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EMBEDDINGS IN CONTRACTIBLE OR COMPACT OBJECTS

BY

RONALD BROWN anp SIDNEY A. MORRIS (BANGOR)*

1. Introduction. It is well known that any completely regular space X
can be embedded in a contractible space, since X can be embedded in
its Stone-Cech compactification g(X) which, in turn, is a subset of a product
of copies of the unit interval. However, this embedding is not closed;
the metrics which exist on g(X) do not seem naturally related to any
initially given on X; and B(X xY) # (X)x B(Y), so that g(X) does
not inherit algebraic structures, such as that of a group, from X ().

. There is another embedding of any Hausdorff space X in a contract-
ible space EX discussed by Segal in [11]. However, it is difficult to prove
topological properties of HX, such as being Hausdorff or metric, and
the equation B (X x ¥) = EX x EY, while true in the category of Haus-
dorff k-spaces, is not known to be true in the usual topological category.

Segal states in [11] that EX can be identified with a set of step fune-

tions [0, 1[ — X, but remarks that from this point of view the topology -

seems obscure. Now, a topology on this set X™ of step functions has been
defined for the ecase where X is a Hausdorff topological group by Hartman.
and Myecielski [%], who find that X with this topology is a path-connected
and locally path-connected topological group containing X as a closed
subgroup.

In this paper we modify the Hartman-Mycielski definition to give
a topology on X* for any space X, and we prove that X* is a contractible
and loeally contractible space containing X. We also construct a natural
isomorphism (X x ¥)* o~ X* x Y*, which explains why X" inherits an
algebraic structure from X. If X is Hausdorff, metric or completely regular,
50 also is X*; and we prove that Segal’s bijection EX - X*is continuous.

In Section 3 we use the embedding H — H* to give a short proof
that the Graev free topological group F(X) on a functionally separable
space X is functionally separable, and hence Hausdorff. The only property

* During a portion of this resecarch the second-named author was a Senior
Visiting Fellow at U.C.N.W., Bangor, under S.R.C. Research Contract B/RG/3967.

(1) Another contractible embedding is X—»>0X, where OX = (XxI)/(Xx{0}) is
the cone on X; but again O(XxY) = CXxCX.
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of F(X), apart from the definition, that is used is that X generates F(X)
algebraically.

The main object of Section 4 is to generalize this last result to the
free topological groupoid F(I') on 2 topological graph I'. The notion of
a topological groupoid was developed by Ehresmann in a series of papers
for applications to differential topology and differential geometry. More
recently, Brown and Hardy have considered topological groupoids as
natural generalizations both of topological spaces and of topological
groups; they have developed some of the basic theory [3], [4], and appli-
cations to topological groups have been given by them [3] and by Nickolas
[9], while applications to algebraic topology have been given by Hardy
and Puppe [6]. This explains the interest in generalizing properties of
topological spaces and topological groups to topological groupoids. The
main result of Section 4 (Theorem 4) has been proved by different meth-
ods in [B] — however, the proof here does not rely, as does that of [5],
on any explicit construction of the topology on F(I').

We would like to thank Graeme Segal for giving us details of con-
structions outlined in [11].

2. A contractible embedding. Let X be any topological space. By X*
we mean the set of continuous-from-the-right step funetions [0, 1[ - X,
i.e., functions f for which there is a partition 0 < a; < @< ... < @ <1,
of [0,1[ such that f is constant on [a;, a; [ for ¢ =0,1,..., k (here
ay = 0, and a,; = 1).

A topology is defined on X*if N = N(a, b, V, &) is a sub-basic neigh-
bourhood of f e X* whenever

(i) 0<a<b<1, fis constant on [a, b[, V is a neighbourhood of
f(a), and &> 0;

(ii) b e N means that [{t e[a,b[: h(t)¢ V}| < e, where |-| denotes
Lebesgue measure.

Remark. This definition is a modification of the definition of r
topology on X* given by Hartman and Myecielski in [7] for the case where
X is a topological group, and it is not hard to see that in such a case the two
definitions give the same topology (?). The main result sketched in [7] is
that X* is path-connected and locally path-connected: Our main theorem is

THaEOREM 1. For any space X, the space X* is contractible and locally
contractible.

Proof. Let g € X*. Define ¢: X*x[0,1] - X" by
gt), o<it<r,

f@y, r<i<l.

