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It is shown in this paper that if A is a closed normal subgroup of k,-topological groups G 

and H, then the free product of G and H with A amalgamated, G*,+H, exists, is Hausdorff and 

indeed a k,- group. 
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1. Introduction and preliminaries 

In [l] Khan and Morris showed that if G and H are any Hausdorff topological 

groups and A is a closed central subgroup of G and H, then G*A H exists and is 

Hausdorff. In this paper we are able to significantly weaken the condition of 

centrality, however the price we pay for this is that the topological groups are 

assumed to be k,- groups. (Recall that the class of k,- spaces includes, for example, 

all connected locally compact groups, all compact Hausdorff spaces and all countable 

CW-complexes). We show that if A is a closed normal subgroup of k,-groups G 

and H, then G *A H exists, is Hausdorff - indeed a k,- group - contains G and H 
as closed topological subgroups and has as its algebraic structure the amalgamated 

free product of the underlying groups. 

The standard reference for amalgamated free products of groups is Magnus, 

Karrass and Solitar [2]. For completeness we include some definitions here. 

Definition. Let A be a common subgroup of groups G and H. The group G *AH 

is said to be the free product of G and H with amalgamated subgroup A if 

(i) G and H are subgroups of G *AH. 

(ii) G u H generates G *AH algebraically. 
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(iii) Every pair q5r, C& of homomorphisms of G and H, respectively, into any 

group D which agree on A, extend to a homomorphism @ of G *AH into D. 

Definition. Let A be a common subgroup of topological groups G and H. The 

topological group G *AH is said to be the free product of the topological groups G 

and H with amalgamated subgroup A if 

(i) G and H are topological subgroups of G *AH. 

(ii) G u H generates G *AH algebraically. 

(iii) Every pair c$~, C#Q of continuous homomorphisms of G and H, respectively, 

into any topological group D, which agree on A, extend to a continuous 

homomorphism of G *AH into D. 

Observe that we use the symbol G *AH for both the algebraic and topological 

amalgamated free product, however which we mean should always be clear from 

the context. 

We note that basic category theory (‘general abstract nonsense’) does not imply 

that the topological amalgamated free product of topological groups G and H 

exists, because we choose to have in our definition that G and H are topological 

subgroups of G *AH. 

Notation. We denote the embedding map of A in G by g and the embedding map 

of A in H by h. Again, without fear of confusion, an element denoted by g, gi, g: 

and so on will always belong to G. Similarly h, hi and so on belong to H and a, ai 

and so on belong to A. 

A Hausdorff topological space A is said to be a k,-space if 2 = U?=“=l Z, where 

each Z, is compact, Z, sZ,,+r and a subset A of Z is closed if and only if A nZ, 

is compact for all n. We refer to Z = IJ Z,, as a k,-decomposition. 

Lemma. Let A be a closed common subgroup of k,-groups G and H. Then G and 

H have k,-decompositions G = U G, and H = U H,, such that 

(i) G, = G,’ and H,, = Hi’, 

(ii) H,H,,, E H,,, and G,G, s G,,,, 
(iii) A~G,,sH,+~ andAnH,,cG,+l 

for each positive integer n. 

Proof. Let G = U GA and H = U HL be the given k,-decompositions of G and 

H. Put Gr = G; n (G;)-’ and HI = Hi n (Hi)-‘. Now suppose that Gr, . . . , G, and 

HI,. . . , H, have been defined to satisfy (i), (ii) and (iii) and Gi E Gi+l, Hi E Hi+13 

i=l,2 ,..., n-l. 

As A is closed, A n G, is compact. Therefore A n G, E HA for some m 3 n + 1. 

So we define 

H “+I = H,, - H,, u (HAn (H&)-l). 
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Similarly observe that as A nH, is compact, there exists k 2 n + 1 such that 

AnH,,cG;.Sowedefine 

G n+i = G, * G, u (Gin (G;)-‘). 

Clearly Gi, . . . , G,+i and HI,. . . , H,,+l satisfy conditions (i), (ii) and (iii). Thus 

we can recursively define G, and H, for all n. It is easily seen, then, that G = lJ G, 

and H = IJ H, are k,-decompositions of G and H. 0 

Let A be a common subgroup of groups G and H, G * H the free product of 

G and H, and G *A H the amalgamated free product. Further, let f be the canonical 

homomorphism of G * H onto G *AH. 

