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IS A FUNCTION THAT SATISFIES THE CAUCHY-RIEMANN
EQUATIONS NECESSARILY ANALYTIC?

S.A.R. DISNEY, J.D. GRAY AND S.A. MORRIS

1. THE LOOMAN-MENCHOFF THEOREM ~ AN EXTENSION OF GOURSAT'S THEOREM

It 1e well-known (}) that a complex-valued function f = u + {v, defined
aud analytic on a domain D in the complex plané satisfles the Cauchy-Riemann
equations i . '

3u _ 3w b du .

3z 3y a -3y )
throughout D, The standard textbooks (_2) avoid answering the question as to
vwhether or not the converse holds. Most instead offer the following partial

converse.

YHEOREM 1. (Goursat): If f = u + iv, defined on a domain D, i8 such that
. Bu B du w . G =
() 3= E, 32 -5;,- exist everywhere in D,
(it} w, v satisfy the Cauchy-Riemann equations everywhere in D,
and Lf further
{iii) f is continuous in D,

i 3u 3w Ay . :
(iv) 32 3y 3% 3y are conttrxwus in B,

then f ig analytic in D, A

The remaining standard texts offer the stronger result:
THEOREM 2. If f =u + iv, defined on a domain D, is such that

., du 3Ju I i .
(i) . = By 3T 3y exist everywhere in D,

(i1) wu, v satisfy the Cauchy-—f?ienmﬁ equations everywhere in D,

aad 1 further

(iii) wu, v, as functions of two real varidbles, are differentiable

" everywhere in D (3},
taen f 18 analytic in D.

Recently the authors began a search to discm}er. préc{ise}y what is known
regarding the converse. The only modern book we were ‘able to find‘that' addresses
" itself to this problea is Derrick [6]. He points out that far weaker <onditions
than those of Theorem 2 are known to fmply analyticity but chqt',ti}e Cauél’_x)ﬁRi.emann
equat fons themselves do not imply nnalytlci't.y.‘ ) ’ 7



Titchmarsh [19, p.70] presents the counterexample

8~1/z“ if sdo

0 if a=20,.:

fiz) =

He shows that f satisfies the Cauchy—Riemann equationa everywhere but fails to be
analytic at 0. (“+5)

Derrick goes on to suggest that the besﬁ converse result appears to be
THEOREM 3. = (Looman-Menchoff) If f=u+ iu, defined on a domain D is such that
(1) du du v

% 3 5@ 3y exiat everywhera in D
(it} u, v satzsfy the Cauchy-Riemann equations everywhere in D,
and if further '
- {iii) f {8 eomtinuous in D,

then f is analytic in D. (5)

Menchoff's proof (see Saks [15, p.199] or Menchoff {12, p.91) is
"..... based on the Lebesgue theory of integration and the Baire theory of categ-
ories of aéts. It is undoubtedly one of the most elegant and-unéxpected applic~
ations of the modern theory of real functions to the elementary problems of an

entirely classical aspect.” (7)

Theorem 3 is clearly a significant. improvement on Gouxsﬁt'a theorem — tha

standard result. But hidden in the literature are even better results!

2. EXTENSIONS OF THE THEOREMS OF GREEN, MORERA AND GOURSAT

The earliest contribution to the problem appears to be that of Paul Montel
who, in a:1913 note in the Comptes Rendus, asserted the

THEOREM Y4, If f =u + iv, defined on a domam D is auah that
' w W T
5;? W 3 exist everywhere in D,
(i1) u, v sattsfy the Chuchy—Riemann equations everywherg in D,
and if further
(4ii) f ic bounded in D,

' thcn f is analytic in D, (%)



BRecall that a function f on D is said <o be locally bounded if it is
bounded in some neighbourhood of each point of D. As analyticity in D is equiv-

alent to analyticity in some neighbourhood of each poim: of D, we see that
condition (1i1) can be replaced by

(ii1)' f 1ie locally bounded in D.

As every continuous funcl:ion 18 locally bounded we see that Theorem &4 with (1ii)
replaced by (111)°, :lmpl:lea 'I'heoreu 3.

Montel did not prove this resultin his note [13], nor did he publish a
proo_f elsewhere. (%) = Nonetheless he did indicate how the proof is an "immediate

;ppiication" of a strengthened version of the following classical result on exact
differentials.

