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Introduction. I t is well-known ((2), Theorem 9-11) that any closed subgroup of Rn

is isomorphic (topologically and algebraically) to Ra x Z6, where a, b are suitable
non-negative integers. For an infinite product of copies of R, it is also known that any
locally compact (hence closed) subgroup is a product of copies R and Z, and that any
connected subgroup is a product of copies of R (see (7), (3), respectively). Some in-
formation is also given in (3) on closed subgroups of products of copies of R and T,
where T = R/Z is the circle group.

In this paper, we study the class @>n consisting of all Hausdorff Abelian groups
topologically isomorphic to a product of a compact group with a countable product
of copies of JR and Z. In §4, we prove:

THEOREM B. Closed subgroups and Hausdorff quotients of groups in @n are again in
u/n.

Our proof relies heavily on Kaplan's extension (4,5) of the Pontrjagin duality
theorem; this extension allows us to dualise the problem. We therefore study also
the class i^s consisting of all Hausdorff topological Abelian groups isomorphic to a
sum of a discrete group with a countable sum of copies of R and T. In §2, we prove:

THEOREM A. Closed subgroups and Hausdorff quotients of groups in £^s are again in

Kaplan's results enable us to deduce Theorem B from Theorem A. They enable
us also to formulate an extension of Pontrjagin duality as a functorial duality between
the categories defined by 3)n and ^ s , taking closed inclusions and Hausdorff quotients
to Hausdorff quotients and closed inclusions. Our methods are more elementary than
those used in (12) to prove duality for (J^J-groups and we obtain specific information
on the structure of subgroups and quotients. For example, Theorem B implies that

f During the period of this research the second author was University of Wales Visiting
Professorial Fellow, and also S.R.C. Senior Visiting Fellow under S.R.C. Research Contract
B/RG/5736.8; the third author was S.R.C. Senior Visiting Fellow under Research Contract
B/RG/3967.
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any closed subgroup of a countable product of copies of R is a countable product of
copies of R and Z.

1. Countable sums. Let {Hi}f^1 be a sequence of topological Abelian groups. (All
topological groups considered will be assumed to be Hausdorff.) Their direct sum

OO CO

2 Hi is, algebraically, the subgroup of the product JJ H+ consisting of elements (ht)
r = l 1 = 1

n
such that \ = 0 for all but a finite number of i. The finite direct sums 2 Ht are em-

00 GO

bedded in 2 Ht in the obvious way. The topology we give to 2 Ht is, in general, finer
i=i i=i

than that induced from the Tychonoff topology. It is the 'rectangular topology',
defined in (4) as the topology induced from that topology on the product which has
as a basis for its open sets all products XlVi of open sets Ut of H^ I t is easy to prove

00

that with this topology 2 Ht is a topological group, and clearly the induced topology
i = l

n

on each finite sum 2 Ht is the usual product topology.

PROPOSITION 1. Let {H^ be a sequence of locally compact Abelian topological groups.
oo n

Then a subset U of 2 - î *5 open if and only if U intersects each finite sum 2 ^ i in a
t=l i= l

relatively open set.
oo n

Proof. Suppose that the subset U of H = 2 -H* meets each Kn = 2 Ht in a set
l i

open in Kn, and let xeU. We construct, by induction, a rectangular neighbourhood of
x contained in U. By definition of direct sum, x = (x1,x2,...,xm,0,0,...)eKm for
some TO. The set U n Km is therefore an open neighbourhood of x in Km and contains
a neighbourhood Dm = Cx x C2 x ... x Cm of x, where each Ct is a neighbourhood of x{

in H^ Since flj is locally compact, we can choose C* to be compact. Suppose, inductively,
that for some n > TO, CJ, C2,..., Cn are compact neighbourhoods of xx, x2,..., xm, 0,..., 0
in HvH2,...,Hm,...,Hn, respectively, such that

Dn = C 1 x C 2 x . . . x C B c UnKn.

Then the set U n Kn+1, open in Kn+1, contains the compact set Dn and so contains
Dn x Cn+1 for some neighbourhood Gn+1 of 0 in Hn+1. Since Hn+1 is locally compact,
we may choose Cn+1 to be compact, and this defines Cn for all n. The rectangular
neighbourhood H n (IICJ of x is clearly contained in U, and it follows that U is
open in 1?. The converse is trivial.

COROIXAKY. / / H = 2 #i and Kn = 2 - ^ , toAere the Ht are locally compact Abelian
i= 1 t=1

groups, then in the category of topological Abelian groups, H is the direct limit of the
chain of subgroups Kx <= K2 <= ... and H is the coproduct of the subgroups Ht.