It is readily seen that the kernel K of f is given by: 

K = the normal subgroup generated by {h (a)g(a)-‘: a E A}. 

If G and H are k,- groups with k,-decompositions G = lJ G, and H = IJ H,, 

then we let X = l_lr=i X, where 

x, = {urK1: u E (G, u H,)“, u = g(a)h(a)-’ or 

v=h(u)g(u)-‘andg(u)~G, andh(a)EH,} 

and Y, = (X,)“. 

Obviously each X,, and Y, is compact and K =Uy=r Y,. 

2. The main result 

Theorem. Let A be a closed normal subgroup of k,-groups G and H. Then G *AH 
exists and is a k,-group. 

Observe that l-’ is a homomorphism of G * H onto the algebraic amalgamated 

free product of the underlying groups of G and H. Proposition 1 tells us that if 

we give this group the quotient topology under this canonical homomorphism then 

it is Hausdorff and hence a k,- group. (Proposition 1 requires several lemmas which 

occupy most of this paper.) The proof of the theorem is then completed using 

Proposition 2. Proposition 2 says that if the quotient topology mentioned above is 

Hausdorff then it must contain G and H as closed topological subgroups. Thus 

this group with the quotient topology is the amalgamated free product of G and 

H, namely G *AH. 

Proposition 1. Let A be a closed normal subgroup of k,-groups G and H. Let r be 
the canonical homomorphism of the free product G * H onto the algebraic umul- 
gumuted free product G *AH of the underlying groups of G and H. Then this group 
with the quotient topology under r is Huusdorff, and hence a k,-group. 
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The proof of this proposition is delayed to Section 3. 

Proposition 2. Let A, G, H, G *AH, and I be as in Proposition 1. If G *AH, with 
the quotient topology is a k,-group then I: G +G *AH and I:H+G *AH are 
closed embeddings; that is, I is a topological group isomorphism of G and H onto 
their images, and I(G) and T(H) are closed, in the quotient topology on G *AH. 

Proof. Clearly G *A H with the quotient topology has k,- decomposition G *A H = 

UJ((G, uH,J”). T o s h ow that g is an embedding and r(G) is closed, it suffices 

to verify that for each n, there exists an m such that 

T(G) n I((G, u H,)“) s I(G,). 

But this follows from the easily checked containment 

T(G) n T((G, u H,)“) c_ r((G”z)u (G,z n A)"). 0 

Proof of the Theorem. We claim that the algebraic amalgamated free product with 

the quotient topology under r is the free product of the topological groups G and 

H with the subgroup A amalgamated. Property (i) of the definition follows from 

Proposition 2. Property (ii) is obviously true. Property (iii) follows from the fact 

that the topological group we are considering is a quotient topological group of 

the free product G * H, and G * H has the universal property. 

3. Proofs 

Lemmal. Ifg~G,,h~H,,v~Y,,,h(a)~H,and.e=fl,thenforn~l 

h(a)v[g, hl’ = [g, hl’h(ah 

where h (aI) E H20n and v 1 E Yzo,,. 

Proof. Consider E = +l, first. 

h(a)v[g, hl=[g, hlCg, hl-‘h(aNg, hlNg, hl-‘v[g, hl) 

= [g, h](h-‘g-‘hgh(a)g-‘h-‘gh)v;? where v2 E Y,,+., 

= [g, h](h-1g-‘h(gg(a)g-‘)h-‘gh)(h-‘g-’hgg(a)-’h(a)g-‘h-1gh)v2 

= [g, h](h-‘g-‘hg(a2)h-1gh)v3v2 where v3 EX”+~ and g(a2) E G3n+l 

= [g, h](h~‘g~‘(hh(a~)h~‘gh)(h~‘g~‘hh(a2)~’g(a2)h~’gh)v~v~ 

= [g, hl(h-‘g-‘h(a3)gh)v~v3v2 where v4 E X3n+5 and h (a3) E H5”+2 

= [g, hl(h-1(g-‘g(a3)g)h)(h-1g-*g(a3)gh)v4v3v2 

= [g, hl(h-‘g(a4)h)v5v4v3v2 wherevgEX5,,+5 andg(aJE%+3 

= [g, hl(h-‘h(a4)h)(h-‘h(a4)-‘g(a4)h)v~v4v3v2 
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= rg, hlh (~dU6U5U4~3U2 

= [g, hlh(ah 

where z16 E X7n+6 and h (u I) E f.fs,+ct S Hzon 

where VI E Y7nt6 G YxI”. 

