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ON MIXED PARTIAL DERIVATIVES®

A.L. AnDrRew, Sipney A. Morris, GerarD P. ProTOMASTRO AND P.J. STAcEY,

It is well-known that if f is a real-valued function of two real variables
then, under suitable conditions, its two mixed second order partial derivatives
D,D.f and D,D,f are equal. (Here D,f and D,f denote the partial derivatives of f
with respect to its first and second arguments, respectively.) In this note we record
some lesser-known but interesting conditions which imply that D,Df = D;D,f. We begin,

however, by stating some well~known results.

1. CLASSICAL RESULTS

In 1740 Euler [5] (see also Clairaut [2]) published a proof that
D\Dyf = D;Dvf, for all f. Of course his proof was not valid. Subsequently a number
of mathematicians have considered the problem and proved theorems such as Theorems 1
and 2 below using the Mean Value Theorem. Theorem 1 can be found in [7] while
Theorem 2 is a special case of symmetry properties of higher order Fréchet derivatives

proved for eﬁample in [£3].

THEOREM 1. LZet f be a real valued funetion of two real variables such that
(i) Dyf exists in some neighbourhood of (a,b)
(i) D,D|f exists in some deleted neighbourhood of (a,b)

and  (1i1) DyDy flx,y) exists.

b= 17
(ac,y)g?cz,b)

Then D,D,f(a,b) exists and equals L. If in addition
(iv) D,f(x,b) exists for all x in some neighbourhood of a,

then D\D,fla,b) exists and equals D,D,f(a,b).

COROLLARY 1. If f is a real-valued function of two real variables such that
(i) Dyf, D,f and D,D,f exist in some neighbourhood of (a,b)
and (11) Dzﬂlf is (jointly) continuous at (a,b)

then D,D,f(a,b) exists and equals D,D,f(a,b).

1. This was written in response to a question in the December 1975 issue of this
Gazette,
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COROLLARY 2. If f is a real-valued function of two real variables such that
Yi) D,D;f is (jointly) continuous at’ (a,b)
and (i) D,D,f(a,b) exists

then DiD,fla,b) = DyD,f(a,b).

THEQOREM 2. If f <8 a real-valued function of two real variables such that
(i) D,f and D,f exist in some neighbourhood of (a,b)

and (i) D,f and D,f are differentiable at (a,b)

then DyDyf(a,b) = DyDyfla,b).

Corollary 1 and Theorem 2, which are proved in many analysis textbooks, are
commonly associated with the names of Schwarz (cf.[91]) and Young {cf.[14], respectively.
(see also [6].)

2. TOLSTOV'S RESULTS

In 1949 G.P. Tolstov published two papers on this subject. In the first
[12] the following negative result is proved:
There exist functions f, and f2 defined on a rectangle R which possess (jointly)

continuous first order partial derivatives throughout R and are such that

(1) DyD,f, and D,D,f, exist throughout R but D,D,f, and D,D,f, are unequal

at all points of a set of positive measure
and (i1) DyDyf; and DDy f, exist almost everywhere in R but DyD,f, and D,D;f, are

unequal almost everywhere in A. '

The following positive result announced by Tolstov in [11] is proved in his
second paper [13]. (Indeed, he proves a marginally stronger result than Theorem 3,
below.)

THEOREM 3.(Tolstov). Let f be a real-valued function of two variables such that
(1) D*f, DiD,f, D,D\f and D2f exist throughout some domain D.(D%f denotes
the second partial derivative of f with respect to the first variable.)
Then DyDyf = D,D,f almost everywhere in D. Further if also

(i) DyD,f - D,D,\f is separately continuous in D (that is, continuous in each
variable separately)
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then D\D,f = D,D,f throughout D.

Since a function possessing both first order partial derivatives is

automatically separately continuous, an easy induction establishes the next theorem.