THEOREM & Let C be a eimple closed contour and K the closure of ite interior.
If P, Q are real-valued functions of two variables on K such that

(i) -g—g, —:-g- exist everywhere in K,

: (it) %5 = :—S everywhere in K,
and if further
(iii) P, Q are continuous in K,
{iv) :5 TS:' are continuous in K,

J Pde+Qdy = 0.
¢

0f course this 1s a‘ special case of the classical Gr'e;an's theorem —
THEOREM 6. (1) ' Let C be a simple closed contour and K the closure of its
interior. If P, @ are real-valued functions of two variablee on K such that

g 2228

W I exist everywhere in K,

(it) -:—5 - :—E— is integrable in K, (1)

- and if further e
(ii1) P, @ are continuous in K,

o 3P 30
{iv) ay 2z are continuous in KX,

ICPd::vl-Qdy-”K-g- Pl ay. -

2%



In 1923 Looman [9], by weakening the hypotheses involved in Theorem 5,
proved Theorem 3. Unfortunately the proof was found to contain a serious gap
(see note 21). It was D.E. Menchoff who filled the gap, correct proofs appearing
in Saks [15, p.199] and Menchoff (12, p.?]. :

Tolstoff ‘[20] was the first to prove Montel's theorem (Theorem 4).
Implicit in his work is the observation that whenever one has a Green-type theorem
(see Theorem 6) and a Morera-type theorem one obtains a Goursat-type theorem
(Theorem 1). For example, let us see how the classical Goursat theorem follows
from the classical Green theorem (more accurately, from its corollary — Theorem 5 —

on exact diffe;entiall) and the classical Morera theorem.

THEOREM 7. (Morera) (12) If f, defined on a domain D, ia euch that
(i) f is continuous in D,

Cid) -J f(z)ds = 0 for each rectangle R (13) in D,
3R

then f is analytic in D.

The proof of Goursat's theorem (Theorem 1) goes as follows. For any

rectangle R (with sides parallel to the co-ordinate axes)

J f(a)da-j fu+£v)da-J udz:-udy+i[ v dz + u dy
3R 3R

3R 3R _
= 0. by Theorem 5 and the Cauchy-Riemann conditions. Hence
by Morera's theorem, f is analytic in D.

The moral of this proof is clear. If one can reduce the conditions
involved in Morera's theorem and those involved in Green's theorem one can obtain
a strengthened version of Goursat's theorem. For instance, one could deduce the
Louman-Mancﬁoff theorem (Theorem 3) from the classical Morera theorem and the

following extension of Green's theorem due to_Eaul J. Cohen(!"),(1%).

THEOREM B. Let R be a closed rectangle. If P, Q are real-valued functions of
two variables on R such that

3P 3P 29 Q.. ;
(i) 32 3y i 3y exigt evérywherc in R,

(i) 32 - g—’y’- is integrable in R,
and if firther’

(ii1) P, Q are continucus in R,
then



L; Pdx+ q.dg-- ”R [%%- 3_?]& dy;

As: a final :llluatration of the equation Hurern 4+ Green ** Coursat ler.
us (d'apres Tolstoff [207) veaken both Morera's and Green's theorems in order -
to prove Theorem &. First a strong Morera. .

'THEOREM 9. If‘lf = u ¢+ {v, defined on'a danain D is auch that
i) fis integrable in D ‘ ‘
(it} j j"(x)dx = ¢ for each rectangu R in D
R _

cmd £f further
(iii) f is lo:lely boumied in D,

(iv) [ to upamtaiy aonttmwuc in D, (“)
then f is amlyt-.c in D..

PROO’F. Fix -a point aa =z 4+ zyo in D and for each 2 €D put

4

(B

F(s) = I f(()db

PO T

the integral being taken along.

-y a8 in the diagram,

Por s'€b, by condition (11) applied to the rectangle JKIM,
F(s') - F(z) = J fg)de + J f(c)d’c.

By (111), for some constant 'C and for all ¢ in some neighbourhood of &, [f(c)l < C.
When.e, 11 & belougs to this neighbourhood :

|Ftz') - Fta)] 2 € (v - M+ |u Ll)

and F is continuaus at 2. Denoting the real and 1maginary par;n of Fby U, V
respcctively ve have - ‘ R
Ulz,y) = ] uft,yldt -"r v(.'ea,t)dt
o © sy

-r u(t,yo)dt-r v(z, t)dt.
. e . ¥p

Hence, . wne scputure cvntinuity vr u



E -:—:-'-J ulz,y), .BU - - vfzyl,
Similarly ) ;

%5""”(’;8)) s '3_,}' = “(-“sU)t L : :
and U, V satisfy the Cauchy-Riemann equat.ions throughout D 'l‘hé Looman-Menchoff
theorem now reveals the analyticity of P in'D, Being analytin 1tt derivative

F' = f 48 also analytic. Q.E.D.