Proof. I t is clear that H = lim Kn algebraically and the proposition shows that it

is also the topological direct limit. For finite families in the category of topological
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Abelian groups, product and coproduct are the same. Hence Kn is the coproduct of
Hlt H2, ..., Hn, and it follows that H = lirajfiTn is the coproduct of all the Ht.

Remarks. 1. Proposition 4-3 of (8) claims that the coproduct of an arbitrary family
of Abelian topological groups carries the ' asterisk' topology which, as shown in (4),
agrees with the rectangular topology for countable families. However, the proof
contains an error and the proposition is in fact false for an uncountable coproduct of
copies of R.

2. Proposition 1 and its Corollary are also related to Proposition 4 on p. 477 of (12).

Our chief applications of the direct sum will be to the cases when each Ht is the
real line R, the group of integers Z or the circle group T. In particular, the countably
infinite direct sum of copies .Rf of R will be written R°°; of copies Zt of Z will be written
Z°°; and of copies Tt of T will be written T00. Notice that by Proposition 1, Z03 is a
discrete topological group. Our immediate concern is with R™.

PROPOSITION 2.

(i) Every finite-dimensional subspace F of R00 has the standard topology.
(ii) A subset of R°° is open if and only if it meets each finite-dimensional subspace F

in an open subset of F.
(iii) R00 is a topological vector space.
(iv) Any linear mapping from i?00 to a topological vector space is continuous.
(v) Any Hausdorff topological vector space V of algebraic dimension Xo over R and

having property (ii) is isomorphic, as topological vector space, to J?00.

Proof, (i) Each Vn = Rx® R2® ... ®Rn has the product topology which is the
standard metric topology. Every finite-dimensional subspace F is a subspace of
some Vn.

(ii) This follows immediately from Proposition 1.
(iii) R<° is a topological group, and we have to show that the scalar multiplication

R x Rf^-R00 is continuous. Now the topology on R x R™ is the same as the rect-
angular topology on R © R1 © R2 © .... Therefore a subset of JR x R00 is open if and
only if it meets each R x Vn in an open set. However, Vn has the standard topology and
is a topological vector space. Thus the scalar multiplication is continuous on each
R x Vn, and so is continuous.

(iv) By Proposition 1, a function on R00 is continuous if and only if its restriction
to each finite sum Vn s Rn is continuous. But a linear mapping from Rn to a topo-
logical vector space is well-known to be continuous.

(v) Let V be a Hausdorff topological vector space of dimension Xo over R and
choose a linear isomorphism 6: F->-i?°°. Assume that V has property (ii). Since 6 and
d*1 send finite-dimensional subspaces to finite-dimensional subspaces, it is sufficient
to show that 6 induces a homeomorphism between corresponding finite-dimensional
subspaces. But this follows from a theorem of Tychonoffdi, 10) which asserts that a
finite-dimensional vector space over R has only one Hausdorff topology which makes
it a topological vector space.

COROLLAKY 1. Every vector subspace of i?00 is closed.
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Proof. The complement of a vector subspace meets each finite subspace W in an
open subset of W.

COROLLARY 2. Ifa1,a2, ...is any R-basisfor R™, and if Wn is the subspace spanned
by {alt..., an}, then Rx is the direct limit in the category of topological groups of the chain
of subgroups Wx <= W2 <=• . . . .

Proof. Since, by (iv), every linear automorphism of Rm is a homeomorphism, we
need to prove this result only for the standard basis and the chain of subgroups
R1 <= JR1 © R2 <= .... But this is a special case of the corollary to Proposition 1.

COROLLARY 3. Ifalt az,... is any R-basis o//?°°, then R<° is the coproduct in the category
of topological Abelian groups of the groups Rat, i = 1,2,..., and has the rectangular topo-

00

logy with respect to the decomposition R"3 = 2 ^«<-

Proof. This also follows from the corollary to Proposition 1.

COROLLARY 4. If V is a vector subspace of R™, then V is topologically isomorphic to
/?°° or to Rnfor some n, and R™ contains a vector subspace V such that R<° is algebraically
and topologically V ®V.

Proof. This follows from Corollary 3 since every /?-basis of a vector subspace can
be extended to an /?-basis of JR°°.

Remark. We have shown that R™ is a topological vector space and that it carries
the finest group topology consistent with the standard topology on its one-dimen-
sional subspaces. The rectangular topology is clearly locally convex, so it is the finest
locally convex topology. In other words, i?°° is a totally fine space in the sense of
Kaplan (6), and /?°° coincides with the space 9 of (9). Corollary 1 and results similar to
Corollaries 2 and 3 were proved in (6) for totally fine spaces.

