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1. Introduction

It is well-known that any finitely generated abelian group can be 
expressed as a direct product of cyclic groups. However, the equally 
attractive generalization of this to topological groups is known only 
to a small group of specialists. This is a real pity as the theory is 
not only elegant, but also a very pleasant mixture of algebra and 
topology.

Our aim is to describe the principal structure theorem for locally 
compact abelian groups, and to acquaint the reader with the Pontryagin - 
van Kampen duality theorem. The duality theorem is a deep result and 
the usual discussions assume a knowledge of measure theory and Banach 
algebras. In order to make the material accessible to as large an 
audience as possible we make no such assumption. Rather our presentation 
here vill be uncluttered by analysis.

2. History

The concept of a topological group has its roots in the work of 
Felix Klein (1849-1925) and Marius Sophus Lie (1842-1899), In a visit 
to Paris in 1870, Klein met Lie who had become interested in mathematics 
only a short time before. The young men were much influenced by the
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work of the French mathematicians who included in their number 
Camille Jordan. Jordan had just written his treatise on substitution 
groups and Galois’ theory of equations. Klein and Lie began to see 
the importance of group theory. In 1872 Klein became professor at 
Erlangen and declared in his inaugural address that one can classify 
geometries according to properties left invariant under groups of 
transformations. The study of any classical geometry such as Euclidean 
geometry, affine geometry, projective geometry, etc. may be regarded as 
an investigation of a particular transformation group.

With such transformation groups in mind Lie conceived the concept 
of continuous groups of transformations of manifolds. Of course Lie 
took differentiability for granted. So while Klein, as a rule concen­
trated on discontinuous transformation groups, Lie devoted his whole 
life to the systematic study of continuous transformation groups and 
their invariants. He demonstrated their central importance as a 
classifying principle in geometry, mechanics and ordinary and partial 
differential equations.

In 1900 David Hilbert presented to the International Congress of 
Mathematicians in Paris a series of twenty-three research projects. It 
is worth quoting a translation of Hilbert's fifth problem:

"It is well-known that Lie with the aid of the concept of 
continuous groups of transformations, had set up a system of 
geometrical axioms and, from the standpoint of his theory of 
groups has proved that this system of axioms suffices for 
geometry. But since Lie assumes, in the very foundation of 
his theory, that the functions defining his group can be 
differentiated, it remains undecided in Lie's development, 
whether the assumption of the differentiability in connection 
with the question as to the axioms of geometry is actually 
unavoidable, or whether it may not appear rather as a
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consequence of the group concept and the other geometrical axioms, 
This consideration, as well as certain other problems in connec­
tion with the arithmetical axioms bring before us the more 
general question:

How far Lie's concept of continuous groups of transformations 
is approachable in our investigations without the assumption 
of the differentiability of the functions

Hilbert's question inspired many important works before it was 
answered by Deane Montgomery, Leo Zippin and Andrew Gleason in 1952,

Lie's notion of continuous group fell short of our current notion 
of topological group not only because he made a differentiability 
assumption but also because he did not consider abstract groups but 
rather groups of differentiable transformations of a manifold into 
itself. Until the 1880's groups were generally thought of in terms 
of permutations or substitutions or in connection with residues and 
number theory.

In 1854 Arthur Cayley began to publish articles explicitly devoted 
to the theory of abstract groups, In the first of these he gave a 
definition of a group: "A set of symbols 1, a, 3, ... all of them 
different and such that the product of any two of them (no matter in 
what order), or the product of any one of them into itself, belongs to 
the set, is said to be a group. It follows that if the entire group 
is multiplied by any one of the symbols, either as a further or nearer 
factor the effect is simply to reproduce the group." In 1878 he wrote 
again on finite abstract groups and stressed that a group can be 
considered as a general concept and need not be limited to substitution 
groups, though he does point out that every (finite) group can be 
represented as a substitution group, With the work of Walther Dyck in 
1882 and 1883 the three main roots of group theory - the theory of 
equations, number theory and infinite transformation groups - were all

41



subsumed under the abstract group concept. Dyck, who was a student of 
Felix Klein, was influenced by Cayley. Dyck's definition of a group 
called for a set of elements and an operation that satisfy the closure 
property, the associative but not the commutative property, and the 
existence of an inverse element of each element.

