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 WITH CENTRAL AMALGAMATION. I
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 M. S. KHAN AND SIDNEY A. MORRIS

 ABSTRACT. It is proved that the amalgamated free product of any two Hausdorff

 topological groups exists and is Hausdorff, providing the subgroup which is being
 amalgamated is closed and central.

 1. Introduction. In 1950 M. I. Graev [3] proved that the free product of any two

 Hausdorff topological groups exists and is Hausdorff. His proof is quite technical,

 and although some special cases of Graev's result have been proved more easily, no

 one has produced an easier proof of his general result. In this paper we show that the

 amalgamated free product of any two Hausdorff topological groups exists and is

 Hausdorff, providing the subgroup which is being amalgamated is closed and

 central. This result, of course, includes Graev's and our method of proof is an

 extension of his. The two extra ingredients of our proof are a nice algebraic

 representation of free products of groups with a central amalgamated subgroup, and

 our earlier work on amalgamated direct products of topological groups [4].

 The only other published work on amalgamated free products of topological

 groups of which we know is that by E. T. Ordman [7], who showed that the

 amalgamated free product of certain locally invariant Hausdorff topological groups

 exists and is Hausdorff providing the subgroup being amalgamated is closed.

 In the sequel to this paper we study the topology of the amalgamated free product

 more carefully. In particular, when the groups being considered are km-spaces, we
 are able to give a complete description of it. We also settle the question of when the

 amalgamated free product is locally compact.

 2. Notation and preliminaries. The standard references for amalgamated free

 products of groups are B. H. Neumann [6] and Magnus, Karrass and Solitar [5].

 For completeness we include some definitions here.

 DEFINITION. Let A be a common subgroup of groups G and H. The group G *A H

 is said to be the free product of G and H with amalgamated subgroup A if

 (i) G and H are subgroups of G *A H,

 (ii) G U H generates G *A H, and

 (iii) every pair fk1, 02 of homomorphisms of G and H, respectively, into any group
 D which agree on A, extend to a homomorphism F of G *A H into D.
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 406 M. S. KHAN AND S. A. MORRIS

 DEFINITION. Let A be a common subgroup of topological groups G and H. The

 topological group GIIA H is said to be the free product of the topological groups G

 and H with amalgamated subgroup A if

 (i) G and H are topological subgroups of GIIA H,

 (ii) G U H algebraically generates GIiA H, and

 (iii) every pair p1, 02 of continuous homomorphisms of G and H, respectively, into
 any topological group D, which agree on A, extend to a continuous homomorphism

 of GIIA H into D.

 RIEMARKs. By not restricting ourselves to Hausdorff topological groups in the

 above definition it follows (by considering indiscrete groups D) that if GIIA H exists

 then its underlying group structure is G *A H.

 Standard categorical arguments show that GII A H exists if and only if there exists

 a topological group E having G and H as topological subgroups, with G n H = A of

 course. This, for example, says that if A {e}, the identity element, then the free

 product Gii H exists since we can put E = G X H. When A #& {e} but is central in

 G and H we can put E equal to the topological direct product of G and H with A

 amalgamated.

 DEFINITION. The group E is said to be the direct product of its subgroups G and H

 with amalgamated subgroup A if

 (i) E is generated by G U H,

 (ii) G n H = A, and
 (iii) G is contained in the centralizer of H in E.

 It is readily seen that the amalgamated direct product exists if and only if A is a

 central subgroup of G and H.

 DEFINITION [4]. A topological group G XA H is said to be the (topological) direct

 product of its topological subgroups G and H with amalgamated subgroup A if it has

 the properties:

 (i) G X A H is generated algebraically by G U H,

 (ii)G GnH = A,
 (iii) G is contained in the centralizer of H in G XA H, and

 (iv) if k1 and 02 are any continuous homomorphisms of G and H, respectively,
 into any topological group D such that k 1 and 02 agree on A and 02(H) is contained
 in the centralizer in D of 41(G), then there exists a continuous homomorphism 4(:

 G XA H-* D which extends k1 and 02.
 In [4] it is shown that the underlying group of G X A H is the amalgamated direct

 product of the underlying groups G and H. Moreover, G X A H exists if and only if A

 is a central subgroup of G and H. The topological group G X A H is topologically

 isomorphic to (G X H)/{(a, a-'): a E A).
 So, returning to our earlier remarks, we see that GIIA H exists if A is central in G

 and H. Questions about the Hausdorffness of GIIA H are not so easily settled.