(2) When X is metrie, another definition of X* using all Lebesgue measurable
funetions [0,1]—X is given in [8].

p(f, 1) (@) ={
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Then ¢(f, 0) = f, and ¢(f, 1) = g. So to prove that X* is contractible
it is sufficient to prove that ¢ is continuous.

Let (f,r)eX*x[0,1], and let N, = N(a, b, V,e) be a sub-basic
neighbourhood of ¢(f, 7). Then ¢(f, r) is constant on [a, b[. We distinguish
two cases: r<a and r > a.

Case 1. r < a. Then f itself is constant on [a, b[, and V is a neigh-
bourhood of f(a) = ¢(f,r) (a). Hence N, = N(a,b, V,8) is a neigh-
bourhood of f for any 8 > 0.

If r< a, then

¢(N,x[0,a]) = N,.

If r = a, then :

P(Nye X Ja—¢/2,a+¢/2[) = N,.

Indeed, if he N,, and a—¢/2< s< a+¢/2, then @(h,s) differs on
[a, b[ from h by a set of Lebesgue measure less than ¢/2, while the Lebesgue
measure of {t € [a,b[: h(?) ¢ V} is also less than &/2.

Case 2. r > a. Since <p(f, ) is constant on [a, b[, V is now a neigh-
bourhood of g(a).

If r<b, then f([r,b]) = {g(a)}. Hence M = N(r,b, V,&/2) is a
neighbourhood of f and

(M xJr—e/2,7+¢/2[) = N.,.

If » = Ab, then ]b—e¢, b+ e[ is a neighbourhood of », and
P(X* x1b—e,b+e[) = N,.
If » > b, then 1b, 1[ is a neighbourhood of », and
¢(X* x1b,1[) = N..

This completessthe proof that ¢ is continuous, and so that X* is
contractible.

It is easy to check that if M is any sub-basic neighbourhood of gy
then o(M x {r}) = M for r €[0,1]. It follows that ¢(M x {r}) = M for
r€[0,1] and any basic neighbourhood M of g. Hence each basic neigh-
bourhood of g is contractible, and so X* is locally contractible.

There is a canonical map i: X — X* such that, for » € X, i(x) is
the constant step function with value ». For the case where X is a Haus-
dortf topological group, it is asserted in [7] that ¢ is a closed embedding.
‘We prove

PROPOSITION 1. The map i: X — X is an embedding. If X is Hausdorff,
then i is a closed embedding.

Proof. Let # € X, and let N = N(a, b, V, &) be a sub-basic neigh-
bourhood of i(x). Then ¢~'(N) = V, whence ¢ is continuous, and (V)
= Nn¢(X), so ¢ is an embedding.
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‘Suppose now that X is Hausdorff, and f ¢ i(X). Then f is not constant,
and so takes at least two distinet values. Suppose that f is constant on
[, b[ with value », and f is constant on [¢, d[ with value y, where 7 .
Let U and V be disjoint neighbourhoods of z and y, respectively, and let

M = N{a,b, U, 3(b—a)) and N =N(o,d,V,d—0).

Then M AN is a neighbourhood of f which does not contain a constant
function.

PrROPOSITION 2. If ¢: X — Y is continuous, then the induced map
p*: X* - Y%, fr>qof, is continuous. Further, if ¢ is an embedding, $o
also is ¢*. '

Proof. Let f e X*, and let N = N(a, b, V, ¢) be a sub-basic neigh-
bourhood of g = pof. Let 0 = gy < a3 < ... < &< G4y = 1 be a partition
of [0,1] such that f is constant on each [a;, a; o[- Let [ayg, @,[ be the
smallest interval of the a’s containing [a, b[. Then g is constant on
[a;, @y, [. For each ¢ =0,1,...,7—1, choose a meighbourhood U, of
f(a.;) such that ¢(U;) = V. Then the intersection M of the sets
N(t45 @iy Uiy gl(r+1)) for i = 0,1,...,7—1 is @ neighbourhood of
f such that ¢*(M) = N.

Suppose now that ¢ is an embedding. Let f cX* and let N =
N(a, b, U, &) be a sub-basic neighbourhood of f. Then ¢(U) = Vne(X)
for some neighbourhood V of ¢f(a), and

¢ (N) = ¢"(X")nN(a,b, V, 5).