2. Closed subgroups and quotients of direct sums. In this section, we determine the
structure of the closed subgroups and the Hausdorff quotients of certain direct sums
of locally compact Abelian groups. The case of i?00 is of special interest and our results
extend the well-known description of closed subgroups and Hausdorff quotients of
Rn. In §4, we shall obtain a different extension of the classical results to countable
products of copies of R.

THEOREM 1. Let B be a closed subgroup of RX. Then there is an R-basis {xt},i — 1, 2,...
00

for i?°° such that B = 2-Bt-, where Bt is a closed subgroup of Rztfor each i.

The proof is given later.

COROLLARY. Every closed subgroup of i?00 has the form Ra © Zb, and every Hausdorff
quotient group of i?°° has the form Rc © Tb, where a, b, c are non-negative integers or 00.

Proof. The description of closed subgroups in the first part of the corollary is im-
mediate from the theorem; the rectangular topology on T,Rxt (see Proposition 2,
Corollary 3) induces the rectangular topology on B = "LBt. Since i?00 and B are,
respectively, the coproducts of the topological Abelian groups Rxt and Bt, the quotient
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group R^JB is the coproduct of the groups (Rx^/B, each isomorphic to R or T. Since
these factors are locally compact, the topology on the countable coproduct

is the rectangular topology.
The proof of Theorem 1 follows from two propositions, the first of which generalizes

Theorem 2 of ch. VII, section 1 of (l).

PROPOSITION 3. Let Bbea closed subgroup of R™. Then R™ can be written, algebraically
and topologically, as the direct sum U ® V @ W of vector subspaces such that

(i) U is the largest vector subspace of B;
(ii) F n B is discrete and spans V;
(iii) W0B = {0}.

Proof. Let U be the union of all one-dimensional subspaces contained in B. Then
U is clearly a vector subspace. Let U' be any algebraically complementary subspace
of U in J?00. Then B is algebraically the direct sum of U and V n B. Let V be the
vector subspace spanned by V D B, and let W be any complementary subspace of
W in U'. Then W n B = {0} and R™ = U © V® W algebraically, and also topologic-
ally; this last follows from Corollary 3 of Proposition 2 by taking an /?-basis for
each of U, V and W.

Clearly (i) and (iii) are satisfied, and it remains to prove that V n B is discrete.
For each finite-dimensional subspace F of I?00, F n B n F is a closed subgroup of F

and contains no one-dimensional subspace. Since F has the standard topology
(Proposition 2(i)), this implies that V 0 B 0 F is discrete ((l) ch. VII, section 1,
Proposition 3). Hence every subset of F n B meets each finite-dimensional F in a
closed subset of F and is therefore closed in R™ (as follows easily from Proposition
2 (ii)). Therefore F n B is discrete.

Our next task is to characterize the discrete subgroups of J?°° (compare (l) ch. VII,
section 1).

PROPOSITION 4. Every discrete subgroup of Rx is topologically isomorphic to Z***, or
to Zn for some n, and has a Z-basis which is linearly independent over R.

Proof. Let B be a discrete subgroup of R™ = S Ri. LetT^ = 2 ^ a n d l e t 5 m = Bo Vn.

We will construct a sequence alta2,... (possibly finite) of elements of B such that
(i) av a2,... are linearly independent in i?00, and (ii) for some sequence of non-negative
integers ix < i2 ^ ..., the elements ax,a2, ..^a^ generate the group Bn for each n.
Since B = \J Bn, it will then follow that alt a2,... freely generate B as an Abelian group,
whence B is isomorphic to one of the discrete groups Z00 or Zn for some n.

The sequence is constructed by induction on n. First, Bt is a discrete subgroup of
Fj = Rx and is therefore trivial or isomorphic to Z. In the first case, take it = 0, and
in the second take ix = 1 and a1 to be a generator for Bx.

Now suppose that we have constructed the sequence as far as a linearly independent
set of generators ax, ...,aT for Bn = B n Vn (where r = in). The group Bn+1 is a discrete
subgroup of Vn+1 ^ Rn+1, so is isomorphic to Zm for some m ^ n + 1, and any Z-basis
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for Bn+1 is linearly independent over R (see (l) ch. 7, section 1, Theorem 1). To com-
plete the proof, we must show that a Z-basis for Bn+1 exists which contains the
elements av...,ar already constructed. Now Bn+1 is a finitely generated Abelian
group, and therefore so also is Bn+j/Bn. But

Bn+1/Bn = Bn+1l(VnnBn+1) ? (Vn + Bn+1)/Vn,

which is a subgroup of Vn+1/Vn cs R. Hence Bn+1/Bn is torsion-free and is therefore free
Abelian of finite rank. If 6 l t . . . , bs is a Z-basis for this group, and ar+1,..., ar+s are rep-
resentatives of &!,..., b8 in Bn+1, thenav ...,ar+s is a Z-basis for Bn+1 of the required
form.