 We shall show that GIIA H is Hausdorff by verifying that if A is central and

 closed in the Hausdorff topological groups G and H, then it is possible to put a

 Hausdorff group topology on G *A H which induces the given topologies on G and

 H. This topology will not, in general, be the topology of GIIA H. However, it is
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 FREE PRODUCTS OF TOPOLOGICAL GROUPS. I 407

 easily seen that GIA H must have the finest group topology on G *A H which

 induces the given topologies on G and H. Thus GIIA H will be Hausdorff (under the

 above-mentioned assumptions).

 3. The main result.

 LEMMA 1. Let G and H be groups with G n H = A a central subgroup of both G and

 H. Let F be the canonical homomorphism of G * H onto G *A H. For g E G and

 h E H, F([g, h]) = e if and only if g E A or h C A.

 PROOF. Now F([g, h]) = g-lh-lgh. So if g M A and h 5 A then g-lh-lgh is in
 reduced form and so does not equal e. Thus F([ g, h ]) = e implies g E A or h E A.

 Conversely, if g E A or h E A, then by the centrality of A in G and H,

 g-lh-lgh = e in G *A H, as required.

 LEMMA 2. Let G, H, A and F be as in Lemma 1. Further, let gl, g2 E G and hl,

 h2CE H be such that F([gl,h]) # e. Then F([gl, hI]) = ([g2, h2j) if and only if
 g2 Cg1A andh2 C h1A.

 PROOF. Now F([gl, hj]) = F([g2, h2]) implies gjlhylglhl = g21h-lg2h2 in the
 group G*A H. By Lemma 1 none of gI, g2, h1, h2 is in A, since F([g1, h1]) =
 F([g2, h2]) # e. Thus gjlhjlglhl and gjlh21g2h 2 are in reduced form. Therefore (see,
 for example, Epstein [1]), g2 = aIgja2 and h2 = a3hIa4, where each ai E A. So
 92 = g1(aja2) E g1A and h2 = h,(a3a4) E h1A, as required.

 The converse follows immediately from the centrality of A.

 PROPOSITION 1. Let G and H be groups with G n H = A a central subgroup of both

 G and H. Let {si: i E I) be a complete set of coset representatives of A in G and {sj:
 j E J} a complete set of coset representatives of A in H. Then the subgroup K(G *A H)

 of G*A H generated by {[g, h]: g E G, h E H) is a free group with free basis

 {[s1, sj]: i E I, j E J} \ {e}.

 PROOF. Recall that if C and D are any groups, the cartesian subgroup K(C * D) of

 the free product C * D is the group generated by {[c, d]: c E C, d E D} and is a

 free group with free basis {[c, d ]: c E C, d E D} \ {e}). If we put C = G/A and
 D = H/A and let (F be the canonical homomorphism of G *A H onto G/A * H/A
 we see that (F(K(G *A H)) = K(G/A * H/A). Indeed by Lemmas 1 and 2, the set

 {[si, sj]: i E I, j E J} \ {e} is mapped by (F bijectively onto a free basis for the free
 group K(G/A * H/A). Thus {[si, sj]: i E I, j E J} \ {e} is a free basis for the group
 it generates. Hence K(G *A H) is a free group with the stated free basis.

 LEMMA 3. Let G, H, A and K(G *A H) be as in Proposition 1. Then every element u

 in G *A H can be written uniquely in the form u = yk, where k E K(G *A H) and

 y = gh, g E G, h E H.

 PROOF. It is well known that each element in G * H can be written (uniquely) in

 the form ghk, where g E G, h E H and k is in the cartesian subgroup of G * H.

