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1. Introduction

. In 1950, B.H. Neumann and llanna Neumann [8] introduced the notion 

of amalgamated direct product of groups. In this paper we introduce 

the analogous notion of amalgamated direct product of topological groups 

and discuss its properties.

The basic existence theorem we prove says that if A and B are 

any topological groups and C is a common subgroup of A and B then 

the amalgamated direct product A B exists if and only if C is 

central in A and B . If A x B exists then the underlying group 

structure of A B is the amalgamated direct product of the underlying 

groups of A and B . Of course, if C = le) then the amalgamated 

direct product of A and B is the usual direct product A * B of the 

two topological groups. Amongst the permanence properties of the amalga­

mated direct product is the following one: If A and B are Lie groups 

and C is a closed central subgroup of A and B , then A B is a 

Lie group.

In attempting to introduce the notion of amalgamated direct product 

of topological groups, the first task is to find the "correct" definition. 

To do this we examine the algebraic amalgamated direct product, and notice 

that it has a certain extension property. This extension property appears 

to be important since the main (known) results about amalgamated direct 

products of groups seem to fall into place when this property is used.
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This extension property has an obvious analogue for topological groups, 

and significantly the usual direct product of topological groups has this 

analogous property. So this property is the key to defining amalgamated 

direct products of topological groups.

In [4] amalgamated direct products of topological groups play a 

vital role in proving that the free product of any two Hausdorff topo­

logical groups with any closed central subgroup amalgamated is Hausdorff.

We content ourselves in this paper with one application. We show 

that every compact connected Hausdorff group G is an amalgamated 

directed product of its commutator subgroup and the identity component 

of the centre of G . [From this, one can readily deduce the observa­

tion of Karl Heinrich Hofmann and the second author that every continu­

ous homomorphism from the commutator subgroup of a compact connected 

Hausdorff group G into any unitary group U{n) can be extended to a 

continuous homomorphism of G into (/(«) . ]

2. An Extension Property

If G is a group then the centre of G will be denoted by Z(G) . 

If A is a subgroup of G , then the centralizer of A in G will be 

denoted by C (4) .
(r

Definition [1,7,8]. A group G is said to be the direct product of its 

subgroups A and B with amalgamated subgroup C if

(i) G is generated by A U B , (ii) A fl B = C , and (iii) B c C  (4) . 

It is denoted by A B .

Proposition 1. Let G = A B be the direct product of its subgroups 

A and B with amalgamated subgroup C . If $1 and ♦2 are any 

homomorphisms of A and B , respectivelyinto any group H such 

that <f>i|c = <j>2 1C and j>2(B) c. C^(j>\(A)) , then there exists a homo­

morphism $ ; A xc B -*■ H such that *|/1 = <J>i and $|F = <J>2 .
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Proof. Since G is generated by A U B and B £  C„(A) , each element
(j

g in G can be written g = ab , where a € A and b i B . We 

define ♦ : G -*■ H by t(ab) = ♦i(a) f2 (b) • Firstly we must verify 

that ♦ is a well-defined function. Suppose a.\b\ = 02^2 » where a\

and a2 are in A , and b\ and b2 are in B . Then <22 ̂ l  = ^ 2^ 1* •

So a2la\ = b2b \1 is in C = A 0 B . Thus ♦ = 4*2 (^*2^11) >

that is, ($1 (<22)) * ♦ 1(^1) = +2 (^2) (+2 (i> 1)) 1 . which implies that

♦ l(«l) 4*2 C^i) = ♦i(a2) ^2 (^2) • So *(aib\) = *{a2b2) and * is

indeed a well-defined function.

Clearly *|/4 = and = $2 » so ** only remains to check that

4> is a homomorphism. Let <7 = ab and g\ = a\b\ be any elements of 

G , where a € A , a\ £ A , b (. B and b\ (. B . Now using the fact 

that B Sz. , we see that ggi = (afcHajfc]) = (aai)(£>Z?i) . So

*(gg 1) = ♦i(aa1) *2 ( ^ 1) = M a )  *2 C^i) • Observing that

<p2(B) £ C ff(<h(A)) , we see that *(9^ 1) = (<Ma) *>2 (*>)) (*i («i) <J»2 ( M )

= t(g) t(gj) and so ♦ is a homomorphism, as required.