PropositioN 3. If X is Hausdorff, so also is X*.-

Proof. Let f and g be distinct elements of X*. Then thereisat e [0, 1]
such that f(t)# g(?). Let a, b € [0, 1[ be such that a <t< b, and f and g
are both constant on [a, b[. Let U and V be disjoint neighbourhoods of
f(t) and g(t), respectively, and let ¢ = 1(b —a). Then the sets N(a, b, U, ¢)
and N(a, b, V, &) are disjoint neighbourhoods of f and g, respectively.

PROPOSITION 4. The natural map ¢: (X x Y)* — X*x Y* is a homeo-
morphism. .

~ Proof. Let p: Xx¥Y — X and ¢: XX Y — Y be the projections.
By Proposition 2, p* and g¢* are continuous, and so is ¢ = (p*, ¢%).

On the other hand, ¢ has an inverse v, since if f: [0,1[ — X and
g: [0,1[ — Y are step functions, so also is (f, 9):.,[0,1[ - X x Y.

We now prove that y is continuous.

Let (f, ¢) € (X x Y)*, and let N = N (a, b, Ux 7V, ¢) be a sub-basic neigh-
bourhood of (f,g). Then N, = N(a, b, U, ¢/2) and N, = N(a,b,V, ¢/2)
are sub-basic neighbourhoods of f and g, respectively, such that
p(N,x Np) = N.
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COROLLARY 1. The functor X > X* commutes with finite limits.
This follows from Propositions, 2 and 4.

COROLLARY 2. If X has the structure of a topological semigroup, monoid,
growp, or groupoid, so also does X*.

Proof. The first three cases follow easily from Proposition 4. For
the case of X being a topological groupoid we also need the part of Pro-
position 2 dealing with embeddings, from which we infer that if D is
the domain of composition of the groupoid X, then D* is the domain
of composition of X*,

Remark. The previous results show how to recover and strengthen
the results of [7]. We now show the relation of X* to a space EX described
by Segal in [11].

For any space X, there is a simplicial space TX such that (TX),
= X"*! (the (n-1)-fold Cartesian product), with face and degeneracy
operators given by

0:(Toy Bay ooey By) = (Bgy Byy ..,y Ly eney ®y),
Si(Boy Bry ooy Bp) = (Boy Byy euny Byy Byy ey Tp)e

The realization |TX| of TX is the space EX. Explicitly, EX is the
quotient of [] A" x X"*' by the relation (¢, 2) ~ (f, px) for te A™,

n=0

@ € X™*! and a simplicial operator ¢. Let 4™ be the set of points (;, £y, ..., #,)
in R™ such that 0 <# <{?,<...<{?,<1. Then a continuous map

1,2 A" x X" X

is defined by letting 2, ((t1) tay -+., tn)y (@oy @1, ..., @,)) be the step function
with value @; on [, ;[ (fy = 0, #;,;, = 1). Further, the maps A, respect
the identifications giving EX, and define a continuous bijection A: EX — X*.
(This definition of 1 is due to Segal (private communication).)

The space EX is contractible, since it is the space BX, where X
- is a8 on p. 107 of [10]. There is also a map j: X — EX, namely the
composite X — 4° x X — EX, and it can be proved that if X is Hausdorff,
then j is a closed embedding.

Since KX is defined as a quotient space, it cannot be expected that
B(X x Y) is homeomorphic to EX x EY (although we have no counter-
example). However, this equation does hold in the category of k-Haus-
dorff k-spaces (when (T'X), = X"*' iy the weak product). Notice also
that, by Proposition 3, if X is Hausdorff, then so also is X*, and hence
EX is Hausdorff. This seems harder to prove directly.

We conclude this section by giving two other useful properties pre-
served under X ~— X*,
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ProposITION 5. A bounded metric on X induces a metric on X* com-
patible with its topology, and i: X — X" is an isometry.
Proof. Let ¢ be a bounded metric on X. Then the formula

1

d(f,9) = [o(f®), g(v))at

0

defines a metric on X" such that i: (X, ¢) - (X*, d) is an isometry. We
now verify that the metric d induces the given topology on X*.

Let N = N(a, b, V, &) be a sub-basic neighbourhood of f € X*, where
V is a o-neighbourhood of f(a) of radius » in X. Then the d-neighbourhood
of f of radius re is contained in N. Indeed, if

alg,f)<re and A4 ={i: o(f(t), g(t)) >},

then d(f, g) > r|A|, and so |A|< & whence g e N.

