
NORMS ON FREE TOPOLOGICAL GROUPS

KEVIN BICKNELL AND SIDNEY A. MORRIS

ABSTRACT

A norm on a group G is a function N mapping G into the set of non-negative real numbers such
that for each x and y in G, N(xy-*) ^ N(x)+N(y) and N(e) = 0, where e is the identity element
of G. It is shown here that if F(X) is the free topological group on any completely regular Hausdorff
space X and H is a subgroup of F(X) generated by a finite subset of X, then any norm on H can be
extended to a continuous norm on F(X).

Introduction

In [1] Abels gave a difficult proof of the fact that if F(X) is the (Markov) free
topological group on a completely regular Hausdorff space X and H is a subgroup of
F(X) generated by a finite subset of X, then there is a continuous norm N on F(X)
such that for each h e H, N(h) is approximately equal to the reduced length of h
with respect to X. Our work shows that actual equality can be achieved.

Preliminaries. A norm on a group G is a function N mapping G into the set of
non-negative real numbers such that N(xy~*-) ^ N(x)+N(y) for each x and y in G,
and N(e) = 0 where e is the identity element of G. We note that if N is a norm on a
group G and 0 is a homomorphism of a group H into G, then JV$ is a norm on H.
Also if {N;: i e /} is a family of norms on a group G such that N(g) = sup(Nj(g))

exists for each geG, then AT is a norm on G.
Our main tool will be a construction due to Hartman and Mycielski [4] which

embeds any topological group in a path-connected topological group. Given a
topological group G, the set G* is defined to consist of those functions / from the
half-open interval [0, 1) into G such that for some set {a0, au ..., an+l} with

0 = a0 < at < a2 < ... < an < an+l = 1,

/ i s constant on each interval [ah ai+l). Then G* becomes a group if the operations
are defined on it pointwise. Further, G* becomes a topological group if the sub-
basic open neighbourhoods of e a c h / e G * are defined to be

{h:heG* and |{* : h{x)£ Vf (*)}| < e},

where V is any open neighbourhood of e in G, |. | is the Lebesgue measure on [0, 1)
and e > 0. Hartman and Mycielski observed that G* is path-connected and that G
is topologically isomorphic to the closed subgroup of G* consisting of the constant
functions from [0, 1) to G. Brown and Morris [2] indicated how this construction
can be extended from topological groups to topological spaces and showed the
following result (which is a consequence of their Propositions 6 and 7).
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Proposition. Let G be any topological group and G* be as above. If p is any
bounded continuous pseudo-metric on G, then d, given by

d(f,g) = J p(f(t),g(t))dt

for any/and g in G*, is a continuous pseudo-metric on G* which agrees with p on G.
If p is a metric then d is a metric. If p is left-invariant then d is left-invariant.

Remark. With regard to the condition " bounded " in the above proposition,
there is a little confusion in the literature. Hartman and Mycielski [4] claimed,
without proof, that if G is a metric topological group with metric p then G* is a
metric topological group with metric d given by

i

d(f,g)= f p(f(t),g{t))dt.

In the case that p is bounded Brown and Morris [2] proved that the topology induced
by the metric d and the previously defined topology on G* coincide. The example
below shows that this is not the case if p is unbounded.

Let (X, p) be any metric space such that p is unbounded. Let xeX and xn,
n = 1, 2, ..., a sequence of elements of X such that p(x, xt) > 1 and

p(x, xn)+\ < p(x,xn+1).

For each positive integer n, we define fneX* by

1

/„( ') = <
xn,

x,

Let d be the metric o n l * given by

d(f,g) =

1

p(x, xn)

f P(/(O,

*x, xn)

£f < 1.

g(t))dt,

for /and g in X*. We claim that d is not a continuous metric on X*. In particular,
we show that the set {/„; n = 1, 2,...} is closed with respect to d but not closed in X*.

To describe the topology of X* we introduce the bounded metric d± on X* by
putting

,g) = j [min(p(/(0,*(0),

fo r / and g in X*. By the work of Brown and Morris [2], the metric dt induces the
correct topology on X*.
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Clearly

1 1
dLL) p(x, xn) n

iffx is the constant function mapping [0, 1) into xeX. So {/"„:«= 1, 2, ...} is not
closed in X*. However if feX*\{fn; n = 1,2,...} then either f = fx or for some
a and b in [0, 1) with a # b, f[a, b) = x' # x. If / = fx then <*(/„,/,) = 1. If/ # / x ,
choose an m such that

1 b

p(x, xm) 2 '

in which case, for all n> m, d(fn,f) ^ (jb/2) p(x, x'). Hence {/„; n = 1, 2, ...} is
closed with respect to d but not closed in X*.

Results. THEOREM. Let Y be a completely regular Hausdorff space and F( Y)
the (Markov) free topological group on Y. If H is a subgroup of F(Y) generated by a
subset X = {*!, ..., xn} of Y, then any norm N on H extends to a continuous norm N
on F(Y).

Proof. We show that the result is true in the case Y = [0, 1 ] and then show that
this implies the result as stated.

