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ON METRIZABLE k -SPACESco
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Abstract. In recent years fc^-spaces have played a critical role in 
the study of topological groups [5, 6, 7, 8, 9, 11, 12]. (A Hausdorff 
space is said to be a /c^-space if it is a countable union of compact 
spaces and has the weak topology with respect to these spaces.) The 
class of fc^-spaces is known to be wide enough to include any countable 
CV-complexes and all locally compact a-compact Hausdorff spaces, but 
restrictive enough that fc^-condition makes it possible to handle 
topological problems by purely computational means.

Despite the widespread interest in k^-spaces and their use 
[l, 3, 4, 8, 10, 13] an easily proved but very pleasant result seems to 
have been overlooked. This result is that any open subspace of a 
compact metric space is a k^-space. Indeed metrizable fc^-spaces can be 
characterised as open subspaces of metrizable compact spaces.

Theorem 1. An open subspace of a compact metric space is a k^-space.

Proof. Let Y be an open subspace of the compact metric space X . 
Then X is separable and so has a countable dense subset S . Let B 
be the set of all closed balls having centre in S and rational radius. 
Clearly B is a countable family of compact sets. We claim that Y 
is a union of members of B and hence is a-compact.

Let y € Y . Then Y is an open set containing y and so 
contains an open ball about y of some rational radius r , say.
Then the open ball D about y of radius r/3 must contain some
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element, s } of S . Now consider the closed ball B1 with centre 
s and radius r/3. Clearly B̂  € B, y € Bl and B1 c y . Thus Y 
is a union of members of B } as required.

So y is CT-compact and, as it is an open subspace of a compact 
metric space, also locally compact Hausdorff. Thus Y is a k -space 
([4], 10).

Theorem 2. Any metric k^-space can be embedded as an open subspace of 
a compact metric space.

Proof. Let X be a metric fc^-space and Y its one-point compact- 
ification. Being a metric k -space, X is second countable ([4],19) 
and locally compact Hausdorff ([4], 21). Thus by Theorem 8.6 of [2],
Y is metrizable. Of course X is an open subspace of Y .

Corollary. A topological space is a metrizable k^-space if and only if 
it can be embedded as an open subspace of a metrizable compact space.

Corollary. Any open subspace of a metrizable k^-space is a k -̂space.

Examples : (i) (0,1) is an open subspace of the compact metric 
space [0,1] and is therefore a k^-space.

(ii) If X is any compact metric space and x1, ...,x̂  
are in X , then X \  {Xj, ..., , with the subspace topology
is a k -space.co

(iii) Let X be an uncountable discrete space and Y 
its one-point compactification. Then X is not a k - space but it is 
an open subspace of the compact Hausdorff space Y . Thus the 
metrizability condition cannot be dropped from Theorem 1.
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