General topology as it is understood today began with Felix Hausdorff 
who in 1914 introduced the notion of neighbourhood spaces. In 1922 
Kazimierz Kuratowski defined the notion topological space by means of a 
closure operation. Alexandroff, Tychonoff, Urysohn and many others then 
developed a general theory of topological spaces.

The modem concept of topological group was first introduced in 
1927 by Frantischek Leja. Two years earlier Otto Schreier had given 
axioms for and studied groups that are "Frechet limit spaces" in which 
the group operations are continuous. Another axiomatic treatment 
inequivalent to Leja's was published by Reinhold Baer in 1929. In 
1930 locally Euclidean groups were discussed per se by Elie Cartan.
In 1931 David van Dantzig published his doctoral dissertation "Studien 
over topologische algebra" and in a series of papers investigated the 
properties of topological groups, rings and fields. Included in this 
work is the beautiful theorem proved independently by Lev Pontryagin 
in 1931 which states that up to topological isomorphism there are only 
two non-discrete locally compact fields - the field of real numbers and 
the field of complex numbers.

By the early 1930's many mathematicians were working with topological 
groups.

The work with which we are concerned is the creation of 
L.S. Pontryagin and E.R. van Kampen. In 1934 Pontryagin announced 
and proved the duality theorem for the case of compact abelian groups 
having a countable basis. In the same year J.W. Alexander dealt with
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the case of arbitrary discrete groups. In the following year
E.R. van Kampen was able to complete the proof of the duality theorem
for all locally compact abelian groups.

3. Definition of a Topological Group

A set G which is endowed with the structure of a group and a 
topological space is said to be a topological group if both of the maps

G G and G x G — G

x — ► x~l O  ,y) — ► xy

where G * G has the product topology, are continuous.

We mention three important examples:

(a) The additive group of real numbers with the usual topology is a 
topological group, denoted by R .

(b) The multiplicative group of all complex numbers of modulus one 
with the topology induced from the complex plane is called the 
circle group, and is denoted by T .

(c) If G is any group then by putting the discrete topology on G 
(i.e. every subset of G becomes an open set) we obtain a 
topological group. In the particular case that G is the group 
of integers, then G with the discrete topology is denoted by Z .

Let G be any topological group and g an arbitrary element of 
G . It is easily verified that a set U is a neighbourhood of g if 
and only if g *£/ is a neighbourhood of the identity element, e , of 
G . Thus every question about the topology of G can be reduced to a 
question about the neighbourhoods of e ,

4. LCA-groups

The most important class of topological groups is the class of 
locally compact Hausdorff groups.
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A topological space X is said to be locally compact if each element 
of X has a compact neighbourhood. Clearly, a topological group is 
locally compact if and only if it has a compact neighbourhood of the 
identity.

A topological space X is said to be Hausdorff if each pair of 
distinct elements of % can be separated by open sets, In particular, 
a topological group is Hausdorff if and only if each point is a closed 
set. Thus a topological group is Hausdorff if and only if the set 
consisting of just the identity element is closed.

Each of the topological groups mentioned in 3 is locally compact 
and Hausdorff. For a compact neighbourhood of the identity in R we 
can choose the closed unit interval [-1,1] . In any discrete group the 
set {e } is a compact neighbourhood of the identity element, e . The 
group T is, in fact, compact and so the set T is a compact neighbour­
hood of the identity.

We shall further restrict our attention to abelian groups. All 
groups will be written additively in future. For brevity, we introduce 
the shorthand:

LCA-group = locally compact Hausdorff abelian topological group.

5. The Dual Group of an Abelian Topological Group

We will denote by G* the set of continuous homomorphisms from an 
abelian topological group G into the circle group T . Such continuous 
homomorphisms are called characters and G* is called the character 
group or dual group of G .

The set G* is an abelian group under the operation

(<t> + M(g) = <t>(g) + 4>(g), g ( G, $ ( G*, \p € G* .

We put a topology on G* as follows:
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Let K be a compact subset of G and U an open subset of T . Then 
the set P(K,U) £ G* is defined to be

U  : <t> € G* and 4>(K) c [/} ,

We define the sets P{K,U) to be open subsets of G* and, indeed, 
to be a subbasis for the topology of G* ; that is, every open set is 
a union of sets of the form P(K^,Ul') Cl P(_K2>[/2) ^ ••• ^ *

where each is compact in G and each U\ is open in T . This
is the well-known compact-open topology.