Remark. Observe that if, in the above definition, C = {e } , the 

trivial group, then A 9 is just the direct product A x B of the 

groups A and B .

Corollary 1. Let A * B be the direct product of any groups A and 

B . If (j»j and 412 are any homomorphism3 of A and B , respectively, 

into any group H such that the elements of i\(A) commute with the 

elements of $2(B) , then there exists a homomorphism * ; A x B H , 

such that 4>|i4 = and .

Remark. If G^ is the category of all groups and group homomorphisms, 

then A * B is of course the product in this category, of A and B . 

Thus we might be a little surprised by Corollary 1 above which says 

that A x B has a coproduct-like property.
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Corollary 2. Let A x^ B be the direct product of groups A and B 

with amalgamated subgroup C . Then there is a canonical homomorphism 

f of A * B onto A B having kernel l(csc 1):c £ C] .

Proof. If <|>i and <f>? are the identity maps on A and B respec­

tively, then Corollary 1 above says that f : A x B -*■ A x^ B , given 

by f[(c,b)) = <!>i(a) ♦ 2(b) = ab where a i A and b £ B , is a 

homomorphism. As A x^ B is generated by A U B and f(A x B) 

contains A and B , f is into.

If f((a,b)) = e , then <>i(a) i>2(b') - e . So = (•M*7)) 1 •

But £ A and (4*2 (^)) * £ B . Therefore 4»i(a) = (+2 Ci>)) 1 € /! fl B

C c A Xg B . As <{•! and <f>2 are identity maps on A and B respec­

tively, we deduce that a ( C £  A and b ( C c B . As <(> i and $2 

are identity maps on C we see that if a = c € C £  A then 

b = c~ 1 * C c. B .

So the kernel of /  is contained in {(c,c *) : c ( C) . What's 

more, every element in ((<?,<? *) : c £ C} is clearly in the kernel of

/  •

Remark. As yet we have not commented on the existence or uniqueness of 

the amalgamated direct product. Corollary 2 above gives the clue to 

exi stence.

Corollary 3. Let A and B be groups having a cormon subgroup C .

Then A x^ B exists if and only if C c_ Z(A) and C £  Z(B) .

Proof. Property (iii) of the definition of amalgamated direct product 

clearly implies that C c Z(A) and C £  Z(B) are necessary conditions 

for A x^ b  to exis^:.

Now assume that C is a central subgroup of A and B . Consider 

the direct product A x B and let K = i(c,c *) : c ( C) . Then using 

the centrality of C , we see that K is a normal subgroup of A x B .
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Let /  be the canonical homomorphism of A * B onto the quotient group

(A x B)/K = G . Clearly /  is one-to-one on A and on B . So G

has subgroups f(A) and /(B) isomorphic to A and B , respectively,

such that (i) G is generated by f(A) U /(B) , (ii) f(A) fl /(B) = f(C) ,

which is isomorphic to C , and (iii) /(B) £  Cn (f(A)) . Thus G is
1/

f(A) xf(Q) /(B) , and so A B exists.

Corollary 4. Let A\t A2, B\ and B2 be groups such that C\ is a 

central subgroup of A\ and B\ and C2 is a central subgroup of A2 

and B2 . If : A\ + A2 and <|>2 • Bj -*■ B2 are surjective homomor- 

phisms such that ♦ilCj = ^>21̂ *1 then there exists a homomorphism <t>

of G\ = A 1 *r B 1 onto G2 - ^2 %  B2 such that *|/ti = fj and
. 2 

<i>I Bj = ^2 • In particular, if and $2 are isomorphisms and

= ^2 > then <t> is an isomorphism.

Proof. That a homomorphism * : G| -*■ G 2 such that = $1 and

<&|Bi = exists follows from Proposition 1. The surjectivity of 

is a consequence of the fact that *(Gi) 2.^2 U B2 which generates

G2 .

If and <t>2 are isomorphisms then we have homomorphisms

: Gj -*■ G2 such that 4*1 |^i = and $i|Bj = $2 , and «(>2 : (?2 -* G\

such that #2 ^ 2  = and *2\B2 ~ ♦i* • Clearly 4>i = f2 * and so

4>l is an isomorphism of G\ onto (72 .