 Using the canonical homomorphism F of G * H onto G *A H we see that every

 element u E G *A H can be written in the required form.
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 408 M. S. KHAN AND S. A. MORRIS

 Suppose u = y1k, = y2k2, where y1 = g1h1, Y2 = g2h2, g1 C G, g2 C G, h E H,
 h2E H, k, E K(G *A H) and k2 E K(G *A H). Consider the canonical homomor-
 phism A of G *A H onto the amalgamated direct product G XA H. Then A(u)-

 A(ylkl) = glhl = A(y2k2) = g2h2. But glhl g2h2 in G XA H implies g, = ag2
 and h, = a-lh2 for some a in A, which in turn implies y = glhl g2h2 = Y2 in
 G *A H. Soylk, = y2k2 = y1k2. Thus k, = k2, and the proof is complete.

 RIEMARK. In Lemma 3, y can be written uniquely in the form y = gh, g C G,
 h C H, if and only if A = {e}.

 THEOREM 1. Let G and H be Hausdorff topological groups with G n H = A a closed
 central subgroup of both G and H. Then the amalgamated free product G *A H admits a

 Hausdorff group topology which induces the given topologies on G and H.

 PROOF. By Lemma 3 and Proposition 1 each element u in G *A H can be written
 uniquely in the form u = yk, where y = gh, g C G, h C H, and k is in K(G *A H),

 the free group on the set X = {[si, sj]: i C I, j E J} \ {e}.
 We proceed with the proof in 4 steps.

 Step 1. We define a topology on X U {e}. For each continuous right invariant

 pseudometric PG on G and each continuous right invariant pseudometric PH on H we

 define a pseudometric Px on X U {e}. We show that the family of all such Px gives
 rise to a Hausdorff topology on X U {e}.

 Step 2. Having given X U {e} a (completely regular Hausdorff) topology we use

 Graev's now standard technique to topologize K(G *A H), the free group on X, such
 that the topology is a Hausdorff group topology and induces on X U {e} the

 topology defined in Step 1.

 Step 3. Let P = {gh: g C G, h C H) C G *A H. Define an operation o on P as

 follows: for gI, g2 C G and hl, h2 CH,

 (glhl) o (g2h2) = (g1g2)(hlh2).

 Then (P, o ) is a group and induces the given group structures on G and H.

 Given PG and PH as in Step 1, define a pseudometric PP on P as

 pp(glhl,g2h2) = inf {pG(glaq g2) + PH(hla , h2)}

 Clearly, there is a canonical isomorphism f of the amalgamated direct product
 G XA H onto (P, o ). Indeed if G XA H is given the amalgamated direct product
 topology as described in Khan and Morris [4], then f is a homeomorphism and an

 isomorphism of G XA H onto (P, o ), where (P, o ) is given the topology generated

 by all the pP. Thus (P, o ) with the topology generated by all the pp is a Hausdorff
 topological group which has G and H (with their given topologies) as topological
 subgroups.

 Step 4. Finally, if PG and PH are any continuous right invariant pseudometrics on

 G and H, respectively, Px is as in Step 1 and Px also denotes its extension to

 K(G *A H) as in Step 2, and pp is as in Step 3 then define a pseudometric p on
 G *A H by

 p(ylkl, y2k2) = PP(Y1 Y2) + px(kl, k2)

 whereyI, Y2 E P and kj, k2 E K(G*A H).
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 We shall show that the family of all such pseudometrics p defines a group

 topology T on G *A H. Then (G *A H, T) will be homeomorphic (but not isomorphic)

 to (G XAH) X K(G*AH), where G XA H has the amalgamated direct product

 topology and K(G *A H) has the topology of Graev mentioned in Step 2. Thus T is a

 Hausdorff topology and so we shall have the required result.

 Now let us turn to the details of the proof.

 Step 1. Let g1, g2 E {si: i E I} and h1, h2 E {sj:j E J). Define

 Px([gj, h ], [g2,h2) = inf (min{min[pG(gl, a,); PH(hl,al)]
 al ,a2 CA

 (1) +min[pG(g2, a2); PH(h2, a2)];

 pG(glal, g2) + PH(hla2, h2))

 If [gl, hl] #t [g2, h2j in G*A H, we shall show that there is a Px such that
 px([g, hl], [g2, h2]) > 0. From this it follows that the topology defined by the
 family of all py is Hausdorff.