The case with E = -1 is proved similarly. 0 

Lemma2. IfgEG,,g(al)EG,,hEH,,h(u2)EHn,und&=fl,fhenforn~l 

[gg(ur), hhbz>l = [g, hl’hb3b 

where h (~3) E 17200~ and u E Yzw,,. 

Proof. Consider E = +I, first. 

[g&A hhb2)l 

=g(ul)-‘g-‘h(uJ-‘h-‘gg(udhh(uz) 

=g(u~)-lg-lh(u~)-lg(g-lh-lgh)h-lg(udhh(uz) 

=g(al)-‘g-‘h(az)-‘g[g, hW’g(adhh(a2) 

= (g(al)-‘g-1g(a2)-‘g)(g-1g(a2)h(az)-’g) 

. [g, hl(h-‘g(a~)h(al)-‘h)(h-‘)hh(az)) 

= (g(dgb&& hlvz(h(dhb2N 

where VI, u2cXn+1, g(a)E G3”+1 and h(u5)EH3n+1 

= g(a6)vlk hluzh(u-l) where g(a6) E Gdn+l, h(u7)E&n+4 

= h b6jth (~6)-‘g(~6hk9 hlu2h (a71 

= h b6)u3dg, hlu2h (~7) where v3 E X4”+2 

= h (a6b4[g, h luzh (~7) where ~4 E Y4”+2 

= [g, hlh (advsu2h (~7) by Lemma 1 

where V5 E Y20(4n+2) and h (us) E H20(4n+2) 

= [g, hlh (adh (u7)(h (ad-'ush (uT))(h (ad-‘uzh (u7)) 

= [g, hlh (~31~ where 0 E Y20(4”+2)+4n+2 s Y200n 

and h (u3) E H 20(4n+2)+4n+l E YZOO”. 

The case E = -1 is proved similarly. 0 

Lemma3. Leth(ui)EH,,uiEY,,giEG”,hiEH”,&i=flfori=l,...,n,n~l.Then 

([gl, hll”‘h(udud(t-g2, h21E2h(a2)u2) . * * Cgn, hJnhbJ~A 

= [gl, hJ’Lg2, h21EZ . . * [gn, hnPh(ab 

where h(u) E H,,, and u E Y,,,, where m = 20” (n + 1)“. 
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Proof. We shall prove by induction that 

(*) 

([gl, ~l]“~(~lh)([g2, h21E2h(a2)V2) * ’ ’ ([g&z, hk]&‘hbkbk) 

= [gl, hJ1 * * - [gk, hk]‘kh(a)u for k c n 

where h(u) E H20qn+-1p and u E YxP(~+IJ~. 

Clearly this proposition is true for k = 1. Now assume that it is true for k = r < n 

and consider 

([gr, hJ’h(alh) * * + ([g,, h,Fh (ur)ur)([gr+l, hr+Jr+lh (ar+d~r+d 

= ([gl, h3 . . - [gr, h,]Erh(u’)u’)([g,+i, hr+#+‘hk.zr+h,+~ 

where u’E Y 20-(n+1)’ and h (a’) E H~o~(,,+IY 

= ([a, hJE1 - - * [gr+l, h,+Jr+‘)h (u”)u”h (ur+dur+~ by Lemma 1 

where U”E Y 20r+l(n+l)’ and h(u”) E H~o~+~,,+I)~ 

= [gl, hII”’ . . . [g,+l, h,+JEr+lh (u”)h (u,+d(h (ur+T1u”h (ur+A)ur+l 

= [gl, hJ’ . 9 . [g,+l, h,+#+*h(u” * u,+I)u”‘u,+I 

where U”‘E Y20,+qn+ly+l 

= [gl, hJ’ . - . [g,+i, hr+JEr+‘h(~)u 

where a E H20~+~~n+l~~+~ and u E Y~o~+Q~+I~+I. 

