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Free products of topological groups

Sidney A. Morris

In this note the notion of a free topological product | | G

of a set {G } of topological groups is introduced. It is

shown that it always exists, is unique and is algebraically

isomorphic to the usual free product of the underlying groups.

Further if each G is Hausdorff, then ] | G is Hausdorff

and each G is a closed subgroup. Also ] \ G is a free

topological group (respectively, maximally almost periodic) if

each G is. This notion is then combined with the theory of

varieties of topological groups developed by the author. For Y_

a variety of topological groups, the ^-product of groups in J/

is defined. It is shown that the V-product, V, 1 I ̂  °^ a n v

— — ot

set {G } of groups in V_ exists, is unique and is

algebraically isomorphic to the usual varietal product. It is

noted that the .V-product of Hausdorff groups is not necessarily

Hausdorff, but is if V_ is abelian. Each G is a quotient

group of V "| f G . It is proved that the V-product of free

topological groups of V. and projective topological groups of

.V are of the same type. Finally it is shown that V *] f G is

connected if and only if each G is connected.
J a

1. Introduction

In this note we introduce the notion of a free topological product of
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topological groups. The concept is the natural analogue of that of a free

product of groups [5] and was inspired by the work of Golema [2] and

Hulanicki [7] on free products in the category of compact Hausdorff groups.

In §2 we prove basic existence and uniqueness theorems for the free

topological product and the free abelian topological product and ape some

theorems on free products. We note that Hulanicki's result (Proposition 1

of [7]) can be interpreted as saying the free topological product of

compact Hausdorff groups is maximally almost periodic [75]. We extend

this result to show that the free topological product of maximally almost

periodic groups is of the same type. Hall [4] noted that the direct

product of protective topological groups is not necessarily a projective

topological group. In the light of this it is satisfying to see that the

free abelian topological product of projective topological groups is

projective.

In §3 we combine the notion of a free topological product with that of

a variety of topological groups; (see [JO], [7 7] and [72]). We define a

^-product of topological groups as a natural analogue of a varietal product

[74]. Similar results are then proved for V.-produets.

The notation and terminology, in general, conform to that of [S] and

[74]. Further if G is a topological group then G denotes the

underlying (abstract) group. If 5 is any set then |s| denotes the

cardinal of the set. If A and B are topological groups then A is a

subgroup of B , means that A is algebraically a subgroup of B and that

the topology induced on A by B is the given topology. The cartesian

product of topological groups {G. : i 6 J} is always given the Tychonoff

product topology and denoted by ] \ G. .

2. Free topological products

DEFINITION 2.1. Let {G. : i i 1} be a set of topological groups.
If

Then the topological group F is said to be a free topological product of

{G. : i € J} , denoted by "| \ G. , if it has the properties:
1 %

(a) for each £ in I , G. is a subgroup of F ;
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(t>) F is generated algebraically by U G. ;
UI %

(c) if for each i in I , <j>. is a continuous homomorphism of G.
'V "If

into a topological group H , then there exists a continuous

homomorphism $ of F into H such that $ = 4>. on G. , for

each i .

THEOREM 2.2. Let {G. : i (. 1} be any set of Hausdorff groups.

Then ~| \ G. exists and is Rausdorff.
UI %

Proof. Let F = ~| | G. he the free (algebraic) product of the

groups {G• : i d 1} . (See [5].) Our first task is to show that F can

be given a Hausdorff group topology which induces the given topology on

each G. .
If

We define a topology T\ on F by exhibiting a system of

left-invariant pseudo-metrics d (LSI, p. 210) each of which is given by

a family {d. : i 6 1} , where d. is a left-invariant pseudo-metric on
If If

G. for each i in I .

For g any element of F , g = g . . . g , where g € G and
I n i i

n
a. + a. . Define dig, e) = \ d [g , e] , where e represents the

i=l i i

identity element of F and each G. . Then for h and k any elements
If

in F , define dih, k) = d(k h, e) . It is easily seen that d is a

left-invariant pseudo-metric on F and if g is an element of F such

that dig, e) = 0 for all d , then g = e . Thus the topology Tj on F

induced by the family of all d is a Hausdorff group topology. Clearly

Ti induces the given topology on each G. .

Now define F to be the group F with the finest group topology T

which induces the given topology on each G. . From the previous paragraph

we see that F exists and is Hausdorff. We claim that F is the required
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group. (Clearly it has properties (a) and (b) of Definition 2.1.)