Proof of Theorem 1. We decompose i?°° = U © V © W as in Proposition 3, choose
a Z-basis for V n B which is an R-basis for V, and adjoin to this any R-basis for U
and any R -basis for W.

Our next proposition is needed in order to give a similar description of the closed
subgroups and Hausdorff quotients of more general direct sums.

PROPOSITION 5. Let H = V © F, where V is a divisible Abelian topological group
and F is a discrete free Abelian group. Let B be any closed subgroup of H. Then there
is a discrete free Abelian subgroup F' of H, isomorphic to F, such that topologically and
algebraically

(i) H = V © F' and (ii) B = (BnV)®(B() F').

Proof. Let n1:H->V,n2:H^'F be the projections. The restriction of n2 to B is a
homomorphism from B to F with kernel Bfl V. Since F is free Abelian, it follows
that B/B n V is free Abelian, and so B splits algebraically as a direct sum

B = {BnV)®C,

where C is a free Abelian subgroup of B. We look for a complement F' of V which
contains C.

Let Px,p2 be the restrictions of n-^, n2 to C. Then p2 is an injection (since

C()V = C(\B()V = {0})

and V, being divisible, is injective. Therefore there is agroup homomorphism 6:F-> V,

such that 6opz = pv Putting <f> = 1 +6:F^H and F' = <j>{F), we have H = V © F'
algebraically, the decomposition being given by v +f = (v — 6(f)) + (/+ 6{f)) for v e V,
feF. Also C <= F', since for c in C we have

c = Pi{c) +P2{c) = 0pt(c) +p2(c) = <t>p2(c)e<j>(F).

Thus (i) and (ii) are satisfied algebraically.
Now <fi:F->F' is an algebraic isomorphism and since <j>~1 is induced by n2,0

-1 is
continuous. But F is discrete, so <j> is a homeomorphism and F' is a discrete free
Abelian group.
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In order to show that H has the product topology with respect to the decomposition
H = V © F', it is enough to show that the corresponding projections TT[:H-»• V and
7T'2:H-±F' are continuous. But this is clearly the case, since 77̂  = 7^ — 00 772 and
77̂  = nz + do7T2. Hence the decomposition B = (B n V) ® {B n F') also has the direct
sum topology.

COROLLARY. If F is a discrete free Abelian group, then any closed subgroup of J?°° © F
is algebraically and topologically of the form Ra © C, where C is a discrete free Abelian
group, and any Hausdorff quotient of .R™ ©F is of the form Rb © Tc © D, where D is a
discrete group and a, b, c are non-negative integers or oo.

Proof. Since R° is divisible, we have, for any closed subgroup B of R™ © F, de-
compositions J?°° © F' and B = (B n R°°) ®{B(] F'), where F' is free and discrete.
By Theorem 1, B n R™ is of the form J?° © Zc and 2?°°/(.B n Rm) is of the form i?6 © Tc.
Since B n F' is a discrete free Abelian group and F'/(B n F') is discrete, the corollary
follows.

We now introduce a category ^ s , whose objects are all those topological Abelian
groups which are sums of a discrete group with a countable (and so possibly finite)
sum of copies of R and T. The morphisms of S>-^ are the continuous homomorphisms.
Our main result on sums is:

THEOREM A. Every closed subgroup, and every Hausdorff quotient group, of an object
of 2>-£ is again in ^ s .

Proof. Let Rb © Tc © D be any group in 3)^, where D is discrete and b and c are
non-negative integers or oo. There exists a quotient morphism

p:R™®F-*R»® TC®D,

where F is a discrete free group. Hence any Hausdorff quotient of Rb © Tc © D is
also a Hausdorff quotient of Rm © F and so by the Corollary of Proposition 5, it is
in ^ E . To complete the proof, let B be a closed subgroup of Rb © Tc ®D. Then
p^iB) is a closed subgroup of J?°° © F and so, by the same corollary, p~l{B) is of the
form Rd © F± where F1 is discrete and free and d is a non-negative integer or oo. Since
B is a quotient of p~x{B), it follows that B lies in 3)^.