It is routine to verify that, with this topology, G* is a 
Hausdorff topological group,

It is an interesting task to find the dual groups of i?, T and Z , 
It is clear that for each d £ R we can define a character y^ of R 
by = exp(2nidx) , for x € R . It is not so easy to see that
these are the only characters of R .

But once we know this and observe that y + y = y we have
1 2

that the dual group of R is algebraically isomorphic to R itself
under the isomorphism d — *■ y . Further examination reveals that R*

d
is indeed topologically isomorphic to R . (Topological groups G 
and H are said to be topologically isomorphic if there is a map 
f : G — ► H which is both an algebraic isomorphism and a homeomorphism 
of G onto H) .

Turning to T , we see that for each integer d a character is 
obtained by putting y{exp{2i\ix)) = exp{2vidx) . Once again these are 
the only characters, and so T* is seen to be algebraically isomorphic 
to Z . It is not difficult to verify that T* has the discrete 
topology and so T* is topologically isomorphic to Z ,

Considering the group Z , we see that any character y is 
determined by its value on 1, as y(n) = ny(l) , n € Z , (Note that
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T is being written additively!) Of course yC1) can be any element 
of T , and for each a £ T we obtain a character Ya by putting 
yC1) = cl . Thus the mapping a — ► y is an algebraic isomorphism of 
T onto Z* . Further analysis shows that Z* is topologically 
isomorphic to T .

It is also worth mentioning that if A^t A2, ,,, , A^ are abelian 
topological groups then the dual group of the product topological group 
A i x A2 x ... x A^ (that is, the product of the abstract groups 
A t ... , An with the product topology) is the product of the dual 
groups. In other words, 04 * A^ * ... * A^)* is topologically 
isomorphic to x a 2* x ... x a .

We can infer from this that (rf1)* , (2^)* and (Zn)* are
topologically isomorphic to if1, Zn and T̂ 1, respectively, for each 
positive integer n .

6. Dual Groups of Compact Groups and Discrete Groups

Those readers familiar with the compact-open topology will recall 
Ascoli’s theorem which allows one to recognize sets which are compact 
in the compact-open topology. If we apply this theorem to dual groups 
we obtain the following key proposition.

For convenience, the identity elements of all groups will be 
denoted by 0 .

Proposition 1. Let G be an LCA-group> G* its dual group and K 
any compact neighbourhood of 0 in G . If U is a "small" neighbour­

hood of 0 in T } more precisely if U c {exp(2nix) : - j  < x < j} , 
then P(KiJJ) 3 the closure of the set P(KSU) 3 is a compact 
neighbourhood of 0 in G* .

Remark. Note the three crucial requirements of Proposition 1:
(a) G be an LCA-group; (b) K be a compact neighbourhood of 0 ,
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rather than just a compact subset of G ; and (c) U be a "small" 
neighbourhood of 0 .

Corollary 1. If G is an LCA-group, then G* is an LCA-group.

Proof. We have already commented that G* is an abelian Hausdorff 
topological group. Proposition 1 says that G* has a compact 
neighbourhood of 0 and consequently is also locally compact,

Corollary 2. If G is an abelian discrete topological group, then 
G* is a compact group.

Proof. As G is discrete the set K = {0} is a neighbourhood of 
0 . Of course K is also compact, since it is finite. Let U be a 
"small" neighbourhood of 0 in T . Then by Proposition 1, the set 
P{K,U) is compact in G* . But every homomorphism from G into T 
maps K = {0} into U . Thus P(K,U) = G* , Hence G* = P{KtV) , 
and so G* is compact.

The converse of Corollary 2 is also true and easily proved.

Proposition 2. If G is a compact Hausdorff abelian topological 
group, then G* is discrete.