Conversely, let W be a d-neighbourhood of f of radius §. Suppose
that 0 =ay<a;<...< @, =1, and f is constant on [a;, a, ,[ for
t=0,1,...,k Let N, = N(a;, a;.,, W;, §'), where W, is the o-neigh-
bourhood of f(a;) of radius §/2. We assert that

NonNin...AN, = W.
To prove this, let g be contained in this intersection, let

A ={tef0,1): o(f(?),9() > 8/2} and B =1[0,1[\4,
and let o be bounded by m. Then

d(fs9) = [olf®), g@)di+ [e(f), g(t)dt<m(k+1)5'+0/2
A B

which is less than ¢ for sufficiently small 8. (Our proof requires the metric o
to be bounded, although the necessity of this is not sta,ted in the corre-
sponding result in [7](3).)

PROPOSITION 6. If X is completely regular, so also is X*.

The proof of this proposition is similar to the preceding one, since
2 space is completely regular if and only if its topology is given by a family
of bounded pseudo-metrics.

3. The Graev free topological group. Let X be a space with base
point e. The Graev free topological group on X is a continuous map
i: X —F(X) of X into a topological group F(X), where i(e) is the identity
of F(X), and ¢ is universal for continuous maps from X to topological
groups taking e to the identity. For further background to the following
theorem, see [12] (and the review of [12] in Mathematical Reviews).

(®) An example where g is unbounded and the metric topology on X* is not
the above topology is given in [1].
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THEOREM 2. Let X be a functionally separable space with base point e.
Then F(X), the Graev free topological group on X, is Hausdorff.

Proof. Note that for general spaces the condition of functionally
separable is stronger than Hausdorff, but for topological groups (indeed,
for completely regular spaces) the conditions are equivalent.

To prove that F(X) is Hausdorff, it suffices to construct for every
non-identity element a of F(X) a continuous homomorphism 6 from
F(X) to a Hausdorff topological group G such that 6 (a) is not the identity
of G.

It is standard that F(X) is generated by the set X \{e} (in fact,
F(X) is algebraically free en X\{e}). So there are distinct elements
Y1y Yoy ---y Y, 0f X\{e} such that a belongs to the group generated by
Y = {41,Y2y ..., Y} Let H be the free group on Y with the discrete
topology, and let @ = H", so that G is a path-connected, Hausdorff topo-
logical group.

Since X is functionally separable, it is easily seen that for each
i =1,2,...,r there is a continuous- function g¢;: X — [0,1] such that
9:(y;) =1, and g;(e) = g;(y;) = 0 for ¢ # j. Since G is path-connected,
there is, for each ¢ =1, 2, ..., r, a path 4;: [0, 1] — & such that 2,(0) = ¢
and 2;(1) = y,;. Let g: X — @ be the product in G of the maps 4,09,
2208ay «oey 2,08,. Then g(y;) =y; for ¢ =1,2,...,7, and g(e) = e. Also ¢
is continuous, and so extends to a continuous morphism 6: F(X) —G.
Then 6(a) is not the identity of G (since the inclusion Y — F(X) extends
to a homomorphism H — F(X) mapping 6(a) to a). This completes the
proof.

4. Topological graphs and free topological groupoids. Let X be any
functionally separable space with base point ¢. Then there is a continuous
base point preserving injection of X into a compact Hausdorff topolo-
gical group P. The proof.of this is simple: the Stone-Cech compactification
gives a continuous injection from X to a subspace of a product of copies I,
of the unit interval, and each I, is embeddable as a subspace of the circle
group 7T',; this gives a map ¢: X — P, where P is the product of the T,
and it is easy to change ¢ so that it maps e to e.

The purpose of Theorem 3 is to generalize this result to a form useful
in the proof of a part of Theorem 4. The space with base point we replace
by a topological graph I' (see [3]), which consists of a space I" of “arrows”
and of “objects” Ob(I") together with maps 0’,0: I' - Ob(I') and
w: Ob(I') — I' such that 0’4 = 0w = 1. In particular, any space with base
point e is a topological graph with space of arrows X, space of objects {e}
and the inclusion u: {¢} - X.

We replace topological groups by topological groupoids (see -[3]
and [4]). In particular, we shall need the tree groupoid [3] determined
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by a space Y, which has the arrow space Y x ¥, the object space Y,
4’ and 0 arc the first and second projections, ig the diagonal, and. the
composition is (y,2) (@, y) = (@, 2)- This groupoid is denoted here by
YxY.