3. Duality between sums and products. By a duality between Abelian topological
groups G and H, we mean a bi-additive pairing <p:GxH-*T, continuous in each
variable separately, such that the induced maps <fia:G->HA and <j>n:H-*-Gf' are iso-
morphisms of topological groups. Here the character groups Gh, HA of G, H are, as
usual, the groups of continuous homomorphisms into the circle group T = R/Z and
they carry the compact-open topology.

In (4), Kaplan extended the Pontrjagin duality theorem to products and sums of
dual groups. In this section, we state his main theorem and prove, in a form suitable
for our purposes, various other results implicit in (4) and (5).

KAPLAN'S THEOREM. Let Gx, £TA(AeA) be Abelian topological groups and suppose
that, for each Ae A, <f>x:Gxx Hx-+T is a duality. Let G - J[ GxandH = £ #A. Then the

AeA AeA
pairing <f>:Gx.H-+T defined by ${g, h) = "L<px(gx, hx) is a duality.
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In this theorem, HGX is the usual product with the Tychonoff topology, and ~LHX

is the direct sum with the 'asterisk' topology (see (4) for the definition of this). Kaplan
shows that when the indexing set A is countable, the asterisk topology is the same as
the rectangular topology which we have used in section 2. The only other fact we
shall need about the asterisk topology, is that it is always at least as fine as the rect-
angular topology. Note that the sum "L<j>x(gx, hx) is finite because each h — (hx) has
only a finite number of non-zero components. We shall always consider the groups
GX,HX as subgroups of FI6rA and T,HX, namely, the subgroups consisting of all
elements whose ju,th components are zeros for all /i #= A; with respect to this em-
bedding they carry the subgroup topology.

For any pairing <j>:GxH-+T and any subgroup A of G, the annihilator of A in H

is the subgroup Ao = {heH; ^ o > A ) = 0 for a l l a e^} .

Similarly, for B <=. H, B° = {geG; <j>{g, b) = 0 for all beB}.

If <f> is a duality, then G° = {0} and H° = {0}. We shall say that an Abelian topological
group C is reflexive if the natural pairing C* x C -> T is a duality, that is, if the cano-
nical map C -*• (7AA is a topological isomorphism.

PROPOSITION 6. (i) Let Gx,Hx,<f>x,G,H and (j> be as in Kaplan's theorem. Then
Gx = (#A)° and Hx = (G'x)°, where G'x = U <?„ and # A = £ H,.

(ii) Let <fi:GxH->T be an arbitrary duality, and suppose that H = 2 HA, where
AeA

the subgroups Hk of H are reflexive. Put Gx - ( £ H^f. Then G = ]J Gx and
/«#A AeA

<p(g, h) = £0A(grA, hx), where <j>x is the pairing Gx xHx-+T induced by <}>. Furthermore,
each <f>x is a duality.

Proof, (i) ge(H\)°o$(g,h) = 0 whenever hx = 0
o ^ f o r ^ i y = OforaJl/t*A.

But 0^ is a duality, so the annihilator of Hfl in G^ is trivial. Hence geiH'^og = 0
for all fi + A.

(ii) Let Kx = Hx and let K = n Kx. The natural dualities ^X:KX xHx^- Tinduce,
AeA

by Kaplan's theorem, a duality iJ/.K xH->T, with ijr(k,h) = I,i/rx(kx, hx). The duali-
ties <fi:GxH^>T and xjf.KxH-^-T induce topological isomorphisms <pa:G->Hh and
K-+Hh, so there is a topological isomorphism d:K->G such that (f>God = i[rK, that
is, <j>(6{k), h) = i/r(k, h) for all keK, heH. Since, by (i), Kx is the annihilator of H'x in K,
its image under 6 is precisely Gx, and it follows that G = IK?A. Also

Finally, since Hx is reflexive, ijrx is a duality and it follows that <fix is also a duality.

PROPOSITION 7. Let <j):GxH->T be a duality, let Bbea closed subgroup of H and let
A = B°. Suppose that H has a decomposition H = %HX, where the Hx are reflexive groups,
such that B = Z.BA with Bx a closed subgroup of Hx for each A. Let the corresponding
decomposition of G, given by Proposition 6(iii), be G = UGX. Then A = UAX, where
Ax = Ao Gx.
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Proof. We have Gx = ( 2 H )°, so Ax = A n £A is the annihilator of i?A in (?A. Hence

IL4A annihilates 5 , that is, II^4A <= .4. On the other hand, since A annihilates Bx for
each A, we have A <= n^4A. Hence A = UAX algebraically, and its topology, being
induced from G = IK?A, is the product topology.

PROPOSITION 8. Let <f>:GxH^>-T be a duality and suppose that G is a product of
locally compact groups. Then, for every closed subgroup A of G, we have A00 = A.