Remark. Corollary 4 gives us the uniqueness of A x B . As another 

consequence of Corollary 4 we have

Corollary 5. If C is a central subgroup of A and B s then there 

is a canonical homomorphism ♦ of A B onto A/C * B/C having 

kernel C .

53



Proof. If : A A/C and (j>2 : B ■+■ B/C are the canonical homo- 

morphisms, then using Corollary 4 with C2 = (e) , we have that there 

is a homomorphism $ of A B onto A/C * B/C . To see that the 

kernel of i> is C , observe that, in the notation of Corollary 2,

f  *
A * B ------------ * A *c B ------------► A/C * B/C

is such that is the canonical map of A * B onto A/C * B/C .

The kernel of if is C * C and so the kernel of ♦ must be

f(C * C) = C .

We can now easily derive a result of Chehata and Shawky [2].

Corollary 6. L4t C be a central subgroup of A and B , a

complete set of coset representatives of C in A and S^ a complete 

set of coset representatives of C in B , such that the representa­

tive of C is the identity element in each case. Then each g ( A B 

can be written uniquely in the form g = abc , where a ( > b $ 

and c £ C .

Proof. If g £ A * B , then clearly g = ayb\ , where a\ $ A and 

b\ Z B . So g = a\b\ = {acrf&crf , where a € , b £ ,

C[ ( C , c2 ( C . Thus g = ab{c\c2) = abc , where c = c\c2 € C .

Now suppose that g = abc = a'b,c t , where a ( , a' t , 

b £ S„ , b f £ S„ , c Z C  and c ' * C . Corollary 5 yields a homo-
D D

morphism ♦ : A B -*■ A/C * B/C and we see that Q(abc) = (Ca,Cb) =

{Ca\Cb') - Qia'b’c') . Thus Ca = Caf and Cb - Cbf . Observing

that a and a ’ are in S. , we deduce that a = a r . Similarly we
A

have that b = b' . Hence abc = a ’b'c* = abc' , which implies that 

c = <?' . So g does have a unique representation in the required form.
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3. Amalgamated Direct Products of Topological Groups

Definition. Let A and B be (not necessarily Hausdorff) topological 

groups. Then the topological group G is said to be the free product 

of A and B if it has the properties:

(i) A and B are topological subgroups of G ,

(ii) G is generated algebraically by A U B ,

and (iii) if 4} and <j>2 are continuous homomorphisms of A 

and B , respectively, into any topological group 

H , there exists a continuous homomorphism 

4> : G ■+ H such that 4>|i4 = and 4>|B = $2 •

It is denoted by A * B .

Remarks. It is well-known, see for example [5, Theorem 3.2], that for 

any topological groups A and B , A * B exists. What's more, it is 

unique up to isomorphism. The underlying group structure of A * B 

is simply that of the (algebraic) free product of the underlying groups 

of A and B . Further, it is easily seen, using property (iii) of the 

definition, that A A B has the finest group topology on the underlying 

group which will induce the given topologies on A and B .

Proposition 2. Let A and B be any topological groups. Then the 

natural homomorphism 6 of the free product A * B onto the direct 

product A x B of A and B with the product topology is an open 

continuous mapping.

Proof. Let 0! and 02 be the identity maps on A and B respec­

tively. Then the definition of the free product implies that there 

exists a continuous homomorphism 0 of A * B onto A x B which 

extends 0j and 02 .
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As A * B is a topological group, the multiplication map 

(A * B) * {A * B) -*■ A * B , (|g,h) -*■ gh , where g £ A * B and 

h t A * B , is continuous. So its restriction 6 : A x b A * B , 

given by 6((<*,£>)) - ab , is also continuous. So we have

6 0 
A x b ------------ ► A * B ------------ v A x B

and 06 is the identity map. So 0 16 (/i x B) is an open map (indeed 

a homeomorphism). By the Lemma stated below, then, 0 : A *  B  A x g  

is an open map, as required.

Lemma [6, p.24 Exercise 6(i)]. Let f be a homomorphism of a topo­

logical group G into a topological group H . If X is a non-empty 

subset of G such that the restriction : X -*■ H is an open map, then 

<J> : G -*• H is also an open map.

Proposition 3. Let A and B be any topological groups. The product 

topology of A x B is the finest group topology on the underlying 

group which will induce the given topologies on A and B .