Using a lemma of Menchoff (17), Tolstoff pfovel the fol-lowiﬁs extension
of Theorem 3, ¥ i ' o

THEOREM 10. If P, Q are real-valued funat-tan.a af two variables daﬁncd on a
square K such that = .
(i) .g.g, %’ 3# %g_ exist gua@erf in K,
| tid) .%5.- 8 everyuhare in X, |
" and if further :

tii1) P, Q are bounded in X, (%)

] Pdr+Qdy=0
R .
for each rectangle R in K,

From Theorems 9 and 10 Talstoffideduces (1%) tha result announced by
Montel — Theorém &, °

We have seen that the classical theorems of Goursat, Creen aﬁd Morers:
can be significantly improved upon, However, one can find still stronger versions
in the literature. We thus conclude this section with a. aﬁtengthaning of Morera
due to Rademacher [14] and a strengthening of Green due tuv vai.cro [3].

'T'Hs._o‘i;én ;u.\ .;rf 7 deff;gd' on & domaty D Te ,sgch e‘;u}:
T is.inteéﬁb.le in D, ) = o
rt-.'; ; LR fta)ds = 0 for each raotangle R in D,
and if further g ; : )
(111',3:) “f 18 separately eontinuous in D,
then [ ig analytie in D. “f“?



TH.E'DREM 12. If P, Q are real-palued functions of two yariables defined on a
domain D such that

P L]
(i) Fre) g;, Tg' 33 exist everywhen in'D,

* a r
u«u 9.2 i integrable in D,

and if further
(iii) P, Q are bounded in D,

then .
I Pd:c+ady-” 39--3—’1]‘1;&3
R R )

¥z dy
fbr each rectangle R in D. (21)

>

3. MORE TECHNICAL RESULTS
We ‘saw in §1 that a function which satisfies the Cauch;-niemunn equations

everywhere need not be analytic. With this in mind one cannot fail but to be
impressed by the distributional result '

THEOREM '13. If f ie a distribution which satisfies the Cauchy-Riemann equations
then f is analytic. (22) :

PROOF. The Cauchy-Riemann equations form an elliptic system of partial differ-
ential equations. It is known (23) that any distributional solution of a homo-
geneous elliptic system is in fact a (g4 function. Thus by Goursat's theorem

{Theorem 1) any distributional solution of the Cauchy-Riemann equations is analytie.

The essence of the above proof is as follows. A linear differential

K operatot'P_can be expressed in terms of Fourler transforms by
P flz) = I S8 L) Fred,

vhere p is a polynomial in § with smooth functions of z as co-efficients. ;¢ 35

is vector-valued p is matrix-valued. P ia said to be elliptic if the terms of °
higheét t-degree in p form an inveEtible matrix for ‘all x and all £# 0. This
invertibility of p leads to a weak invertibility property for P, namely that in
fhe class of all Fourier 19tegra1 operators P is invertible modulo smoothing
operators, i.e., one can obtain from p(z,E) (by an essentially algebraic procedure)

a function gfx,f) such that the associated Fourier integral operator Q satisfies

QP =TI + 85, PQeI+T ]
where J 1s the identity and S,T are smoothing operators (i.e., Sf and Tf are C



for all distributions f). 1f f satisfies Pf = 0 ve get that 0 = f + S5f and so
F=~-5f1s ¢, (3 :

Let us look at the hurdles to be léapt in transforming this distrib-
utional result into a result about honest.functions.

Let f = u + iv be a given function. Obviously to apply Theorem 13 f
must be a distribution, i;e.,-it must be 1oc511y'1ntqgrsblq. Unfortunately this
is not enough as the Cauchy-Riemann equations in Theorem 13 refer to the |
distributional derivatives. So one requires conditions on the given f in order

that its clasgical and distributional derivatives agree, i.e., in order that
: 3¢ L
$de dy = - JI u —— dx dy ete.
J[Rz =z v _RZ_ 3z v i

for all test functions ¢. Clearly a necessary condition for this to hold is that
:: etc., be locally integrable; a sufficient con&{fion (%5) being that f 1s
separately absolutely continuous. Finally note that the statement in Theorem 13
that f (as a distribution) is analytic means only that f is equal almost everywhere
to an analytic function. To ensure that f 13 analytic one need only assume f 'to be
separately continuous ‘— see note 20.

