdorff.
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