ON METRIZABLE k -SPACES

Eli Katz and Sidney A. Morris

(received 13 October, 1981)

Abstract. In recent years k_{ω} -spaces have played a critical role in the study of topological groups [5, 6, 7, 8, 9, 11, 12]. (A Hausdorff space is said to be a k_{ω} -space if it is a countable union of compact spaces and has the weak topology with respect to these spaces.) The class of k_{ω} -spaces is known to be wide enough to include any countable CW-complexes and all locally compact σ -compact Hausdorff spaces, but restrictive enough that k_{ω} -condition makes it possible to handle topological problems by purely computational means.

Despite the widespread interest in k_{ω} -spaces and their use [1, 3, 4, 8, 10, 13] an easily proved but very pleasant result seems to have been overlooked. This result is that any open subspace of a compact metric space is a k_{ω} -space. Indeed metrizable k_{ω} -spaces can be characterised as open subspaces of metrizable compact spaces.

Theorem 1. An open subspace of a compact metric space is a k-space.

Proof. Let Y be an open subspace of the compact metric space X. Then X is separable and so has a countable dense subset S. Let B be the set of all closed balls having centre in S and rational radius. Clearly B is a countable family of compact sets. We claim that Y is a union of members of B and hence is σ -compact.

Let $y \in Y$. Then Y is an open set containing y and so contains an open ball about y of some rational radius r, say. Then the open ball D about y of radius r/3 must contain some Math. Chronicle 12(1983) 119-122.

119

element, s, of S. Now consider the closed ball B_1 with centre s and radius r/3. Clearly $B_1 \in B$, $y \in B_1$ and $B_1 \subseteq Y$. Thus Y is a union of members of B, as required.

So Y is σ -compact and, as it is an open subspace of a compact metric space, also locally compact Hausdorff. Thus Y is a k_{ω} -space ([4], 10).

Theorem 2. Any metric k_{ω} -space can be embedded as an open subspace of a compact metric space.

Proof. Let X be a metric k_{ω} -space and Y its one-point compactification. Being a metric k_{ω} -space, X is second countable ([4],19) and locally compact Hausdorff ([4], 21). Thus by Theorem 8.6 of [2], Y is metrizable. Of course X is an open subspace of Y.

Corollary. A topological space is a metrizable k_{ω} -space if and only if it can be embedded as an open subspace of a metrizable compact space.

Corollary. Any open subspace of a metrizable k_{o} -space is a k_{o} -space.

Examples: (i) (0,1) is an open subspace of the compact metric space [0,1] and is therefore a k_{α} -space.

(ii) If X is any compact metric space and x_1, \ldots, x_n are in X, then $X \setminus \{x_1, \ldots, x_n\}$, with the subspace topology is a k_{ω} -space.

(iii) Let X be an uncountable discrete space and Y its one-point compactification. Then X is not a k_{ω} -space but it is an open subspace of the compact Hausdorff space Y. Thus the metrizability condition cannot be dropped from Theorem 1.

120

REFERENCES

- R. Brown and J.P.L. Hardy, Subgroups of free topological groups and free topological products of topological groups, J. London Math. Soc. (2) 10(1975), 431-440.
- 2. James Dugundji, Topology, Allyn and Bacon, Boston, 1966.
- Stanley P. Franklin and Barbara V. Smith Thomas, On the metrizability of k -spaces, Pacific J. Math. 72(1977), 399-402.
- Stanley P. Franklin and Barbara V. Smith Thomas, A survey of k_o-spaces, Topology Proc. 2(1977), 111-124.
- 5. E. Katz, Free products in the category of k_{ω} -groups, Pacific J. Math. 59(1975), 493-495.
- 6. Elyahu Katz and Sidney A. Morris, Free products of topological groups with amalgamation, submitted.
- 7. Eli Katz and Sidney A. Morris, Free products of k_{ω} -topological groups with normal amalgamation, submitted.
- W.F. La Martin, On the foundations of k-group theory, Dissertationes Math. (Rozprawy Mat.) 146(1977), 1-36.
- John Mack, Sidney A. Morris and Edward T. Ordman, Free topological groups and the projective dimension of a locally compact abelian group, Proc. Amer. Math. Soc. 40(1973), 303-308.
- E. Michael, Bi-quotient maps and cartesian products of quotient maps, Ann. Inst. Fourier (Grenoble) 18(1967), 278-302.
- Peter Nickolas, A Kurosh subgroup theorem for topological groups, Proc. London Math. Soc. (3) 42(1981), 461-477.
- E.T. Ordman, Free products of topological groups which are k_-spaces, Trans. Amer. Math. Soc. 19(1974), 61-73.

 N.E. Steenrod, A convenient category of topological spaces, Michigan Math. J. 14(1967), 133-152.

Cleveland State University Cleveland, Ohio, 44115, U.S.A. La Trobe University, Bundoora, Vic. 3083, AUSTRALIA