From this disucssion we obtain Rademacher's result [14].°

THEOREM 14. I;f f =u+ iy, defined on a domain D, is such that

. u du 3w w
(i) 3% ' 3 v} exist a.e. tﬂ D,

) (i) " u, v satisfy the Cauchy-Rtemanu equations a.e. in D
and if further
(ii1) [ is locally mtegrable m D,

(iv) [ is separately absolutely continuous in D,

8u Ju 3w
(v) Ery a;, % 3y e zocauy integrable in D,

then f i8 analytic in D.

Due to the presence of conditions (111), (iv) and (v) this result does
not appear to be particularly strong. (28)  However, the weakening of conditions
(1) and (1i) to "a.e." suggest that one might be able to weaken the Looman-Menchoff
theorem to, say,

L]

If f = u + 1V, defined on a domain D is such that



du . v
(1) Ey 3';, 3 3y exist a.e. in D,

(11) u, v satisfy the Cauchy-Riemann equations a.e. in D,
and 1f further
(111) f 4s continuous in D, : -

then f is analytic in D.

This conjecture is false —a counterexample is given by Maker [10,
P.267]). The difficulty lies in weakening the condition that the partial deriv-
atives exist everywhere, That some such weakening is possible 1s 1llustrated
hy the version of Looman-Menchoff appearing in'$aks (15, p.199].

YHEOREM 15. If f = u + iv, defined on a domain D is euch that

. du 3du v , 2 !
(1) 3% = 3y exigt everywhere in D except on a countable set,

(i1) wu, v eatisfy the Cauchy-Riemann equations a.e. in D,
wmd 1f further
{iii) f is eontinuous in D,

then f is .analytie in D.

1f one wishes to weaken still further the conditions on the partial
derivatives of f one must impose more stringent conditions on f itself. For
instance one may insist that f be separately continuous. (Of course, as men-
tioned in note 8, if the partial derivatives of u, v exist everywhere in D
[ 18 separately continuous.) Results along these lines have been obtained by
Cafiero [4] and Fesq [7], the latter deriving the following.

THEOREM 16. If f = u + 1iv, defined on a domain D is such that
.y 2u 3u 3v . .
(i) e @, ™ 3y exist everywhere in D except on a countable
wuntion of sets of finite one-dimensional Hausdorff measure
(27s 28s 29)_' .
(i1) u, v satisfy the Cauchy-Riemann equatione a.e. in D,
and i1f f.rther
(112) f is locally bounded in D,

(tv) f 18 separately continuous in D,

then f is analytic in D.
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The attempts by Shapiro [17], Cafiero (3] et al., to obtain a "best
possible" Green's theorem led Fesq [7] to the '

THEOREM 17, Let R be a rectangle. If P, Q.are real-valued functions of two
variables on R such that :

(i) -g%, :5 B_S’ :3 exigt sverwhere in R except on a cowntable union
of closed sets of finite one-dimensional Hausdorff measure,
(it) _g_Q_-_ 3P ;o Lebesgue integrable on R,
x Yy .
and 'Lf further,
(1.1.1.) P, Q are locally bounded in R,

(iv) P, Q are separately continuous in R except on a closed set of
one-dimensional Hausdorff measure aero, :

then : :
J de+Qdy-” [gg_g-?i]dzdy.
3R R y
We conclude with two questions which, as far as we know, have not been
answered.

QUESTION 1. Suppose f = u + iv, defined on a domain D is such that

.y du du v
(i) 3 By aw By exist everywhere in D,

(ii) wu, v satisfy the Cauchy-Riemarn equations everywhere in D,
and suppose further that
' (iii) f 18 integrable in D.

Does it follow that f is analytic in D?

QUESTION 2. Suppose f = u + tv, defined on a domain D is such that u, v
satiefy the Cauchy-Riemann equations everywhere in D. How "large" can the set
of points of non-analyticity of f be? In particular, can it be of positive
measura? ’
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NOTES AND REMARKS
(1) This is a rare instance of a well-known result that is indeed well-known.

(2) For instance those authored by Ahlfors, Ash, Cartan, Churchill, Duncan,

Fuche and Shabat, Greenleaf, Jameson, Knopp, Pennisi, Sansone and Gerretson.

