
PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 80, Number 1, September 1980 

THE EXTENSION OF NORMS ON SUBGROUPS OF 
FREE TOPOLOGICAL GROUPS 
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ABSTRACT. A norm on a group G is a nonnegative real-valued function N which is 
zero at the identity and satisfies N(xy -1) < N(x) + N(y), for x, y E G. Let F(X) 
be the free topological group on a space X. Bicknell and Morris have shown that 
any norm on a subgroup of F(X) generated by a finite subset of X may be 
extended to a continuous norm on the whole of F(X). In this note a very direct and 
simple proof of this theorem is given. 

Our object in this note is to provide a very simple and direct proof of a theorem 
of Bicknell and Morris [1] relating to norms on free topological groups. Recall that 
a norm on a topological group G is a function N: G -- R which is zero at the 
identity of G and for which N(xy - 1) < N(x) + N(y) for each x, y E G; such an N 
is clearly nonnegative. The theorem we refer to states that if F(X) is the (Markov) 
free topological group on a completely regular Hausdorff space X, and if H is the 
subgroup of F(X) generated by any finite subset of X, then any norm on H can be 
extended to a continuous norm on F(X). 

The main tool used by Bicknell and Morris in their proof is a construction of 
Brown and Morris [2] (cf. [3]) which in particular embeds any topological group G 
in a contractible, locally contractible topological group G*. The groups G* play a 
central role in our proof also, but we are able to make a significant simplification 
by employing a topology on G* which is (in general) different from that of Brown 
and Morris. 

We now discuss in detail the ideas we shall need later. 
For any space X we let X* be the set of continuous-from-the-right step functions 

from the half-open unit interval [0, 1) to X; that is, functions f for which there is a 
partition 0 = ao < a1 < . . < a,,- < a = 1 of [0, 1] such that f is constant on 
each [ai -1, a'). There is an injection i: X X* defined by i(x)(t) = x, t E [0, 1), 
x E X. It is easy to see that if X is a universal algebra of a given type (for example, 
a group) then X* is a universal algebra of the same type if the operations are 
defined pointwise. Furthermore, i is a morphism. 

Recall that a pseudometric v on a topological group G is said to be left-invariant 
if v(ax, ay) = v(x, y) for all a, x, y E G. There is a natural one-to-one correspon- 
dence between left-invariant pseudometrics and norms on G. Specifically, the 
formula v(x, y) = N(y - lx), x, y E G, defines a left-invariant pseudometric if N is 
a norm, while the formula N(x) = v(x, e), x E G, defines a norm if v is a 
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left-invariant pseudometric and e is the identity of G; it is clear that these are 
inverse constructions. Any pair v, N as just described have natural extensions v*, 
N* on G* defined by 

v*(f, g) = f'v(f(t), g(t)) dt and N*(f)= fN(f(t)) dt, 

forf, g E G*. We observe that v* is left-invariant, and that it is a metric if v is. It is 
straightforward to check that these extension processes commute with the one-to- 
one correspondence mentioned above. Throughout this paper we shall use the 
Roman letters N and L to represent norms, and the corresponding Greek letters v 
and X for the associated pseudometrics; further, if any of these letters is assigned 
an asterisk (as in N*, L*, v* or X*), the resulting symbol will be taken without 
explanation to refer to the appropriate extended norm or pseudometric. 

Suppose that G is a topological group whose topology is induced by a left-in- 
variant pseudometric v. (Note that a left-invariant pseudometric on a group does 
not always make the group operations continuous.) Proposition 5 of [2] and the 
example give in [1] show that the topology T(v) induced on G* by v* coincides with 
the usual Brown-Morris topology if and only if v is bounded; the nature of T(v) 

when v is unbounded has not previously been examined. As a consequence, the 
work of [1] is complicated by the need to ensure that all pseudometrics used are 
bounded. We are able to do away with this restriction, and greatly simplify the 
proof of the norm extension theorem, by means of the result below, which assures 
us that the topology T(v) has the properties we require, whether or not v is 
bounded. 

THEOREM 1. If G is a topological group with topology induced by a left-invariant 
pseudometric v, then G*, with the topology T(v) induced by v*, is a topological group, 
and is path-connected. 

PROOF. To prove that G* is a topological group, we shall show directly that the 
function (f, g) H-jfg-',f, g E G*, is continuous on G* x G*. 