Proof. As G is compact, the definition of the topology of G* tells 
us that P{GtU) is an open neighbourhood of 0 in G* , for any 
neighbourhood J/ of 0 in T . If we choose U to be a "small' 
neighbourhood of 0 in T , then U contains no subgroup other than 
{0} . Thus any homomorphism which maps all of G into U , must map 
G onto 0 . Of course the only homomorphism which maps G onto 0 
is the trivial homomorphism and so P(G,U) = {0} . So {0} is an 
open subset of G* . Hence G* is discrete,
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7. The Pontryagin - van Kampen Duality Theorem

We now state one of the most important theorems in mathematics. 
Naturally, we cannot include a proof here.

Theorem 1 . (Pontryagin - van Kampen). Let G be any LCA-group s G* 
its dual groups and G** the dual group of G* . For fixed g (l G , 
let g' be the function : G* — ► T given by g r(y) = y(g) , ■ for all

Y € G* . If a is the mapping given by a(g) = g' } then a is a 
topological isomorphism of G onto G** .

Roughly speaking the duality theorem says that every LCA-group is 
the dual group of its dual group. From this we deduce that every piece 
of information about G is stored as information about G* . In the 
case of compact groups this is particularly interesting as G* is 
discrete. So any compact Hausdorff abelian group can be completely 
described by the purely algebraic properties of its dual group; for 
example, if G is a compact Hausdorff abelian group then

(a) G is metrizable if and only if G* is countable.
(b) G is connected if and only if G* is torsion-free,
(c) The dimension of G as a topological space equals the torsion-free 

rank of G* (that is, the number of elements in a maximal linearly 
independent subset of £*) .

We include a proof of result (a). However, the less patient reader 
can omit this proof without affecting his understanding of the later 
material,

Proposition 3. Let G be a compact Hausdorff abelian topological 
group. Then G is metrizable if and only if G* is countable.

Proof. We will assume the standard result that a topological group is 
metrizable if and only if there is a countable base (or subbase) of 
neighbourhoods of 0 .
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Firstly, assume that G is metrizable, Then G has a countable 
base of compact neighbourhoods , V  ... of 0 • By
Proposition 1, if U is a "small' neighbourhood of 0 in T , then 
the sets P(K^tU) are compact neighbourhoods of 0 in (J* , As each
Y € G* is continuous, there exists a such that y(^) £ U •
So Y € P(K.,U) ,

Hence G* = .0 P{K.,U) and so G* = .U P(X.,i/) . But as G* is
i-1  ̂ i-1 ^

discrete, each of the compact sets P{K^tU) is finite. So G* is a 
countable union of finite sets and so is countable.

Conversely, assume that G* is countable.
For each positive integer n , let = {exp(2nix) £ T : - ^  < x < .

Then each U is an open neighbourhood of 0 in T , and so the sets 
P(K,U' ) are open in G** , for any compact subset K of G* . Indeed, 
it is easily verified that if we allow K to range over all compact 
subsets of G* and n to range over all natural numbers then the sets 
P[KtU ) form a subbase of neighbourhoods of 0 in G** As G is 
compact, G* is discrete and so each compact subset K of G* is 
finite. Since G* is countable, G* has only a countable number of 
finite subsets. Thus there are only a countable number of sets P[K,U^) 
in the subbase of neighbourhoods of 0 in G** ,

Hence G** is metrizable. The duality theorem tells us that G is 
topologically isomorphic to G** , and so G too is metrizable.

8. Quotient Groups and Local Isomorphisms

Let N be a normal subgroup of a topological group G , If the 
quotient group G/N is given the quotient topology under the canonical 
homomorphism p : G — ► G/N (that is, U is open in G/N if and only 
if p 1 (£/) is open in G) , then G/N becomes a topological group - 
called the quotient (topological) group of G by N .
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For example, we can form the quotient group R/Z . It is not 
difficult to verify that the topological group R/Z is topologically 
isomorphic to the circle group T .

Two topological groups G and H are said to be loaally isomorphia 
if there exist neighbourhoods V of 0 in G and U of 0 in H , 
and a homeomorphism f of V onto U such that if x,y and x + y 
are in V , then f{x+y) = f{x) + f(y) .

Example. Let G = R , H = T , V = (- -j) and U = {exp (2-nix) :1 1  4 4
' 4 < x < 4 )• Then t^e maP f '• V — y U with f(x) = exp(2i\ix) , x € V
has the required property. So R and T are locally isomorphic.

With a little more effort one can prove

Proposition 4. If D is a discrete normal subgroup of a topological 
group G 3 then the quotient group G/D is locally isomorphic to G .