(3) wu 1s sald to be differentiable at (xo,yb) if there are realinumbers a, B
such that ]u(x + h, y, * k) - Q(xo,yg = (ah + Bk)|/v‘hE + k%a 0 as

(h,k) = (0,0). 1f u is differentiable at (xo,y ) the partial derivatives
du 3y = B
= E§ exist there and necessarily o = (x

the mere existence of these partial derivatives at (zb,yo) does not' imply

au :
O’yﬂ)’ B = E;-(xa,yo). However,

the differentiability of # there. Such an implication can be made if further
).

the partial derivatives exist near an,yo) and, are continuous at (x
See M. Spivak, "Calculus on manifolds", Benjamin, N.Y. (1965) p.31.

0°¥p

(4) 1Indeed (f(z) - f(0))/2 + = aa 8 + 0 with arg 2 = /4, This example appears
in Looman [9, p.107].

(5) Observe that this example has an essential singularity at 0., It could not
have a pole because a complex-valued function f for which %5 exlsts at =z

0
cannot have a pole at 2, (Indeed 1t suffices to assume that f 1s continu-

ous in z at aa.)

{6) Warning. This theorenm mi;hc suggest that 1f a function is continuous at a
point 2, and satisfies the Cauchy-Riemann equations at za it 18 necessarily
analytic at 2ot This is not the case!. For example, [6, p.15], f, defined
by frz) = 25/|2|" 1f 2 # 0, F(0) = 0 1s not analytic at 0 but is continuous
everywhere and does satisfy the Cauchy-Riemann equations at 0. To the best
of our knowledge the strongest result in this direction is the standard one:
if f = u + v is such that (1) wu, v are differentiable at 2 (11) u, v
satisfy the Cauchy-Riemann equations at 30. then f is (complex) differentiable
at z,. See G.J.0. Jameson, "A first course in complex functions.” Chapman

g
and Hall, London (1970) p.35.

i

(7) Quote from Saks' review (Zentralblatt, 14 (1936) 167) of Henchoff E12).

(8) Although this result appears to be quite strong observe that condition (1)
inplies the separate continuity of f which in turn implies its measur-
ability. Sece note 16.

(9) The result was however stated as a theorem in Menchoff's monograph [12] ="

‘one in a series edited by Paul Montel.



(10)

(11)

(12)

(13)

(14)

(15)

(16)

a7

(18)

See T.M, Apostol, "Mathematical analysis." Addison-Wesley (1957) p.289.

We include (i1) as it is clearly necessary; of course (iv) implies (11).
Throughout this paper the term integrable means Lebesgue integrab}g ;nd

all integrals are Lebesgue integrals. However every bounded Riem#ﬁh :
integrable function is Lebesgue integrable. Thus, with the exception of
Theorem 11 and Question 1 at .the end of the paper, Lebesgue can be replaced
by Riemann throughout.

See Saks and Zygmund (16, p.120].

Throughout this paper all rectangles are assumed to have their sides parallel

to the co-ordinate axes.
See Cohen [5] — the same Cohen of Continuum Hypothesis fame.

Such a proof would reverse rﬁe chronological order of things. Indeed Cohen's
1deas were inspired by the proof of the Looman-Menchoff theorem. Incidentally,
the extension of Green's theorem from rectangles to more general regions has
been investigated by amongst others K. Menger, "On Green's formula", Proc.

Nat. Acad. Sei. U.S.A., 26 (1940) 660-664; D.H. Potts, "A note on Green's
theorem”, J. Lond. Math. Soc., 26 (1), (1951) 302-304 ‘— (see also Apostol,

op. cit.); J. Ridder, "Uber den Greenschen Satz in der Ebene”, Nieuw. Arch.
Wiskunde (2), 21 (1941) 28-32 and S. Verblunsky, "On Green's formula", J. Lound.
Math. Soc., 24 (1949) 146-148.

Note that a function f of two variables z,.y which is separately continuous

(1.e., continuous in & for each fixed y and continuous in ¥ for each fixed x)
need not be jointly continuocus {i.e.,.continuoﬁs as a function of (x,y)).
For example, if flx,y) = xy/(z? + y2) for (z,y) # (0,0) and f(0,0) = 0, f is
Jointly discontinuous at the origin but separately continuous there.