Proof. Suppose that there exists a group topology t  on the underlying 

group of A x b which is strictly finer than the product topology.

Then the natural homomorphism 0 : A * B -*■ {A x B,t) , being an exten­

sion of the continuous homomorphisms and 02 of Proposition 2, 

would still be continuous. But this is a contradiction to 0 being a 

quotient mapping of A * B onto A x B with the product topology.

Thus the stated result is true.

Proposition 4. Let A x B be the direct product with the product 

topology of any topological groups A and B . If <J>j and <f»2 are 

continuous homomorphisms of A and B , respectively, into any topo­

logical group H such that the elements of $\(A) commute with the 

elements of j>2(B) , then there exists a continuous homomorphism 

4> : A x b -*■ H such that t|/l = and = <f>2 .
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Proof. By Corollary 1 of Proposition 1 there exists a homomorphism

♦ : A x B -* H such that <t|d = $1 and 4>|S = $2 • So we have to show 

only that ♦ is continuous. If * is not continuous then we can put 

a group topology xj on A x B by saying a subset 0 of A x B is 

in xj if and only if it is the inverse image of an open set in II .

We can then form the union of this topology xj and the product topo­

logy to produce a group topology x on A * B which is strictly finer 

than the product topology. Further, since <J>j and <j>2 are continuous, 

x induces the given topologies on A and B . This contradicts Pro­

position 3. Hence 4> : A x B -*■ H , where A x B has the product 

topology, is continuous, and we have the required result.

Definition. A topological group G is said to be the (topological) 

direct product of its topological subgroups A and B with amalgamated 

subgroup C if it has the properties:

(i) G is generated algebraically by A U B ,

(ii) A fl B = C

(iii) B £  c g (A) ,

and (iv) if i and +2 are any continuous homomorphisms of A 

and B , respectively, into any topological group H 

such that <J>i|c = <j>2 |C and +2 (fl) £  ^(^(/l)) » then 

there exists a continuous homomorphism ♦ : G H such 

that 4>|4 = and 4>|B = $2 .

The topological amalgamated direct product is also denoted by A x R .

Remarks. The first and most important question that presents itself is: 

Does A x̂ , B exist for all topological groups A, B and C such that 

C < Z(A) and C < Z(B) ? Shortly we shall answer this in the affirma­

tive. In the meantime observe that if A and B are any topological 

groups such that A f\ B = C = (e) , the trivial g^oup, then A x^ B 

exists and is the topological direct product. (This follows from 

Proposition 4 and the Remark after Proposition 1).
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We note that if for topological groups A and B with 

A D B = C , A B exists, then the underlying group of A B is 

the direct product of the underlying groups of A and B with C 

amalgamated. (This follows immediately from the definition of topolo­

gical amalgamated direct product).

Using an analogous method to that used in the proof of Corollary 4 

of Proposition 1 we can show that if the topological amalgamated direct 

product A B exists, then it is unique up to topological group iso­

morphism.

Using property (iv) of the definition of topological amalgamated 

direct product we see that if A B exists then it has the finest 

group topology on the underlying group which will induce the given 

topologies on A and B . Indeed this is a characterization of the 

topological amalgamated direct product.

Let A and B be topological groups with A fl B = C lying in 

the centre of A and B . So the algebraic direct product of A and 

B with C amalgamated exists. In order to prove that the topological 

direct product of A and B with C amalgamated exists, it suffices 

to show that the algebraic amalgamated direct product A B admits 

one group topology which induces the given topologies on A and B . 

(The topology of the topological amalgamated direct product is then the 

union of all such topologies).

Theorem 1. Let A and B be topological groups with a common topo­

logical subgroup C . Then the topological direct product A x B 

of A and B with C amalgamated exists if and only if C is a 

central subgroup of A and B .

Proof. Property (iii) of the definition of topological amalgamated 

direct product implies that C £  Z(/l) and C £  Z(F) are necessary 

conditions for A B to exist.
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Now assume that C is central in A and B . Then by Corollary 3 

of Proposition 1, the algebraic direct product A B of the underlying 

groups of A and B with C amalgamated exists. Let A * B be the 

topological direct product of the topological groups A and B . By 

Corollary 2 of Proposition 1 there is a homomorphism f  of the topo­

logical direct product A x B onto the algebraic amalgamated direct 

product A B such that f maps A and B identically onto them­

selves, and the kernel K of /  is {(e,c-1) : a £ C) . Let r be 

the quotient topology on A B under this map f . Then 01 x̂ , B,r) 

is a topological group. By the above Remarks, in order to show that 

the required topological amalgamated direct product exists, it suffices 

to show that t induces the given topologies xj and t2 on A and 

B , respectively.