TaporEM 3. Let I’ be @ fwnctiona,uy separable topological graph. Then
there is a cONtINUOUS injection j from I' to @ compact, fu%ctio'nally separable
groupoid, and j 18 an embedding if I' 18 completely reqular and Hausdorff.

Proof. As shown jn Proposition 1 of [p], there is a continuous in-
jeetion y: I' - A, where 4 i the Stone-Cech compactiﬁcation of I.

Since 4 is Hausdortf, its space T of identities is cloged in 4. Since A
is also compach, and hence completely regular, the Space X, obtained
from A by identifying T with a single point e, is also completely regular.
Therefore, there is an ombedding ¢ of (X, e) into (P, e), where P is 2 compach
Hausdorff group. Tet p: 4 ~X be the identification map. Then h = 9P
is a topological graph morphism of A into P.

Tet Y = Ob(4)- Then Y is compach and Hausdortt. Tetk: 4~ Y% Y
be the topological graph morphism (@', 0) of A to the free topological
groupoid ¥ X Y. Then k i8 injective on objects. Hence S0 also is f = (b, k),
which maps 4 to the product groupoid P X (YR Y). But h is injective
on each set I'(Y, y") for ¥, y' e, soib follows that f 18 injective. Since
A, P, and Y are compach and Hausdortf, f is an embedding.

Finally, i I' 18 completely regular and Hausdortf, then y: r—4
is an embedding, and so also is fi: r>Px(¥YxY).

Remark. In the proof of Theorem 3 we can also embed Y in @

product
Q=[]
peB

of copies of the eircle group. Taking B =P X Q, we can then obtain &
continuous graph injection I’ ~Rx(BRXR), where R 18 2 product of
copies of the cirele group.

The free topological groupoid F(Iyona $opological graph I'is defined
in [3], p- 433 It can be constructed as & universal sopological groupoid
U, (I'®) as in the proof of Proposition 3 of [3], the existence of such
a universal topological groupoid having been proved in 41 -

Tt is proved in Theorem 1 of [3] that if G is & topological groupoid,
s: Ob(G) ~ Y 18 continuous, and G, Y are Hausdorit k,-Spaces, then the
universal fopological groupoid U,(@) is Hausdorff. The proof uses an
explicib construction of the topology O1. U,(@). This result is used by
Hardy and Morris [B] to prove that F(I') is functionally geparable if
T is functionally sepa,rableQ We shall give & different proof of this fact,
and one which does mnob depend on any construction of the topology
on F(I').
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We shall need to assume the standard and easily proved facts that
F(I') is algebraically the free groupoid on I, and that Ob (F(F)) = Ob(I")
topologically. (These follow from Propositions 5 and 9 of [4].)

THEOREM 4 (Hardy and Morris). Let I' be a functionally separable
topological graph. Then F (1), the free topological groupoid on I'y is function-
ally separable. Further, if I' is completely reqular and Hausdorff, then
the canonical injection ¢: I' — F(I") is a topological embedding.

Proof. Let 4 and b be distinet arrows in F(I"). It suffices to show
that there is a topological groupoid morphism 6 from F(I') to a function-
ally separable topological groupoid such that 6(a) # 6(b).

If a and b are both identities, say @« =1, and b =1,, where
@, y € Ob(I"), then there is a continuous function f: Ob(I"') - R such that
f(z) # f(y), and f extends to a morphism of topological graphs

i I'-RxXR.
Since Rx R is a topological groupoid, f' extends to a morphism
" 6: F(I') >Rx R

of topological groupoids. Clearly, 6(a) % 6(b).

Suppose now that ¢ is not an identity. Since I' is functionally sep-
arable, there are a completely regular topological graph I” and a con-
tinuous bijection j: I" — I". Then the induced map F(j): F(I') -F(I")
is also a continuous bijection. Let X be the space with base point obtained
from I" by identifying the identities of I with a single point, and let
p: I" - X be the projection. Then X is functionally separable, and, by
Theorem 2, so also is F(X). Further, the composite 6§ = F(p)oF(j)
satisfies 0(a) = 0(b) (this follows from standard algebraic facts on uni-
versal groupoids [2]). This completes the proof that F(I") is functionally
separable. )

Suppose now that I" is completely regular and Hausdorff. By Theorem 3
there is a topological graph embedding f: I' — @, where G is a compact
Hausdorff groupoid. Then f extends to a “morphism f*: ¥(I') > @G of
topological groupoids such that f*¢ = f. Since f is an embedding, so .
also is <.
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