René Baire has remarked that as late as 1898 analysts were surprised to
discover that the two concepts are not equivélent. However, a separately
continuous function is at least measurable in (x{y).' See J.H, Michael and
B.C. Rennie, "Measurability of functions of two variables", J. Aust, Math,
Soc., 1 (1) (1959) 21-26. Note also that conditions (fii) and (iv) together
imply condition (1). '

See the second lemma on page 198 of Saks [15].

Tolstoff fails to mention condition (11{i) in his statement of the theoren

but does use it in his proof. In fact it suffices to assume that for some.
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integrable functions ¢, ¢, lP(x,y)l < ¢(z) for all y, ]P(x,y)l s ¢(y) for
all r, with similar conditions 6n Q. See E.W. Hobson "The theory of functions
of a real variable. II". Dover, N.Y. (1926) §227, p.326.

(19) By the method outlined immed{ately after Theorem 7.

(20). Actually Rademacher's theorem is: if f = u + iv is integrable in (z,y)
and if for each x, u and v are integrable in y and for each y they are
integrable in x, and 1if J f(z)dz = 0 for each rectangle R, then f is

3R
equal almost everywhere to an analytic function, However, a separately

" continuous function equal almost evarywhﬁre.to an analytic function is in
fact analytic, This follows from the Proposition: 4f ¢, Y are separately
continuous real-valued functiona.of two variables which are equal almost
everywhere then in fact they are equal everywhere. As suppose
¢{x&,y0) # W(Eo,ya), then ¢, ¢ must aisagreé'at all points on some line
gegmeh: thrgugh_(xa,yg) parallel to the:x-gxis. For each point (xa,y) on
this segment, ¢ and ¢ must disagree at all points on some line segment

[ through (xg,y) parallel to the
-— ) (xd’y} y-axis. The union of all these
(x4, line segments is not of measure
zero.
(21) Intérestingly enough (as Fesq [7] shows), even though %53 %5 do not oceur

in Green's formula, some assumptions regarding them must be made in order
to obtain the formula. Indeed, even if thHe right-hand side of the formula
is zero the statement is false without such assumptions. It was Tolstoff
-[21] who first realized this. Unfortunately this error appears in the
papers of both Montel and Looman. See also Wilkosz [23].

(22) Compare Theorem 13 with Weyl's lemma which states: if u, v are L2 functions
on the unit disc D and if

-

TREY PR T
”_D[ 2 ay}dz_dy = ”D[u T 33&]“%&” ?

for all test functions ¢ (i.er € functions with compact support in D), then

there i{s an analytic function % + Zp such that u = u almost. everywhere and

v = ; alwost everywhere. -The conditions on u, v imply that their distrib-
utional derivatives satisfy the Cauchy-Riemann equatiﬁns. The usual proof of
Weyl's lemma is a shbrt—circuited version of the proof outlined below for
Theorem 13. (It proceceds directly to the smoothing operators S . See

G. Springer, "An introduction to Riemann surfaces", AddLROn—Uesley (195?)
P+199 for details.)



(23)

(24)

(25)
(26)

n

(28)

(29

f11

[21
[31]

(41
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See Lars HYrmander, "Linear partial differential operators", Spinger-Verlag,

Berlin (1964). Corollary 4.1.7 on page 102 and Corollary 4.1.2 on page 101,

In fact € can only be constructed locafly on compact subsets, but this is no
problem since smoothness is a local property. When P is the Cauchy-Riemann
operator on the unit disc the relevant family of smoothing operators Sp hav-
ing the property SD flz) = - f(z) for |a] <1 - p 4s given by

T i8
8 fla) = - — J J fz + re* ) (p? - r2)2 ndnde.
¥ "t g Jg
Perhaps not the strongest such.

Nonetheless, it is not contained in any of the ofhers.

The one-dimensional Hausdorff measure of a set F in the.plane is defined
to be

235 tnf { 21 diam (En) P E = %l E diam (EnJ < egl,

(See P.R, Halmos, 'Measure theory". Van Nostrand, N.Y. (1950) p.53.)
Any contour of finite length has finite one-dimensional Hausdorff measure,
whereas a (non-trivial) rectangle has infinite one-dimensional Hausdorff

measure.

Condition (1) dates back to Besicovitch (1] who proved that 1f a function,
defined on a simply-connected demain D, 1s continuous everywhetre and '(complex)
differentiable everywhere except on a countable union of sets of finite linear

measure, then in fact it is (complex) differentiable everywhere in D.

Cafiero (4] has replaced condition (1) by a condition on the ﬁini deriv-
atives of u, V. See also Menchoff [12].
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