Let H be any topological group and (f>. , for each i in I , be a
1s

continuous homomorphism of G. into H . Since F is algebraically a
1s

free product of the G- , there is a homomorphism $ of F into H such

that $ = ((). on G. , i £ I . Define a topology T2
 o n "̂ in the

following manner: the set 0 is open in i2 if and only if 0 = $~ (A) ,

where A is an open set in H . Clearly x2 is a group topology. Let

the topology T3 be the sum of i2 and T ; ([3], §1). Then F with

the topology T3 is a topological group and T3 induces the given

topology on each G. . Since T3 is finer than T we must have T3 = x .
1s

Hence $ is continuous, and the proof is complete.

The next theorem shows that the free topological product is unique

(if it exists). The proof is omitted as it is similar to that of Theorem

8.9 of [6].

THEOREM 2.3. Let {G. : i £ 1} be a set of topological groups. If

F\ and F2 both satisfy conditions (a), (b) and (c) of Definition 2.1.,

then there is a topological isomorphism f of F± onto F2 such that the

mapping f restricted to G. ( c ^ ) is a topological isomorphism of G.

onto G. (c F2) for each i £ I .
Is ""*

COROLLARY 2.4. If {G. : i £ 1} is a set of Hausdorff groups, then
Is

~\ \ G. is algebraically isomorphic to the free (algebraic) product of

(5. : i i 1} .
Ts

THEOREM 2.5. Let {G. : i £ 1} be a set of Hausdorff groups and J
1s

be a subset of I . Then the subgroup G of ] \ G. generated
UI v

algebraically by U G. is topologically isomorphic to ] \ G. .

Further, G is a closed subgroup of | | G. .
UI v

Proof. In the notation of Theorem 2.2, it is clear that G is a
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closed subset in Tj . Since T is finer than Tj , G is a closed

subgroup of I | G. .
id 1

Let H be any topological group and <}>. a continuous homomorphism

of G. into H for each i in J . For each £ in J which is not in

J , define a continuous homomorphism <j>. of G. into H by
7s 7s

<j>.(G.) = e , the identity of H . Then there is a continuous homomorphism

$ of ] [ G. into # such that $ = <)>. on G. . Restrict $ to G .
• _ 7s 7s 7s

Clearly then, condition (c) of Definition 2.1 is satisfied. Hence G is

the free topological product of {G. : i d J} .
7s

COROLLARY 2.6. If {G. : i i 1} is a set of Hausdorff groups then
7s

each G. is a closed subgroup of \\ G. .

The following lemma can be proved in precisely the same way as Lemma

2.11 of [J0].

LEMMA 2.7. Let X be any subset of a topological group H . If $

is a homomorphism of H into a topological group G such that $\x is

an open mapping, then $ is an open mapping.

THEOREM 2.8. Let \ |* G. be the free topological product of a set
iel %

{G. : i (. 1} of topological groups. Then each G. is a quotient group
7s 7s

of iTe.

Proof. Let j be a fixed element of I . For each i in I ,

i t 0 , define a mapping 4>. of G. into G. by <|>.fG.) = e . Define

<t>. to be the identity mapping of G. into itself. Then each <j>. ,
0 3 1*

i ( I , is a continuous homomorphism. Therefore, there is a continuous

homomorphism $ of ~| \ G. into G. such that $|G. = <j>. , for each i
UI v J z t

in I .
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Now $|G . is an open mapping. Thus by Lemma 2.7, $ is an open
3

mapping, and the proof is complete.

THEOREM 2.9. Let F(X.) be a free topological group on a
Is

topolog-ioal space X. , for i in an index set I . ( [ 9 ] , or [ 7 0 ] ,

D e f i n i t i o n k.l.) Then \ |* F(X.) exists and is F(X) , the free
i %

topologiaal group on the space Y } where Y is the free union [7 ] of the

spaces {X. : i € J } .

Proof. By Theorem 6.5 of [72], F(Y) ex i s t s . I t is easily verified

that the subgroup of F(Y) generated algebraically by X. is F[x.) ,

for each i In I .

Let (j). be a conti-nuous homomorphism of F[X.) into a topological

group H , for each i in I . Then (js.lx. is a continuous mapping of

X. into H for each i . Define a map § of Y into B by

<f>|j. = <J>.|X. , for each i . Then (j) is continuous. Thus there is a

continuous homomorphism $ of F(-iO into ff such that $ | j = <J) . Hence

. = i)- and therefore $\F[X.) = <J>. , for each i . Thus F(Y) is

T~f Fix )

DEFINITION 2.10. A topological group G is said to be maximally

almost periodic (MAP) , if it admits a continuous monomorphism into a

compact Hausdorff group; (see [75]).

For example every compact Hausdorff group, and every locally compact

Hausdorff abelian group is a MAP group.

THEOREM 2.11. If {G. : i i 1} is a set of MAP groups, then
t>

1 | G- is a MAP group.

