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1. Introduction. In [1] the authors investigated the following question:

If 2 is a class of topological groups, what topological groups are
in the variety V() generated by £; that is, what topological groups
can be “manufactured” from £ using repeatedly the operations of taking
subgroups, quotient groups and arbitrary cartesian products ?

This investigation was furthered in [2] where attention was focussed
on Lie groups. Our paper is a sequel to this. We seek answers to the
questions:

If Q2 is a class of Lie groups, can every Lie group in V(£2) be “manu-
factured” from 2 without going outside the class of Lie groups? For
what Lie groups @ is it true that if @ <V (), for some class 2 of Lie groups,
then G must be isomorphic to a subgroup of a member of 27

We obtain some information about the first of these questions and
a complete answer for the second question for the case where G is assumed
compact.

2. Preliminaries. If Q is a class of (not necessarily Hausdorff) topo-
logical groups, then S(£2) denotes the class of all topological groups iso-
morphic to subgroups of members of 2. Similarly we define the operators
S, @, @, C and D where they respectively denote closed subgroup, quotient
group, separated quotient group, arbitrary cartesian product and finite
product.

A non-empty class £ of topological groups is said to be a wvariety
if Q(R2)c 2, S(2)<c 2 and C(2) < Q. The smallest variety containing
a class 2 of topological groups is said to be the variety generated by 2 and
is denoted by V(Q).

The basic theorem [1] on generating varieties is

THEOREM A. If 2 is a class of topological groups and G is a Hausdorff
group in V(R), then Ge SCQSD(Q).

COROLLARY A [6]. If £ is a class of topological groups and G is a discrete
group in V(R), then Ge QSD(Q).
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For Lie groups we have the following theorem which is essentially
proved in [2]:

THEOREM B. If Q2 is a class of Lie groups and G is a Lie group in V (),
then G is locally isomorphic to a member of @SD(Q).

Theorem B suggests the

QUEsTION 1. If 2 is any class of Lie groups and G is a Lie group in
V (R2), does G (necessarily) belong to QSD(2)? (P 897)

The following result is proved in [1]:

If Q2 is a class of locally compact Hausdorff groups, then the topological
group R of reals is in V() if and only if Re S(£).

This suggests the

QUESTION 2. What Lie groups G have the property that if 2 is any
class of Lie groups such that Ge V(£2), then Ge¢ S(2)? (P 898)

3. Results. We have

THEOREM 1. Let Q2 be a class of locally compact Hausdorff groups
Then the discrete group Z of integers is .in V() if and only if
ZeS(8).

Proof. Let Ze¢ V(). Then, by Corollary A, ZeQSD(2), which
clearly implies that Ze SD(2). Thus Z is a subgroup of 4, x ... x4,,
where each A;e 2. For each i¢ I, let B; be the closure of the projection
of Z on A;. Then B; is a monothetic locally compact abelian group which,
by Theorem 9.1 of [3], implies B, is either compact or isomorphic to Z.
If each B; were compact, then Z would be isomorphic to a subgroup of
the compact group B, X ... X B, — which is impossible. Therefore, for
some ie I, B; is isomorphic to Z. Hence Z ¢ S(£2). Noting that the statement
Z e S(Q2) implies Ze V() is obvious, the proof is complete.

In contrast with Theorem 1 and the similar result mentioned earlier
for R we present the following

Example. Let 2 be the class of all simply connected solvable Lie
groups. Then the circle group 7' is in V (£2) but T'¢ §(2).

Indeed T ¢ SD(L). (To see this use Theorem 2.3, p. 138, of [4] and
Theorem 2.5 of [2].)

In fact, using Problem 3, p. 140, of [4], we see that, if Q2 is a class
of solvable Lie groups, the following conditions are equivalent:

(i) Te S(Q).

(ii) Some compact Hausdorff (non-trivial) group is in S(Q).

(iii) Te 8D (Q).

(iv) Some compact Hausdorff (non-trivial) group is in SD(Q).

(v) Some member of £ is not simply connected.