 Without loss of generality, assume [gj, hI] # e. By Lemma 1 this implies g, 5 A
 and h, 4 A. As [gl, hl] #t [g2, h2] Lemma 2 then implies that g2 ( gjA or h2 5 h1A.
 Without loss of generality, assume h2 5 h I A. Since A is closed in G and H, there are
 continuous right invariant pseudometrics PG and PH on G and H, respectively, such

 that for all a E A we have pG(gl, a) > 1, PH(hl ,a) > 1 and pH(h Ia, h2)> 1. Clearly
 then the corresponding Px satisfies

 pX([gj, h ], [g2, h2]) > 1.

 Hence the topology determined by all the Px is Hausdorff.

 Before proceeding to Step 2, note how formula (1) simplifies when [g2, h21 =e;

 (2) Px([gj, hl], e) = inf (min[pG(gl, a);pH(hl, a)]).
 a&A

 Step 2. Given a family of pseudometrics Px which defines the topology of

 X U {e}, Graev's method of topologizing the free group on X is as follows: Each px
 determines a pseudometric, also called Px, on the free group on X. Let a and b be
 any elements of the free group. We can write

 b r W2 ... Wm } same length not necessarily reduced words, b =wlw2 .. **wm

 whereri E X U X- U (e} and wi EC X U X U (e}. We define px(a, b) to be the
 infimum, over all equal-length representations of a and b, of Em7I Px(ri, wi), where

 Px(X1, X 1) = Px(Xi , x2) = p(xl, e) + p(x2, e) and Px(X, X24) = px(XI, x2), for
 all xl and x2 in X. Graev [2] shows that this infimum is achieved. Noting that the

 given family of Px defined a Hausdorff topology on X U (e}, it then follows that the
 family of px just defined induces a Hausdorff topology on the free group. That the
 topology so defined is a group topology follows from the fact that each Px is

 two-sided invariant; that is, px(a, b) = px(at, bt) = px(ta, tb), for all a, b and t in
 the free group K(G *A H).

 Step 3. As mentioned earlier G X A H is topologically isomorphic to

 (G X H)/ {(a, a-'): a E A).
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 Thus for each pair of continuous right invariant pseudometrics PG on G and PH on

 H, there is a pseudometric pq on G X A H given by

 Pq(gihi, g2h2)

 = inf{pG(xl, x2) + PH(YI, Y2): i(xl, yl) = g,h1 and +x2, Y2) = g2h2l

 where at is the canonical homomorphism of G X H onto G X A H.

 Indeed the family of all such pq define the required quotient topology on G X A H.

 Now 4(xi, Yi) = glhl if and only if xl = gla, and yi = h,a-1, for some al E A.
 Also +(x2, y2) g2h2 if and only if x2 = g2a2 and Y2 h2aj1, for some a2 E A.
 Thus

 pq(g h , g2h2) =inf{pG(glal, g2a2) + PH(hla-1, h2a-'): a,, a2 E A)

 inf{p (g,ala1, g2) + PH(hl(ala2-l) , h2): al, a2 E A)

 = inf{pG(gla, g2) + PH(hlal , h2): a E A}

 = pp(glhl, g2h2)-

 Thus G XA H with the topology defined by the family of all pseudometrics pp is

 indeed the quotient topology from G X H; that is, f is a homeomorphism of G X A H
 onto (P, o ).

 Step 4. As indicated earlier this final step is to show that the family of all p defines

 a group topology on G *A H.

 We need a preliminary lemma.

 LEmmA 4. Let kI and k2 be in K(G *A H) and let g be in G. Then

 (3) Px(g-'klg, g-lk2g) ? 2px(kl, k2).