Proof. For each i in I , there is a compact Hausdorff group H.

and a continuous monomorphism (f>. of G. into H. . Proposition 1 of
Is ts ts
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[7] implies that ~| \ H. is a MAP group.

Furthermore there is a continuous homomorphism $ of ] \ G. into

UI v

1 | H. such that $|G. = <J). , for each i . Clearly $ is a
UI * l *

monomorphism. Hence ~| | G. is a MAP group.

REMARK 2.12. If we restrict our attention to abelian groups we can

obtain similar results. In fact if we take all groups previously

discussed in this section to be abelian (and hence define a free abelian

topological product) all the results remain true.

The following theorem is obvious.

THEOREM 2.13. If {G. : i € J} is any set of abelian topological

groups then their free abelian topological product exists and has the

direct product ~\ y G. of these groups as a continuous monomorphic
i z

image.

REMARK 2.14. Remark 3.32 of [13] states that the direct product of

free abelian topological groups is not necessarily a free abelian

topological group. Thus the analogue for abelian groups of Theorem 2.9,

which states that the free abelian topological product of free abelian

topological groups is a free abelian topological group, is of interest.

Also Theorem 2.15 is notable, since Example 2 of [4] shows that the

direct product of projective topological groups is not necessarily

projective.

THEOREM 2.15. Let {G. : i d 1} be a set of protective topological

groups (in the sense of [4],). Then the free abelian topological product

F of {G. : i d 1} is a projective topological group.

Proof. Let A and B be abelian topological groups and / be a

continuous homomorphism of A onto B such that there exists a

continuous mapping g of B into A such that fg acts identically on

B .
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Let 9 be a continuous homomorphism of F into B and 9. = %\G.
If If

for each i in I . Then 8. is a continuous homomorphism of G. into

B . Since each G. is projective, there is a continuous homomorphism <J>.

u 1,
of G. into A such that f<j>. = 9. . Therefore there is a continuous

%r %> If

homomorphism $ of F into A such that $|G. = <p. . Clearly /$ = 9 .
If tr

Hence F is projective.

3. Topological varietal products

DEFINITION 3.1. Let J b e a variety of topological groups [101 and

{G. : i i. 1} be a set of topological groups in V. . Then the topological

group F in V. is said to be a ^/-product of {G. : i € 1} , denoted by

V 1 T G. , if it has the properties:

(a) each <?. , i € I , is a subgroup of F ;

(b) F is generated algebraically by U G. ;

(c) if for each i in I , (J>. is a continuous homomorphism of G.

into a topological group H in V_ , then there exists a

continuous homomorphism $ of F into # such that $ = <)>.
If

on (7. , for each i .

Clearly, if V. is the variety of all (respectively, al l abelian)

topological groups, then V_~\ \ G. is the free (free abelian) topological

product of {G. : i 6 1} .

THEOREM 3.2. Let {G . : i i 1} be any set of topological groups in

a variety of topological groups V_ . Then W_ *] f G. exists.
Ul ^

UGiProof. Let m be any infinite cardinal such that

Let {H : a € M} be the set of all (non-topologically isomorphic)

topological groups in V̂  such that \H | 5 m . We denote by (5 a system
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of continuous homomorphisms f\ , i € I of the G. into a fixed E

The set of all such systems may be denoted by N . Let G = ~| \ H ,
a,B

with H „ = H for 8 f " •

For each £ in J , define the map a. of G. into G by
i i

a.(x) = {f*. (x)\ . Clearly by the embedding lemma in [8], each a. is a
% \ i J i

topological isomorphism of G. onto a.(G.) . We now identify G. with

Let F be the subgroup of G generated algebraically by U G. .

UI V

Then F is the required group. We see that F has properties (a) and

(b) of Definition 3.1.

Let <j>. be a continuous hamomorphlsm of G. into a topological
i i

group H in V, for each i in I . Without loss of generality we

can assume \H\ 2 m , Thus for some a and g we can identify H with

G and 4>. with /. for each i . Hence, if we define $ to be the
Ctp I I

projection of F onto the axis corresponding to the indices a, 3 we get

$|G. = (j). , for each i in I" . The proof is complete.

The following uniqueness theorem can be proved in a similar manner to

Theorem 8.9 of [6].

THEOREM 3.3. Let {G. : i 6 J} £>e a set of topological groups in a
i

variety of topological groups ^ . If Fj and F2 are in £ and have

the properties stated in Definition 3.1, then there is a topological

isomorphism f of F\ onto F2 such that the mapping f restricted to

G. (c F ) is a topological isomorphism of G. onto G. (c F ) for each

THEOREM 3.4. Let V. be a variety of topological groups and V. be

the underlying (algebraic) variety of groups. (See Remark 2.3 of [JO].)