Proof. Clearly .400 => A, so we suppose that g is an element of G not in A and show
that g£ A00. By Theorem 2 of (5), since G is a product of locally compact groups,
there is a character x of G which takes A but not g to zero. Since 0 is a duality, x is
induced by an element h oiH, which must be in the annihilator A0 of A. But

= X(9)
so $A°°

4. Closed subgroups and quotients of products. We are now in a position to translate
the results of section 2 into results about products.

00

THEOREM 2. Let G = YlRtbe the product of a countable number of copies Rt of R,
00

and let A be a closed subgroup of G. Then there is a decomposition G — JJGtasa product

of subgroups Gt each topologically isomorphic to R such that A = II^4i, where At = A n Gt.
Hence A is topologically isomorphic to a countable (possibly finite) product of copies of
R and Z, and GjA is topologically isomorphic to a countable product of copies of Rand T.

00

Proof. Let H = £ Rt = i?00. Then, by Kaplan's theorem, there is a duality

<t>:GxH-+T

given by <fi(g, h) = Sg^A^mod 1). Let B = A0. Then B is a closed subgroup of H and
t=i

00

therefore, by Theorem 1, there is a decomposition H = 2 Ht, with Ht ^ R, such that
i=i

00

B = 2-Bi) where Bi is a closed subgroup of Ht for each i. By Proposition 8, B° = A,
£ 1£ = 1

oo

so we may apply Propositions 6 and 7 to obtain decompositions G = Y[Gt and
i=l

00
A = n -̂ i> such that At = A n G{ and such that <p induces dualities ^>i:GixHi^- T.

t=i

Since Ht ^ R, it follows that Gt ^ Rh s R for all i. Also, the closed subgroup Bt of
Ht ^ R is isomorphic to R, Z or {0} and HJBi is isomorphic to R, T or {0}. But Ai is
the annihilator of Bi under the duality <f>t: Gt x Ht -+ T, so it follows from the duality
theory of locally compact groups that At s (HJB^" s R, Z or {0} and that

GJAi s B* s R, T or {0}.

Hence 4̂ = Il-4i and £/.4 ^ Il((?i/^4i) have the stated form.
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COROLLARY 1. If G is a countable product of copies of R and Z, then any closed sub-
group of G is also a countable product of copies of R and Z.

Proof. G can be embedded as a closed subgroup in a countable product of copies
ofR.

COROLLARY 2. If G is a countable product of copies of R and T, then any Hausdorff
quotient of G is a countable product of copies of R and T.

Proof. G is a quotient group of a countable product of copies of R.

PROPOSITION 9. Let G = E xC be a product of topological Abelian groups E and C,
such that E is a product of copies of R and Z, and C is a product of copies of T. Let A
be a closed subgroup of G. Then there is a decomposition G = E' xC, where E' is a sub-
group topohgically isomorphic to E, such that A = (A n E') x (A n C).

Proof. Let H be the character group of G, and let <f>:GxH->T be the natural
pairing. By Kaplan's theorem, 0 is a duality and H is a direct sum H — V © F,
where F is a sum of copies of R and T, and F is a sum of copies of Z, each with the
asterisk topology. Clearly, V is divisible. Also, since the asterisk topology is at least
as fine as the rectangular topology, F is discrete. We may therefore apply Proposition
5 to the closed subgroup B = A0 of H, to obtain decompositions H = V ® F' and
B = (BnV)® (BnF'), where F' ~ F. Again, by Proposition 8, B° = A, and the
groups F and F' are reflexive (by Kaplan's theorem). Hence Proposition 6(ii) gives
a decomposition G = E' xC, where E' = (F')°© FA ̂  E, and Proposition 7 gives
the decomposition A = (A n E') x {A n C).

THEOREM 3. Let G = E xC, where E is a product of copies of R and Z, and C is a
product of copies of T. Then

(i) any connected closed subgroup A of G is of the form A = A' xC', where A' is a
product of copies of R, and C = A(\C is a connected compact group;

(ii) if E is a countable product of copies of R and Z, then any closed subgroup A of G
is the product of the compact group Af]C and a countable product of copies of R and Z.

Proof. In both cases we have, by Proposition 9, decompositions G = E'xC and
A = A' x C, where C = AftC, E' ~ E and A' is a closed subgroup of E'. If A is
connected, so are A' and C, and the projections of A' onto the factors of E' of type Z
are trivial. Hence A' is a connected subgroup of a product of copies of R and is there-
fore itself a product of copies of R by Theorem A of (3). In part (ii) of the theorem,
A' is a closed subgroup of a countable product of copies of R and Z, so is itself a count-
able product of copies of R and Z by Corollary 1 of Theorem 2.