TiEOREM 2. If Q is a class of simply connected solvable Lie groups and
G is a Lie group in V(R), then Ge Q8D (Q).
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Proof. By Theorem B, @ is locally isomorphic to a group He QSD(Q);
that is, there are groups 4,,..., 4, in Q such that H = B/N, where B
is a closed subgroup of 4, x ... x 4, . Let B, and N, be the components
of the identities in B and N, respectively. Then %, is a connected closed
normal subgroup of B, and H, = B,/N,is locally isomorphic to H. Further,
H,cQSD(Q).

We now use a theorem of Malcev (see Hochschild [4], p. 135-137):

If X is a simply connected solvable Lie group and Y is a connected
closed subgroup, then Y is simply connected. If Y is also a normal sub-
group, then X /Y is also simply connected.

Thus in our case we see that H, is simply connected. Since G is locally
isomorphic to H and hence also to H,, we see that G is a quotient group
of H,. Hence Ge QSD(RQ) as required.

Remark. We saw earlier that if © is a (non-empty) class of simply
connected solvable Lie groups, then Te V(Q) but T¢ 8SD(2). We now
see that Te @SD (). Our next theorem gives a stronger result.

THEOREM 3. Let 2 be a class of locally compact Hausdorff groups.
Then the following conditions are equivalent:

(i) at least one member of Q2 is mot totally disconnected,

(ii) Te V(£),

(iii) Te @S (Q).

Proof. If (i) is true, then there exists a connected locally compact
Hausdorff group G in S(£2). By Section 4.13 of [5], this implies that either
G is compact or G contains R. If the latter is true, then Re S{G} = S(£)
and so Te QS (£2). If G is compact, then G has a compact connected (non-
-trivial) Lie gro\up H as a quotient. By Section 4.13 of [6], T e S(H). Thus
Te8Q{G} = SQS(£2) = @S(£2). Hence (i) implies (iii).

Suppose (1) is false. Then every member of 2 is totally disconnected.
By Theorem 7.7 of [3], every neighbourhood of the identity, in each
member of 2, contains an open subgroup. Indeed, noting that the operators
@, 8 and C preserve this property, we see that every member of V()
has this property. Since T does not, T'¢ V(£2). That is, (ii) implies (i).

Noting that (iii) trivially implies (ii), the proof is complete.

Our next theorem strengthens Theorem 3 for abelian groups.

THEOREM 4. Let Q2 be any class of locally compact Hausdorff abelian
groups. Then T e V() if and only if T« Q(Q).

Proof. By Theorem 3, Te V() if and only if Te @S(2). Now
Te QS8(R2) if and only if Ze SQ(R2%), where Q* denotes the class of dual
groups of members of 2. By Theorem 1, Z ¢ 8SQ (2%) if and only if Ze S(Q*).
Finally, we note that Ze S(Q*) if and only if Te Q (), as required.

Remark. Theorem 4 cannot be extended to the non-abelian case.
For example, if 2 = {SL(2, K)}, then T ¢Q(L), since by p. 350 of [3],
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SL(2, K) has no non-trivial finite-dimensional unitary representations.
However, Theorem 2.5 of [2] shows that T« V ().

We now turn to Question 2 of Section 2. For convenience, we say
that a topological group G has property S if for any class 2 of Lie groups
such that Ge V(Q2), we have Ge S(Q).

LEMMA 1. Let G be any connected locally compact group which is not
a Lie group. Then G does not have property S.

Proof. By Section 4.6 of [5], there exists a family {H;: ¢¢ I}
of Lie groups such that Ge SC{H,: ie I}. Thus Ge V{H;: ie I}, however
G¢ S{H;: iel}.

LeEMMA 2. Let G be any connected Lie group which is not simply eonnected.
Then G does not have property 8.

Proof. Let H be the simply connected covering group of G. Then
GeQ{H} c V{H}. Noting that @ and H have the same dimension, it
is clear that G¢ S{H}. .

LeEMMA 3. Let G be any compact connected non-simple Lie group. Then
G does mot have property S.

Proof. Let L(G) be the Lie algebra of G. By p. 144 of [4], L(@)
= L(H,)®L(H,), where H, and H, are simply connected Lie groups,
H, is abelian and H, is semisimple. Since H, ®H, is simply connected
and locally isomorphic to G, we see that Ge Q{H, D H,}, which implies
that Ge V{H,, H,}.