 PROOF OF LEMMA 4. First note that g AkIg and g -k2g are indeed in K(G *A H),
 so the left-hand side of the inequality makes sense! As indicated in Step 2, there exist

 representations xJ' xj3 ... xa and x 2njx ... x2n of k, and k2, respectively, such that

 (4) Px(kl, k2= PX(Xlji, X2ni)
 i=lI

 wherei= + 1 or -1, ni = + 1 or -l and xli, x2i are in X U {e}, for i = 1,... ,1.
 Noting that if g E G, g, E G and h, E H then g-1[gl, hl]g = [glg, h1][g,h1]-',

 we see that in conjugating k, and k2 by g, the element xli = [gl, hJ], say, from k1
 gets transformed into the element cl = [glg, hl][g, hJ-1 and the element x2i =
 [g2, h2], say, from k2 gets transformed into the element c2 = [g2g, h2][g, h2]-1.
 Therefore to prove (3) it suffices to show that

 (5) PX{-ii, Cni) c- 2p ( ii, ni).
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 Using the two-sided invariance of Px on K(G *A H) we have

 px(Cl,C2) S px([gig, hl], [g2g, h2) + px([g, hl], [g, h2l)

 s inf (PH(hl, al) + PH(h2, a2))
 aj,a2CA

 (6) + inf (PH(hlg al) + PH(h2, a2))
 al ,a2 &A

 2 inf (pH(hl9al) + PH(h2, a2))
 a ,a2 &A

 In due course we shall return to inequality (6) but first we prove some similar
 inequalities.

 Once again we write

 Px(Cl C2) S px([gig, hl], [g2g, h2) + px([g, hl], [g, h2])
 s- inf (pG(glgal, g2g) + PH(hla2, h2))

 al ,a2 CA

 (7) + inf (pG(gal, g) + pH(hla2, h2))
 aj ,a2 CA

 s 2 inf (pG(glal,g2) + pH(hla2, h2))
 al ,a2 &A

 by the centrality of A in G, the right invariance of PG' and the fact that
 infa, zA(pG( gal, g)) = 0.

 Further, using the representations

 Ci = [glg, hl][g, hl]f[g, h2j[g, h2]11

 C2= [g, hl][g, hl] [g2g, h2j[g, h21-

 we obtain

 Px(Cl C2) S px([gig, hl], [g, hl]) + px([gg h2j, [g2g, h2])
 s inf (pG(glgal, g) + PH(hla2, hl))

 al ,a2 CA

 + inf (PG(gal g2g9) + PH(h2a2, h2)) (8) aj,a2CA

 = inf (pG(glal,e)) + inf (pG(al,g2))
 a, CA a EzA

 s 2 inf (pG(gl, al) + p(g2, a2)).
 al ,a2 &A

 Finally we use the representations

 C, = [glg, hl][g, hl]f.e.e,

 C2 = [g, hl][g, h111[g2g, h2j[g, h2-1
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 to obtain

 px(CI, C2) ? px([gig, h1], [g, hI]) + pX(e, [g2g, h2j)

 +px(e, [g, h2-1)

 ( inf (pG(glgal, g) + pH(hla2, hj))
 (9) ala,a2&EA

 + inf (pH(h2, a)) + inf (PH(h2, a))
 aeA aeA

 ?2 inf (p(g, a,) + pH(h2, a2)).
 al ,a2 &A

 In similar fashion we obtain

 (10) pX(cl,c2) ? 2 inf (pG(g2, a2) + PH(hl, a,)).
 al,a2CA

 Examining (1) and (6)-(10) we obtain

 PX(C1 I C2) 2px(xli, X2J).

 From this we get

 PX(nd c1, c-1) = px(ci, C2) c 2px(xli, x21) = 2pxi, xj1)
 and

 Px(C1, c2) = px(cl, c1) ? px(Cl, e) + Px(C2, e)

 ? 2px(xli, e) + 2px(X2i, e)

 = 2px(xli, X41) = 2px(xj1, x21).

 Therefore we have in general that

 PX( cji cni) 2px(xjig X2nii)

 as required. So the inequality (5) is true. This completes the proof of Lemma 4.

 Similarly it follows that if kI and k2 are in K(G *A H) and h is in H, then

 (1) Px(h-lklhg h-1k2h) -,- 2px(kl, k2).