In passing, we mention that local isomorphisms play a central role 
in the theory of Lie groups, as two Lie groups have the same Lie algebra 
if and only if they are locally isomorphic. (Roughly speaking, a 
topological group is said to be a Lie group if the largest connected 
set containing the identity is an open set, and it has the additional 
structure of an analytic manifold with the operations {x,y) — ► xy 
and x — ►a:"1 being analytic. Examples of Lie groups which we have 
met are iP, 'f1, for all n > 1 , and discrete groups.)

In developing the structure theory of locally compact abelian groups, 
we shall need to know precisely what topological groups are locally 
isomorphic to iP .

Proposition 5. Let G be a Hausdorff abelian topological group which 
is locally isomorphic to iP . Then G is topologically isomorphic to 
if x ^  x d s where D is a discrete group and a and b are 
non-negative integers with a + b = n .
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9. The Principal Structure Theorem

IVe rhall write 0 — *■ A — > G — ► B — ► 0 to mean that A is a normal 
topological subgroup of G such that G/A is topologically isomorphic
to B .

Proposition 6. Corresponding to the sequence

0 --► A -- * G --* B — * 0

where A, G and B are LCA-groups3 there is a sequence

0 «•-- >1* <---  G* *--  B* ---  0

The idea of the proof of Proposition 6 is quite simple.

Given A we want a map f* : G* -- ► A* . Let 4> € G* .
So we have the diagram

f
A . > G

f * M  *

If we put = 4>f , we have the required map.

A topological group G is said to be compactly generated if it 
has a compact subset X such that X generates G algebraically.

F, Z and T are examples of compactly generated groups, while a 
discrete group is compactly generated if and only if it is finitely 
countable.

Observing that the subgroup of an LCA-group generated by any 
compact neighbourhood of the identity is open, we obtain
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Proposition 7. Every LCA-group has an open compactly generated subgroup 
H . (As every open subgroup is also closed, H is also an LCA-group).

The trivial Proposition 7 allows us to focus our attention on 
compactly generated LCA-groups. The next proposition takes a little 
effort to prove.

Proposition 8. If G is a compactly generated LCA-group, then there 
is a sequence

0 — ► Zn — ► G — ► K — ► 0

where K is compact3 and n is a non-negative integer.

With this proposition we can prove the Principal Structure Theorem 
for LCA-groups.

Theorem 2. (Principal Structure Theorem). If G is any LCA-group3 
then G has an open subgroup topologically isomorphic to if x * C y 
where C is a compact group and a and b are non-negative integers.

Proof. By Proposition 7, G has an open compactly generated subgroup 
H , which is an LCA-group. By Proposition 8, there is a sequence

0 --*• Zn --* H --> K — ► 0 , K compact.

Dualizing, Proposition 6 yields

0 *--  (Zn) * <-- H* <--- K* -—  0

that is,

0 <--  T” «-- H* «--- K* »---  0

So ^  is topologically isomorphic to H*/K* , where K* , being the 
dual of a compact group, is discrete. Proposition 4 then says that 'f1 is 
locally isomorphic to H* . But is locally isomorphic to if , so
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H* is locally isomorphic to if , Proposition 5 then says that H* is 

topologically isomorphic to Ra * * D , where D is discrete and a 

and b are non-negative integers. Thus H** is topologically 

isomorphic to if * Z^ * C where C - D* is compact. By the duality 

theorem, H is topologically isomorphic to H** , so H is topologically 

isomorphic to if * Z^ x C , as required.

Corollary 1. Any compactly generated LCA-group is topologically isomorphi
t43L bto i f  x Z x c , where C is compact and a and b are non-negative 

integers.

As every connected LCA-group is compactly generated we obtain

Corollary 2. I f  G is a connected LCA-groicp3 G is topologically 

isomorphic to Ra x C s where C is compact and connectedy and a is  

a non-negative integer.

Corollary 3. I f  G is any LCA-group, then G is topologically 

isomorphic to Ra x H , where H is an LCA-group with a compact open 

subgroup3 and a is a non-negative integer.

Further3 i f  G is also topologically isomorphic to IT * 3 where 

Hj has a compact open subgroup3 then a = b .
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