Let X = {xl5 ..., xn} be a subset of [0,1] with each xt < xi+l and N a norm on
the subgroup H of F[0, 1] generated by X. The pseudo-metric p defined on H by
p(u, v) = N(v~xu) for u and v in H, is left-invariant. For each positive integer k,
denote by gpk(X) the subset of H consisting of all words of reduced length not greater
than k with respect to X. Put mk = max{N(jc): xegpk(X)} and pk(u, v) = min
{mk, p(u, v)} for each u and v in H. Then {pl5 p2,..., pn,...} is a family of bounded
left-invariant pseudo-metrics on H. By [6, Theorem 1.11] any finitely generated
subgroup of a free topological group is discrete and so each pk is continuous. If H*
is defined in the manner described in the Preliminaries, then by the Proposition there,
each pk can be extended to a left-variant pseudo-metricdk which is continuous on / /*
and is given by

dk(f,g)= \ Pk{f(t),g(i))dt,

for each / and g in H*. For each k, define a continuous norm Nk on H* by putting
Nk(f) = dk(f, e) where /eH* and e is the identity of H*.

We define a continuous map <f>: [0,1] ->H* as follows: if 1 ̂  x ^ xn then
(f)(x)(t) = xn, for every t e [0,1); if 0 < x < xlt then <K*)(0 = *i> for every t e [0, 1);
if x = rx, + (l— r)jcj+1, for 0 ^ r ^ 1 and some ie{ l , 2, ..., «}, then <l>(x)(t) = xh

for 0 ^ t < r and <j)(x)(t) = xi+1 for r ^ t < 1. Now, by the freeness of F[0, 1]
there exists a continuous homomorphism $ : F[0, 1] -*/ /* which extends 0. Then
{./V^O, N2O,...} is a sequence of continuous norms on F[0,1]. We define JV on
F[0, 1] by putting N(w) — sup{N1$(w), JV2O(w),...} for each weF[0, 1], and claim
that N is the required norm.

Firstly observe that for each x e [0,1] and t e [0, 1), <j)(x)(t) e X. So if the word w
in F [0, 1 ] has reduced length /with respect to the free basis [0,1 ], then Q>(w)(t) e gpe(X),
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for each re [0,1]. So

Nk®(w) = dk(®(w), e) = de(<&(w), e) if k ^ S

and thusNk<&(w) ^ me, for k = 1,2,. . . . Hence the supremum exists andN is indeed
a norm on F[0,1] which extends the norm N on H. Further the map N restricted
to gpk[0, 1], that is N\gpk[0, 1], equals NkQ>\gpk[0, 1] and so N\gpk[0, 1] is continuous,
for each k. As F[0,1] has the weak topology with respect to {gpk[0,1]: k = 1,2,...}.
see for example [3; Theorem 4], N is continuous. Thus the result is true for Y = [0, 1].

Now let Y be any completely regular Hausdorff space and H a subgroup of
F(Y) generated by a finite subset X = {xu..., xn} of Y. Further, let AT be any norm
on H. We define X' = {*/,..., *„'} to be any subset of [0,1] having n elements
and H' the subgroup of F[0, 1] generated by X'. By [5, Theorem 3.6] there exists a
continuous map 9: Y -> [0, 1] such that 0(jt{) = * / for each i. So there exists a
continuous homomorphism 5 : F(Y) -> F[0,1] such that 5 extends 0. Now we can
define a norm N' on / / ' by putting N'(h') = N(/i), where h' eH' and A is the unique
element of H such that 6(h) = A'. By the argument above, N' can be extended toiV',
a norm continuous on F[0, 1]. We now define N on F(Y) to be JV'<5. Clearly N is a
continuous norm on F(Y) and it agrees with N on # , which completes the proof.

Remark. We note that the norm N constructed in the proof of the Theorem has
the property that

sup{JV(tv): wegpk(Y)} = sup{N(x): xegpk(X)}

In the particular case that the norm is the length norm we obtain:

COROLLARY 1. Let Y be a completely regular Hausdorff space and F(Y) the free
topological group on Y. If H is a subgroup of F(Y) generated by a finite subset of Y,
then there is a continuous norm N on F( Y) such that for each heH, N(h) equals the
reduced length ofh with respect to Y. Further, N(y) < 1 for all y in Y.

Definition. Let N be a norm on a group G. Then N is said to be a proper norm
ifN(g) equals zero if and only if g is the identity element of G.

COROLLARY 2. The norm N described in Corollary 1 can be chosen to be proper
if and only if Y admits a continuous metric.

Proof. If Y admits a continuous metric p, then without loss of generality p can
be assumed to be bounded by 1. From the work of Graev [3, Theorem 1] p can be
extended to a two-sided invariant metric p' on F(Y). So p' induces a continuous
proper norm N' on F(Y). The required norm is then the maximum of N' and the
one arising from the proof of the Theorem.

Conversely if F(Y) admits a proper continuous norm, then it admits a con-
tinuous metric and hence the subspace 7 does also.

The result stated in our third corollary is not new, but it is of some interest that
it is a consequence of our Theorem.

COROLLARY 3. Let Y be any completely regular Hausdorff space and F(Y) the
free topological group on Y. Then gpn(Y) is closed in F(Y)for each n.
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Proof. For each pair of points xh Xj in Y there is a continuous norm AT,y on F(Y)
which is the extension of the length norm on the subgroup generated by {xh xj}.
We readily see that

g
which is closed.
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