Let t induce the topologies x 3 and ti, on A and B , res­

pectively. Observing that /  : A * B -*■ (A *c £,t) is an open map, 

that the kernel K of f lies in A * C and that f(A * C) = A , 

we have that f : A * C ■+ 04,T 3) is an open map. More precisely 

f : 04,ti) x C -*■ 04,t 3) is an open continuous surjective map. However 

let us consider the natural continuous homomorphism f : x C -*■

04,tj) • As the restriction of f to 04»*i) x (e) yields an open 

map (indeed a homeomorphism): 04,ti) x (e) + 04,T j )  , the Lemma stated 

earlier implies that f : 04,t^) x c -> (i4,t|) is an open continuous 

map. This is impossible unless tj = T 3  . Similarly t 2 = xi, and so 

t induces the given topologies on A and B . Thus we have the 

required result.

Corollary 1. Let A X^J5 be the topological direct product of topo­

logical groups A and B with amalgamated subgroup C . Then the 

canonical homomorphism f of the topological direct product A * B 

onto A is an open continuous homomorphism having kernel

{(c,c~l) : c £ C) .
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Proof. The only part of the above statement which has not been proved 

yet is the openness of f . Using an argument like that in Proposition 

4 we see that if f were not open then A B would admit a group 

topology finer than the quotient topology of /  which would induce the 

given topologies on A and B . This topology on A B would give 

rise to a group topology on the underlying group of A * B which would 

be finer than the product topology but which would induce the given 

topologies on A and B . However this contradicts Proposition 3 and 

so f is an open map.

Corollary 2. Let A and B be Hausdorff topological groups xoith C 

a common central subgroup of A and B . If C is a closed subgroup 

of A or B y  then 4 ^ 5  is a Hausdorff topological group.

Proof. Without loss of generality, assume that C is closed in A .

By Corollary 1 of Theorem 1 it suffices to show that 

K = [(c,c * ) : « ? (  C) is a closed subset of the topological direct 

product A * B . Let a$j a set ^ converging to

(a,b) . Thus converges to a and converges to

b . As C is closed in A , a = c ( C . Thus converges

to c 1 . But as B is Hausdorff cannot converge to two

distinct points b and c 1 . Thus b = c -1 . So (a,b) = (c,c *)

£ K . Hence K is closed in A * B , as required.

Remarks. In the above proof,the Hausdorffness of A appears not to be 

used, but in fact it is a consequence of the properties which were used; 

namely that C is closed in A , and B is Hausdorff.

On the other hand one might have expected that it would be 

necessary to have C closed in A and B . However this is not so, 

for example if J? is the additive group of reals with its usual 

topology and tj is the dense topological subgroup of K  consisting 

of the rational numbers, then the topological amalgamated direct
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product -ff? * 4? is H  itself, which is certainly Hausdorff.

Corollary 3. Let A and B be topological groups with a common 

central subgroup C .

(i) If A and B are locally compact groups, then 

A *£, B is a locally compact group.

(ii) If A and B are Lie groups and C is closed in 

A or B then A *^ B is a Lie group.

(iii) If A and B are locally invariant groups then 

A *£ fl is locally invariant.

(iv) If A and B are compact groups then A B 

is compact.

(v) If A and B are connected groups then A B 

is connected.

(vi) If A and B are pathconnected groups then 

A B is pathconnected.

(vii) If A and B are locally connected groups then 

A B is locally connected.

(viii) If A and B are a-compact groups then A fl 

ie a-compact.

(ix) If A and B are k^-spaces and C is closed in 

A or B then A fl is a k - space.

(x) If A and B are Banach spaces and C is a 

closed vector subspace of A and B s then 

A *£, fl admits a Banach space structure.