If {G. : i Z 1} is a set of topological groups in V̂  , then V_ ~\ f G.
v id v
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is the ^-product of {G. : i (. 1} . (See [74], 18.31.)

Proof. For each i in I , let <j>. be a homomorphism (not

necessarily continuous) of G. into any H in V . It is enough to
Is

prove that there is a homomorphism $ of V. ~] \ G. into H such that

~ U.I %

= (f>. for each i .

By Lemma 2.7 of [70], there is an ^ in V̂  which has the indiscrete

topology and is algebraically isomorphic to H . Let 9 be an

isomorphism of H onto A . Then for each i , the mapping 9<j>. is a
If

continuous homomorphism of G. into A . Therefore, there is a

continuous homomorphism S of V "| \ G. into A such that S\G. = 9<f>. ,

for each i . Define the mapping $ of ^ "] f G. into H by $ = 9~ 6 .

Clearly $ is a homomorphism and $|G. = <J>. for each i .

REMARK 3.5. Theorem 2.2 leads us to ask: If {G. : i € 1} is a

set of Hausdorff groups in a variety of topological groups V. , is

V. "| |" G. necessarily Hausdorff? The following example answers this
iej %

question in the negative, whilst Theorem 3.7 shows that if _V is an

abelian variety then the answer is positive.

EXAMPLE 3.6. (See [72], Example 3.2.) Let ^ be the class of all

topological groups G having the property that the intersection of all

neighbourhoods of the identity in G contains the commutator subgroup of

G . It can be readily verified that V is a variety of topological

groups such that the underlying (algebraic) variety of groups is the

variety of all groups.

Clearly the infinite cyclic group F with the discrete topology is

in V_ . However, by Theorem 3 ^ s the X-P1"0^0* °f F with itself is a

non-abelian group and hence is not Hausdorff.

THEOREM 3.7. Let V. be any variety of abeZian topological groups

and {G. : i (. 1} be any set of Hausdorff groups in V . Then V. ~| \ G.
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is a Hausdorff group and each G. is a closed subgroup.

Proof. This follows immediately from the fact that the direct

product of {G. : i d 1} is in V , is a Hausdorff group which is

algebraically iscsaorphic to V, ] T G. , and has each G. as a closed
~ UI l t"

subgroup.

The next theorem is obvious.

THEOREM 3.8. Let V, be any variety of topological groups and

{G. : i € J} a set of topological groups in V. . Consider the sequence
7s

* £<•! l

where "| p G. is the direct product of the G. and the mappings f and
UI % l

g are the natural homomorphisms. Then f and g are continuous.

Further, if Tf is a full variety [7J], / is an open mapping.

Theorems 3.9, 3.10, 3.11 and 3-12 can be proved in a similar manner

to Theorems 2.8, 2.9, 2.15 and 2.5 respectively.

THEOREM 3.9. Let V. be a variety of topological groups and

{G. : i € 1} be in V_ . Then each G. is a quotient group of

THEOREM 3.10. Let V̂  be a variety of topological groups and

i> VJj i € I , be a set of free topological groups of V^ [JO]. Let

y= U X. in V~TTf(*->l) • Then V]~TF(X.,V) is F(Y,V) .
iel iel i*I

THEOREM 3.11. Let V_ be a variety of topological groups and

{G. : i € 1} be a set of topological groups protective in V_ [ H ] . Then

V_ 1 f G. is protective in X •

~ UI v

Note that Theorem 3.6 of [JJ] is a special case of Theorem 3.11.

THEOREM 3.12. Let {G. : i € 1} be a set of topological groups in
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a variety of topological groups V_ . Let J be a subset of I , Then

the subgroup of £ ] \ G. generated algebraically by U G. is
UI % iej %

topologically isomorphic to V. ] \ G. .
UJ v

THEOREM 3.13. Let £ be a variety of topological groups and

{G. : i i 1} be in V_ . Then £ "] [ G. is a connected group if and only
id

if each G. is connected.
Is

Proof. If i ] \ G. is connected, then it follows immediately from

Theorem 3.9 that each G. is connected.
%

Conversely if each G. is connected, then U G. is a connected

subset of Y. 1 \ G. containing the ident i ty . Further U G. generates
i<rJ V UI %

V_1 [ G. a lgebraical ly . Hence V. ~| \ G. is connected.
% UI %
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Free products of topological

groups: Corrigendum

Sidney A. Morris

Professor Edward T. Ordman has pointed out to the author that the

proof of Theorem 2.2 in [Z] i s incorrect. The theorem i s , in fact , correct

and was proved by Graev [ 1 ] . The incorrect proof presented in my paper has

been modified by Ordman [3] to provide a much simpler proof than Graev's in

a special case.
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