 We now turn to proving that the family of all p, defined earlier, gives rise to a
 group topology on G *A H. To do this it suffices to show that:

 Given p, pi = glhl in P, P2 = g2h2 in P, k, and k2 in K(G *A H), and E > 0 there
 exists a 8 > 0 and a continuous pseudometric p1 on G *A H such that whenever
 p3 = g3h3 in P, p4 = g4h4 in P, k2 and k4 are in K(G *A H) then

 p1(pjkj, p3k3) <8 and P1(p2k2, p4k4) <8
 (12) implies

 p(P1kikiPi, p3k3k-lp-') < eM

 where M is a real number dependent only on kI and k2.
 Let p arise from pseudometrics PG and PH on G and H, respectively. Let PP be the

 pseudometric on P corresponding to PG and PH. As (P, o ) with the topology

 generated by all such pp is a topological group we have the following.
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 There exists a pseudometric p2 on P and a 8 > 0 such that

 p 2(pl, Pi) < 81 and p2(P2 p4) < U
 implies

 (13) ? P3 ?p4) <E

 that is

 pp(glg2lhlh-1, g3g4-1h h-1) < E

 Note that, in particular,

 - p Il2hlh-1, g3g4-1h h-1) E

 (14) { implies

 iEnf (PH(hlh-la, h h-1)) < S.

 Let PG and P2 denote the restriction of p2 to G and H, respectively.

 Also there exists a pseudometric p3 on P and a 82 > 0 with the property that

 (Pp(l P3 < 82 'MP"ie ppI, p3-l
 (15) 1 and

 LPP(P2, P4) < 82 implies pp(2p, P471) <E.

 Note that, in particular,

 IpP(P2, p1) < E implies inf (pG(g-la g-1 I)) <E

 (16) and

 tinf (p(,h -la hp-rc)a) <

 Now klk2-1 rdr2 ... rdN where eadid Nch ri = x IY Cxy,x Gg , Ci H and di=
 +I1 or -1 for i= 19... ., N. There exists ap4 on P and a 83 > O with the property

 imp(x piesx pp(') < x 1)<

 PP(P2 P4) < 83 implies p2 i

 (17) and

 (PP(Y1P9, impl-)i<e 1s-.N.

 Note that, in particular,

 pPA iP2 , Xip4)

 ( 18) implies

 inf (pG(xig-'a, xig- ))<e

 and also

 (PP(YiP2 9 YiP4)

 (19) implies

 inf (PHr(yvh-'aq yvh-1)) c
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 Let pG = PG + pG + pG + pG and pH = PH + P2 + P3 + P4, where pG and piH
 denote the restriction of pP to G and H, respectively, for i = 3, 4. Let Px be the
 two-sided invariant pseudometric on K(G *A H) corresponding to PG and PH Being
 two-sided invariant, Pl gives rise to a group topology on K(G *A H). Therefore there

 exists a 84 > 0 such that

 F ((kl, k3) < 84and pl(k2 k4) < 84
 (20) ( imply

 pl (klk-1, k3k-1) <E.

 Put 8 = min{(S, 62, 3, 4, E}. Noting that PG G PG and Pl > PH, we see that
 P > Px. Thus by (20)

 l P(kl, k3) < 8 and pl (k2 k4) <(S
 (21) imply

 |PX(kIk' -1,34-) < E.

 Let pp be the pseudometric on P corresponding to pG and pl. Let pl be the
 pseudometric on G *A H corresponding to pp and plx We are required to show that,
 for this choice of pI and 8, (12) is true.

 Noting that

 pkkk1p-I = glhlklk-lh2lg-1

 - (gIg-1)(hIh-1)([g-1, hIh-1]l)(g2h2kIk21h21g-1)

 and the analogous representation of p3k3k4-p4j we see that

 p(plklkilp1, P3k3k4jp41) ? pp(glg2-lhlh-1 g3g-lh3h-1)
 (22) +Px( [g12, h2h2 ] , [g41, h3h4 ]4 )

 +px(g2h2klkjlhlg-1, g4h4k3k-lh4lg-1).