We now introduce a category ^ n , whose objects are all those topological Abelian
groups which are products of compact groups and a countable (possibly finite) number
of copies of R and Z. The morphisms of 3)n are the continuous homomorphisms.

THEOREM B. Closed subgroups and Hausdorff quotients of groups in @>n are again
in 2n.

Proof. Every compact Abelian group can be embedded as a closed subgroup in a
product of copies of T (by Pontrjagin duality, since every discrete Abelian group is
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a quotient of a sum of copies of Z). Also any countable product of copies of Z can be
embedded as a closed subgroup in a countable product of copies of R. Hence any group
G in 2>n is a closed subgroup of a group G' = E xC, where E is a countable product
of copies of R, and C is a product of copies of T. Any closed subgroup of G is a closed
subgroup of G' and is therefore in ^ n by Theorem 3(ii). Any Hausdorff quotient
G/H of G is topologically isomorphic to a closed subgroup of G'/H, so it is enough to
show that G'jH is in 3>n. By Proposition 9, we may assume that H = {H n E) x (H n C)
and therefore that G'/H ^ (E/(H n E)) x (C/(H n C)). But C\{E n C) is compact and
E/(H n E) is a countable product of copies of R and T (Theorem 2), so the theorem
follows, since a product of copies of T is compact.

5. Strong duality. I t is well-known that for a locally compact Abelian group G,
the natural duality GxGA^-T induces dualities between appropriate subgroups and
quotient groups of G and GA. A similar statement was proved by Varopoulos for
(^)-groups in (12) by measure-theoretical methods. In this final section, we shall
prove the corresponding result for groups in the categories ^ s and @n by an ele-
mentary argument, and hence show that these categories are dual in a strong sense.

Two important properties that the characters of a topological group D may or
may not have, are the following:

X(l). For each closed subgroup C of D and each element d of D not in C, there is
a character of D taking C, but not d, to zero.

X(2). Every character of every closed subgroup of D can be extended to a character
ofD.

PROPOSITION 10(i). Properties X(l) and X(2) are each inherited by closed sttbgroups
and Hausdorff quotients.

(ii) All groups in 2)^ or @in have properties X(l) and X(2).

Proof (i). This is an easy consequence of the definitions.
(ii). Any group in @)n is a product of locally compact groups, and properties X(l)

and X(2) were proved for such products in ((5), Theorems 1 and 2). Any group in ^ E

is an (^o)-group in the sense of (12), and properties X(l) and X(2) were proved for
(J^-groups in ((12), Theorem p. 509). We give a simpler proof for ^s-groups. Every
group in ^ £ is a quotient group of a group of the type Rm © F, where F is a discrete
free Abelian group. It is therefore enough, by (i), to prove that H = i?00 © F has
properties X(l) and X(2). Let B be any closed subgroup of H. By Proposition 5 and

00

Theorem 1, H has a decomposition H = £.0*, where Ho^ F and Ht £ R for i ^ 1,
i=0

00

such that B = £ Bi with Bi a closed subgroup of ^ for each i. Now the groups Ht are
i = 0

all locally compact and so have properties X(l) and X(2) relative to the closed sub-
groups Bt. Since H is the coproduct of the Ht, and B is the coproduct of the Bt (Pro-
position 1, Corollary), it follows easily that H has properties X(l) and X(2) relative
to B, which was an arbitrary closed subgroup.

PROPOSITION 11. Let <f>:GxH->-T be a duality and suppose that both G and H have
properties X(l) and X(2). Then
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(i) A00 = A and B00 = B for all closed subgroups A and B of G and H, respectively;
(ii) for any closed subgroups A,B of G,H respectively, with A° — B and B° = A,

<f> induces open isomorphisms

and continuous isomorphisms

Proof, (i) The argument has already been given in Proposition 8. It depends only
on property X(l).

(ii) Since 0 is a duality, it induces a topological isomorphism <fiG:G->HA. By re-
striction of characters to B, we obtain a continuous homomorphism HA^-B" and,
composing this with <f>G, we obtain a continuous homomorphism G-+B* whose
kernel is B° = A and whose image is B", by property X(2) for H. Hence the induced
map $A:G/A->B* is a continuous isomorphism and a similar argument applies to
<f>B:H.\B^-Ah. On the other hand, the topological isomorphism (j>G:G->HK induces
a topological isomorphism A^-C, where C is the subgroup of Hk consisting of all
characters of H induced by elements of A. Now the quotient map q-.H^-H/B induces
a continuous homomorphism 6:(H/B)A->HA, which is composition with q. Clearly
6 is an injection, and its image is the group of all characters of H which vanish on B.
These are precisely the characters induced by elements of B° = A. Thus 6 induces a
continuous isomorphism (HjBY^-C, and it follows that <j>A:A->(HIBy is an open
isomorphism. The same argument applies to <f>B.