Proof. All of these results follow from Corollaries 1 and 2 of 

Theorem 1.
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Corollary 4. Let A A 2, By and B2 be topological groups such 

that C j is a central subgroup of Ay and By , and C2 is a central

subgroup of A2 and B2 . Let Gy = A\ x By and G2 = A2 * B2 .
c i ' ^ 2

If : A\ A2 and <f>2 * B\ -*■ B2 are continuous homomorphisms such 

that «f>j | C*! = +2 1^1 then there exists a continuous homomorphism 

f : G\ -*• G2 such that *|/lj = and ♦ |Bi = <fr2 • Further (i) if 

<f»l and <l>2 are one-to-one and +\(Cy) = \\(Ay) fl Q2(B\) s then ♦ 

is one-to-one; (it) if and $2 are surjective, then 4> is sur-

jective; (iii) if and $2 are algebraic isomorphisms and

4>\(C\) = C2 , then <l» is an algebraic isomorphism; (iv) if

♦ l • Ay -*■ 4>\(Ay) and <f>2 : B\ -*■ <J>2 (Bj^ are open mappings and 

<f>l (C\) = C2 , then $ ; /1j x By -*■ *(Ay x ^  By) is an open mapping;

(v) if 4>i and <f>2 are topological group embeddings and $\(C\) = C2 , 

then <f> is a topological group embeddings; (vi) if <J>i and <J>2 arp- 

topological isomorphisms and - C2 , then ♦ is a topological

isomorphism.

Proof. The only part which requires further comment is (iv). This 

follows by considering the commutative diagram

A ] X By
Pi

A, «Ci B,

A2 x B2 c2 
P 2

where all the maps are canonical homomorphisms.
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The openness of ♦ : x B^ *(i4| * flj) follows from the fact
Cj Ci

that pi and p 2 are open continuous homomorphisms,

0 : A i * B\ -*■ 0(i4i * flj) is an open (continuous) homomorphism, and the 

kernel of p 2 is a subset of 0(4i * B j) .

Corollary 5. If C is a central subgroup of the topological groups 

A and B , then there are canonical open continuous homomorphisms pi 

and p 2 of the direct product of A and B with C amalgamated,

A B , onto A/C and B/C , respectively.

Proof. Clearly there are canonical surjective continuous homomor­

phisms pi : A B -*■ A/C and p 2 : A *^ B -> B/C . Observing that 

the restriction of pi to A yields pi : A ■* A/C which is an open 

map,, the Lemma stated earlier shows that pi : A B -*■ A/C is also 

an open map. Similarly p 2 is an open map.

Remark. Observe that in the case C = {e } the maps pi and p 2 of 

Corollary 5 of Theorem 1 are just the canonical projections of A * B 

onto A and B , respectively.

4. An Application to Compact Groups

Theorem 2. Let G be a compact connected Hausdorff group and let 

Z0(Gj and G' denote the identity component of the centre of G and 

the conmutator subgroup of G , respectively. Then G is the topo­

logical direct product of G' and Z0(G) with the subgroup G' 0 Z0(G) 

amalgamated.

Proof. Firstly we note that Z0(G) is closed and central and G’ is 

compact. It follows from [3,6.59] or [9,6.5.6] that in a compact 

connected group G each element, x , say, can be expressed as 

x = ya , for some y i G' and a ( Zq (G) . Clearly Z0(G) lies 

in the centralizer of G' in G . Put A = G' 0 Z0 (C) . Then, by 

definition, G is algebraically the direct product of G' and 

2q(G) with A amalgamated. Now consider the map g : G * G G
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defined by g(x,y) = xy . Then g is continuous as G is a topo­

logical group. Therefore the restricted map g* : G ' x Zq((7) -*■ G is 

also continuous. As G = G' . Z0 (G) , the map g * is also surjective. 

Further, since Zq(G) is central, it is routine to verify that g* 

is a homomorphism. The compactness of G , G' and Z0 (G) implies 

that g* is also an open mapping. Hence G is topologically isomor­

phic to the quotient group ((7' x Z 0 ((?))/kernel (g *) . But

kernel (g*) = {{y,z) € G' x Z0 (G) : yz = e)

= ((»,*) € G' x z0(G) : p = z"1}

= C :«/*<?' and y " 1 € Z0 (G)}

= y * A) .

But by Corollary 1 of Theorem 1 this says that G is the topological 

direct product of G' and Z0 (<7) with A amalgamated.
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