 Now

 Px([g-19 hIh- ] ,9 [g-19 h3h4 ] ')

 (23) ? inf (PG(g-1aI9g-1) +Hhhl2 34) E
 al ,a2 2A

 The last inequality follows from (1 3)-(16) and the observations

 (i) pl(plkl, p3k3) < 8 implies pp p, p3 ) < 8 which in turn implies p2pp, p3 ) < 8
 ? 81;

 (ii) similarly pI( p2k2, p4k4) < 8 implies 4p(P2, P4) < 82
 We now examine the last term in (22).
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 FREE PRODUCTS OF TOPOLOGICAL GROUPS. I 415

 p (g k klh-l-l gh k k A -lg -') px(g2h2k1k-'h -'g -', 94hkk''g)

 ? p(g h kg I kAh-'g -1, g4h4k1k-'h-'g-')

 (24) +P g4h k3k9h44g24)
 S px( g2h2kIk2'hA'g-', g4h4k1k-'h-'g-')

 +4px(k k2'-, k3k4-') (by (3) and (11))

 < pX(9g2h2kk2-h 2g 2-9, g4h4kkkk-'h-'g-') + 4e (by (21)).

 Recall that k k2' = r ..lr.2 rAN, where ri = xd-'yi-jxiyi, xi E G, yi E H, di = + 1
 or -1, i= 1, ..,N. Noting that

 g2h2Xi'Yi 22x2y h2'g2Y = [gig -, h-1'] [Xig21, h-'] '[xig-', yih-'] [g2-j, y,h-']'

 and the analogous representation of g4h4Xiy'yi7'x1y we see that for i = 1,.. .,N

 PX( g2h2x-'yi-'xxiyih -'g -', g4h4x-'yi-'xiyi h4gI)

 P px([g2-1 h-'], [g-', h-']) + px([xig-', h-i], [xig4-, hi'])

 +Pa2x&A (p(yihg'], [xig'-) , yih(,])

 +Px([g-', yih2l], [g4-1, yih-1])

 + ainf (pG(~g2alg'a, g-)) + PH(h(h2 a4,

 + inf (pG(xig2'a4, x 2g4') + pH(h2 a2, yh)) a,, a2 EA

 + inf (pG(xig-'al, xig- ) + p,(Yh-'a2 i ) al ,a2 CA4

 + inf (pG(g-'al, g4') + PH(yih2 a2, yih'a))
 al ,a2 EA

 < 8c by (15)-(19).

 Similarly

 Px( yixih-g g4h4y7I h y lxl yh'g4-) < 8c.
 From the last two inequalities we get

 (25) PX(92 2 i2 lh2 g2- 4kk-h4g-) 8
 So from (24) and (25) we have

 (26) Px( g2h2kI k -'h -'g -', g4h4k3k Ah 'g-l') < (8N + 4)E.
 Thus from (22), (13), (23) and (26) we obtain

 p(plklk-'p-', p3k3k-lp4') < (8N + 7)F.

 The above inequality shows that (12) is satisfied and hence the family of all p does

 give a group topology on G *A H. This completes the proof of the theorem.

 As indicated in ?2 we can immediately deduce the following result from Theorem

 1.
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 416 M. S. KHAN AND S. A. MORRIS

 THEOREM 2. Let G and H be Hausdorff topological groups with G n H = A a closed

 central subgroup of both G and H. Then GHIA H exists and is Hausdorff.

 REMARKS. It should be noted that the proof of Theorem 1 gives much more than

 the rather bland statement of Theorem 2. We know that GIIA H has the finest group

 topology on G *A H which induces the given topologies on G and H. The topology

 constructed in the proof of Theorem 1 provides a lower bound, then, for the

 topology of GIIA H. For example, while we cannot describe the topology of GIIA H

 for general topological groups G and H, we can show that if G and H are Lie groups

 then the topology of Theorem 1 is such that it has no small subgroups. Therefore the

 finer topology of GHIA H must also be such that it has no small subgroups. This
 example and others are included in the sequel.
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