THEOREM 4.(Tolstov). Let f be a real-valued function of two real variables
possessing all possible pdrtial derivatives of order < m in a domain D. Then for

every mixed partial derivative of order < m, the order of differentiation is immaterial,
while for derivatives of order m this is true almost everywhere in D.

While Tolstov's proof of Theorem 3 is too technically complicated to give
here, we will attempt to give some insight by including a proof which requires more

restrictive hypotheses.

It is perhaps surprising that Theorem 3 (like Theorem 2) requires ﬁhe
existence of’Zﬁzf and.Ibzf. Their appearance here should be compared with the
situation for the improved versions of Green's Theorem given in [&], which require the
existence of partial derivatives not occurring in Green's formula. In particular we

recall Cafiero's version of Green's Theorem (see Theorem 12 of [41).

THEOREM 5.(Cafiero). ILet P and @ be real-valued functions of two real variables
defined on a domain D such that

(i) DyP, D,P, D\Q and D,@ exist throughout D,

(i) D@ - D,P is Lebesgue integrable in D
and (i11) P and @ are locally bounded on D.
Then faR Plx,yldx + Q(x,y)dy = ”R[DIQ(:C,EJ) - D,P(z,y)ldxdy
for every rectangle R in D.

Theorem 5 allows us to prove the following speclal case of Theorem 3.

PROPOSITION. Lez’:.f be a real-valued function of tweo real variables such that
(i) DB2%f, DD,f, D,D,f and D,2f extist throughout some domain D,
(44) D,f and D,f are locally bounded in D

and  (iii) DD,f - D,D,f i& Lebesgue integrable in D.

Then - D\D,f = D,D,f almost everywhere in D.



Proof. Let K be a rectangle in D with vertices (a,b), (x,b), (x,y) and (a,y).

By Cafiero's Theorem,

j f (D,D,f(s,t) -D,D, f(s,t))dsdt
R

Ul

{ (D,f(s,t)ds + Dyf(s,t)dt)
oR

Flz,b) - fla,b) + flayy) - flzsy) + Floyy) - flzb) + fla,b) - Fla,y)

ag.

il

Hence by Fubini's Theorem, the repeated integral
Y
Fla,y) = L} DD,fls,t) - Dlef(s,t)dé}dt
b ‘a

exists and equals zero. Now using the fact that every Lebesgue integrable function
is equal almost everywhere to the derivative of its indefinite integral (see [8,p.48]

" we obtain
DIDQF(w,y) = Disz(.r,y) - Dzﬁlf'(:c,y)

almost everywhere in K. Since the left hand side is zero, the required result follows.

3. REMARKS and EXAMPLES

Theorem 3 is formally stronger than the global analogue of Theorem 2 in the
sense that any function which satisfies the global analogue of Theorem 2 must, by
Theorem 2, satisfy the conditions of Theorem 3. However, consideration of the functions
fa,fh and fé defined below shows that, with the exception just noted, none of Theorems 1,
2 or 3 implies (either of) the others.

m m
——L—  if (zmy) # (0,0)

f3lz,y) = xzrn+y2m
0 if (x,y) = (0,0)

where m is any integer 2 2.

fylzy) = Jyg(t)dt, where g is a continuous nowhere differentiable function
- (see [103).
_f (xz-y)® sinl{z-y)”l) ifx#y
Fslx.y) = { 0 if x = y.

- 52 -



Moreover, using a result proved in [1,p.27] we could replace f; by a function

which satisfies the conditions of Theorem 2 at every point but whose second order

partial derivatives all fail almost everywhere to be even separately continuous.

Finally we confess that none of the sufficient conditions given here fer

local equality of the mixed partial derivatives are by any means necessary. Each first
order partial derivative of the function fs defined by

felzy) = axygl(zlgly)

where g is a nowhere differentiable function, exists only on an axis but
DlszG(O,O) = D2D1f5f0,0).

The authors are not aware of any best possible result.
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