Let e be the identity of G. By the left-invariance of v we have, for a, b, ao, bo E 

G, 

v(ab'-, aob- 1) = v(a-'ab-, by') 

(a'- lab -', e) + v(e, bo-) = v(b, a -'ao) + v(bo, e) 

< v(b-', e) + v(e, a-'ao) + v(bo, e) 

so that 

v(ab-', aob-') < v(a, ao) + v(b, bo) + 2v(bo, e). (1) 

Now fix (fo, go) E G* x G* and set M = max{v(go(t), e): t E [0, 1)). Given > 
0, the facts that fo and go take on only finitely many values, and that the group 
operations in G are continuous, show that there exists a 8, > 0 such that 
v(ab fog- l (t)) < e/3 whenever t is such that both v(a, fo(t)) and v(b, go(t)) are 
less than 86. We may assume that 8, < min(l, c/12(M + 1)). Then if a = 

min(62, e/6) and both v*(f, Jo) and v*(g, go) are less than 8, we see that 
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v(f(t), fo(t)) and v(g(t), go(t)) are less than 8, except on sets of measure less than or 
equal to 8,. 

Both quantities are less than 8, on a set A of measure no less than 1 - 281, so by 
definition of 81, v(fg'-(t),fo lg'(t)) < e/3 on A, and fAv(fg '(t),f0gj'(t)) dt < 
e/3. Moreover, writing B = [0, 1)\A and using (1), we have 

f(fg-'(t),fogo&'(t)) dt < (f(t), B o(t)) dt 

+ fv(g(t), go(t)) dt + 2f v(go(t), e) dt 

p*(f, fo) + v*(g, gO) + 4M81 

< 28 + e/3 < 2e/3, 

and so v*(fg l,fogOl) = f V(fg'-(t),fog,'(t)) dt <e, and the function (f, g) 
fg'-1 is continuous. 

The path-connectedness of G* can be proved directly by adapting the proof of 
Theorem 1 of [2]. However we shall give a proof which uses facts already known 
about the Brown-Morris topology on G*. We denote the latter topology by T. 

For each integer k > 1, the (left-invariant) pseudometric Pk defined by vk(x, y) 
= min(k, v(x, y)) is equivalent to v, and since it is also bounded, Proposition 5 of 
[2] shows that the extension Vk* induces the topology T on G*. Set G"* = {f E G*: 
v(f(t), e) < n for all t E [0, 1)) for each integer n > 1. Theorem 1 of [2] shows that 
(G*, T) is path-connected, and the proof of that theorem shows clearly that two 
points in G,,* are in fact connected by a path lying wholly in G,,*, so that (G,,*, T) is 
path-connected for each n. But it is easy to see that v* and vi*' are equal on Gn*, and 
so (Gn*, (v)) is path-connected. Then since G* is the union of the increasing 
sequence of path-connected subsets { Gn*}, we see that (G*, T(v)) is path-connected 
as required. 

THEOREM 2. Let X be a completely regular Hausdorff space and F(X) the 
(Markov) free topological group on X. If H is the subgroup of F(X) generated by a 
finite subset {xl, x2, ... , xn} of X, then any norm N on H extends to a continuous 
norm on F(X). 

PROOF. We remark that H is the free group on {xl, ... , xn}, and has the discrete 
topology, by Theorem 1.1 1 of [4], so that all its norms are continuous. For h E H, 
set L(h) equal to the reduced word length of h with respect to X; it is immediate 
that L is a continuous norm on H. The corresponding left-invariant metric X 
induces the discrete topology on H (since all nonzero distances are at least one) 
and so, by Theorem 1, H* with the topology T(X) induced by the extended metric 
X* is a path-connected topological group. 

By virtue of this and the fact that X is completely regular, there is a continuous 
function 4: X -> H* with the property that 4(x,)(t) = x,, t E [0, 1), for each i. 
Since H* is a topological group we may extend 4 to a continuous homomorphism 
4: F(X) -> H*. Let N* be the extension of N to H*. We claim that the norm 
N = N*4 on F(X) is the continuous extension of N that we require. 
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To see this, note firstly that since 4(xj)(t) is identically xi for each i, 4?(h)(t) is 
identically h for each h E H, so that N(h) = N*D(h) = foN(4(h)(t)) dt = N(h). 

Secondly, setting M = max{N(x,), .. ., N(x,,)}, we see that N(h) < ML(h) for 
h E H, and hence that N*(f) < ML*(f) for f C H*. Then if e > 0, the set 
U = {f E H*: L*(f) < e/M} is an open neighbourhood of the identity in 
(H*, T(,X)) such that N*(U) C [0, c) (assuming M # 0, as we clearly may). This 
shows that N* is continuous at the identity, and it follows from the definition of a 
norm that N* is continuous everywhere. Hence the composite N= N*D is also 
continuous, completing the proof. 

REMARK. At least in the case when N = L, the extension N* is not continuous on 
H* when H* is given the usual Brown-Morris topology; this is easily seen by 
adapting the example given in [1]. 
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