We shall say that a duality <f>:GxH-+T is a strong duality if
(i) A = A00 and B00 = B for all closed subgroups A of G and B of H, and
(ii) for any closed subgroups A of G and B of H with A0 = B, B° = A, the induced

pairings A x (H/B)^- T and (G/A) x B^- T are dualities. This second condition is
equivalent to the assertion that the maps <pA, <fiB, <j)A and <f>B of Proposition 11 are
topological isomorphisms.

PROPOSITION 12. Let<f>:G x H-> T be a duality and suppose that (i) both G and H have
properties X(l) and X(2) and (ii) every closed subgroup and every Hausdorff quotient
of G and of H is reflexive. Then <j> is a strong duality.

Proof. Let A and B be closed subgroups of G and H respectively. By Proposition
11 (i), we have A00 = A and B00 = B. Taking B = A0, and hence A = B°, Proposition
11 (ii) gives algebraic isomorphisms <pA:A->(H/B)A and <fiB:HjB->A'', of which (j>A

is open and <pB is continuous. Now the dual of <f>B is a continuous isomorphism

and since by hypothesis A is reflexive, this induces a continuous isomorphism
A -> (HjBy, which clearly coincides with $A. Thus <f>A is both open and continuous,
and so is a homeomorphism. Hence the dual of <fiA is a topological isomorphism
(H/B)Ah->A*, and since HjB is reflexive, this shows that <f>B:H\B->Ah is a topological
isomorphism. The same arguments apply to (j)B and (f>A.
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COROLLARY . Every duality between a group in 2>n and a group in S>z is a strong duality.

Proof. Let Q-.GxH^-T be a duality with Gs3>n and He3>z. Then G and H
satisfy X(l) and X(2), by Proposition 10. Closed subgroups and Hausdorff quotients
of G or H are again in S)n or £^2, respectively, by Theorems A and B, and are therefore
reflexive, by Kaplan's theorem. AVe sum up these results in a categorical duality:

THEOREM C. The contravariant functor D, taking each topological Abelian group to its
dual, induces functors D1:2>Z'^-S>n and D<i;.3)xv->3>-z, such that Z^oDg and D2oD1

are naturally equivalent to identity functors. Moreover, D1 and D2 take closed inclusions
to Hausdorff quotients and Hausdorff quotients to closed inclusions.

Remark. L. J. Sulley has pointed out to us that since Banach spaces are reflexive
(in the sense of character theory, see (14)), the example give by R. C. Hooper in (13),
p. 254, of a Banach space Co not satisfying condition X(l) with respect to a closed
subgroup Klt shows that a Hausdorff quotient of a reflexive group need not be re-
flexive. Thus 'strong duality' is a strictly stronger property than 'duality', that is
to say, duality is not in general inherited by closed subgroups and Hausdorff quotients.
However, it is interesting to note that strong duality is so preserved. More precisely:

PROPOSITION 13. Let <j>:GxH^-T be a strong duality between topological Abelian
groups and let A,B be closed subgroups of G,H, with B = A0 and A = B°. Then the
induced dualities i/r:Ax (H/B)-^ T and i/r':(G/A) xB->T are strong.

Proof. I t is enough to show that xjr is strong. One shows easily that G and H have
properties X(l) and X(2); these are inherited by A and H\B. If C is any closed sub-
group of A, its annihilator under xjr is C°/B and we have to show that the induced
pairings <r:Cx{{HjB)l{C°lB)}->T and T.{AIC)X{C°JB)^T are dualities. Since
(HIB)I(C°IB) ~ H/C0, a is essentially the pairing Cx (J?/C°)-> T induced by 0 and
is a duality because <f> is strong. As for T, we may apply Proposition 11 to the pairing
xjr-.Ax (HjB)-^- T to show that the induced maps

and

are, respectively, a continuous isomorphism and an open isomorphism. On the other
hand, AjG is a closed subgroup of G\G, and its annihilator under the induced duality
0:(G/C) x C°-> T is B. Since G\C and C° also inherit the properties X(l) and X(2)
from G and H, we may apply Proposition 11 again to show that 6AiC:AjC->(C°IB)f'
is an open isomorphism and 6B:C°IB-*-(AIC)* is a continuous isomorphism. I t is
clear that 8Al° = i/rc and 6B = i/rc"lB, so both are topological isomorphisms and T is
a strong duality.
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