So the proposition (*) is true, and the lemma is proved. •i 

We choose a set So of coset representatives of A and G such that if g E So and 

g& G,, then Ag n G, = 0; that is, the representative of each coset is chosen to lie 

in the smallest G, of any element in that coset. A set SH of coset representatives 

of A in H is similarly chosen. 

Lemma 4. Let w = gh[gIg(uI), hlh(u;)]” * - * [g,g(u,), h,h(uA)lEn be an element in 
the kernel of the canonical homomorphism G * H + G *AH, where g E G,, h E H,,, 
giESGnG,,hiESHnH,,h(ui)EH,,h(u:)EH,,ei=fl,fori=l,...,n.ThenwE 
Yr, where r = 20200” (200n + 1)200” + 1. 

Proof. By Lemma 2, 

w = gh([gl, hJ”h(u’l)ud - * - (Cgn, hJgnh(~::M 

where ai E Y200n and h (a I) E H~oo,, 

= gh[gl, hJ’ . . . [gn, h,l’-h(ab by Lemma 3 

where h(u) E Hr._* and u E Y,-I. 
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Now consider the sequence of groups 

G*H:G*/,H:G/A*H/A:G/AxH/A 

where all the maps are canonical homomorphisms. 

Firstly observe that P@r(w) = 1, and so g E g(A) and h E h(A); that is, g = g(u) 

and h = h (a’), for some a and a’ in A. NOW 

@T(w) = 1 = W([gi, hJE1 * * * [g,, h,l’-) 

= @T([gl, hd” . - . @Ngn, MP. 

However each @([gi, hi]) lies in the Cartesian subgroup [G/A, H/A] of G/A * H/A, 
which subgroup is defined to be the kernel of P. Indeed the Cartesian subgroup is 

a free group with free basis {c-‘d-i&: c E G/A and d E H/A}\(l) [2, p. 4121. Thus 

@Ngl, hJ”’ . * - @Ngn, klP can equal 1 only because of trivial cancellations, 

such as @f ([gi, hi])‘{ = (pr([gi+l, hi+l])-Ez+‘* Hence [gi, hl]‘l * * * [g,, h,lEn = 1, by the 

same trivial cancellations, since @r([gi, hilci) = @I’([gi+lp hi+l])-Ei+’ implies 

El+1 fcekic = [gi+i, hi+ll- k eeping in mind that each coset has a unique representa- 

w = g(a)h (u’)h (u)u = g(u)h (a%. 

Finally observe that f(w) = 1 = r(g(u)h (a”)). But this can equal 1 only if u = 

(uy-l. so 

w = g(u)h(u-‘)u 

=ul’U 

= VI’ E Y,. 

where u1 E X,-i 

This completes the proof of the lemma. 0 

Proof of Proposition 1. In order to see that G *AH with the quotient topology 

under r is Hausdorff, and hence a k,-group, it suffices to verify that the kernel K 

of r is closed in G * H. 
In [3] it is shown that G *H has the following k,-decomposition: 

G *H=UT,,, 
n 

where T, ={ghk: g E G,, h E H,,, k = [gl, hllel * * * [g,, h,]‘-, Ei = *l, each gi E 
G,,hiEH,,andmcn}. 

To show that K is closed in this km-space, it suffices to prove that for each n, 

there exists an s such that K n T, = Y, n T,. Indeed it is enough to verify that 

K n T,, c Y,. 
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Solet wcT,,nK 

w = gh[gl, h1]” * * * [g& hAI’- 

andgEG,,hEH,,eachg:EG,,h:EH,andm~n. 
Each gi = gig(ai), where gi E SG, the set of coset representatives defined just 

before Lemma 4. Then gi E G, and so g(ai) E Gzn. 
Similarly h i = hig(a I), where hi E SH n H,, and h (a I) E Hz,. 
Now applying Lemma 4 the result follows at once. Cl 
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