Suppose that @G has property S. Then Ge S{H,, H,}. So dimG < dim H,
or dim@ < dimH,. Noting that G is locally isomorphic to H,®H, we
see that dimG = dimH,+dimH,. So we have a contradiction unless
H, or H, is the trivial group.

Firstly consider the case H, is trivial. Then G is locally isomorphic
to H, and G S{H,}. Dimension arguments show that G must be isomorphic
to H,; that is, G is a semisimple simply connected compact Lie group.
Thus @ is isomorphic to 4A,PA4,® ... ®A,, where each A, is a compact
simple simply connected Lie group. So Ge V{4,, ..., A,}, which by our
supposition implies Ge §{4,,..., 4,}. By dimension arguments again,
this is a contradiction unless all the A; except one of them is the trivial
group. Thus G = A4, for some ¢; that is, G is a simple Lie group — which
is a contradiction.

We are left with the case H, is trivial. Then G is locally isomorphic
to H,. By Lemma 2, G must be simply connected and hence @ is isomorphic
to H,; that is, G is a compact abelian Lie group. Thus Ge V{R}. However,
G¢ S{R}. This final contradiction shows that G does not have prop-
erty S.

LrMMA 1. Let 2 be a class of Lie groups and G a simple simply connected
Lie group in Q(82). Then Ge S(Q2).
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Proof. There exists a continuous open homomorphism f of H onto
G, where H ¢ Q. Let L(GQ)and L(H) be the Lie algebras of G and H, respec-
tively. Then f induces an algebra homomorphism 6 of L(H) onto L(G).
By p. 126 of [4], there exists an algebra homomorphism ¢ of L(G) into
L(H) such that 6 acts identically on L(@). Put L = ¢(L(@)). Then there
exists a connected closed subgroup A of G such that L is the Lie algebra
of A. Noting that ¢ is an isomorphism of L(G) onto L, we see that there
exists a local isomorphism of @ into A. Since @ is simply connected, this
local isomorphism can be extended to a continuous homomorphism I
of G onto A. Clearly, fI" acts identically on G and thus @ is isomorphic
to A4; that is, Ge S(R2), as required.

LrMMA 5. Let G be a compact simple symply connected Lie group. Let
Q be a class of Lie groups such that (i) G¢ S(L2) and (i1) each non-simply
connected Lie group locally isomorphic to G is isomorphic to a member of L.
Then Ge SC(R) if and only if the intersection of all the proper non-trivial
subgroups of the centre Z (@) of G is the identity element e.

Proof. Assume
o< [,

jeJ

where each H;e Q2. If p; is the projection mapping of G onto H;, then,
clearly, we must have

nNJ' :{'_9}1

where N; is the kernel of the mapping p;. Since G is compact and simple,
p;(G) is either the trivial group or a connected Lie group locally isomorphic
to G. Indeed, if p;(G) is not the trivial group, then N; < Z(G) for all je J.
Noting that condition (i) implies N; # {e¢} for any jeJ, we infer that
the intersection of all the proper non-trivial subgroups of Z(G) is {e},
as required.

Conversely, let A,nA,n... N4, = {e}, where A,, ..., A, are proper
non-trivial subgroups of Z(G@). The quotient groups G/4; (¢ =1, ...,n)
are in Q and it is obvious that G < G/4;, xG[A, x ... xG|A,. The proof
is complete.

As an immediate consequence of the proof of Lemma 5 we have

LEMMA 6. Let G be a campact simple simply connected Lie group. If 2
18 a class of Lie groups such that Ge 8C (), then G SD(Q).

LEMMA 7. Let G be a compact simple simply connected Lie group. If
2 is a class of Lie groups such that Ge V (L), then G e SD(R).

Proof. By Theorem A, we have Ge¢SCQSD(f). By Lemma 6,
then, Ge SDQSD(L2) < SQDSD(2) =< QSDSD(2) < Q8SDD(2)= QSD ().
Now, using Lemma 4, we see that Ge SSD(L2) = 8D(Q).
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THEOREM 5. Let G be a compact connected Hausdorff group. Then G has
property S if and only if G is a simple simply connected Lie group with the
property that the intersection of all the proper non-trivial subgroups of Z(G)
is not {e}.

Proof. If @ has property S, then Lemmas 1, 2 and 3 imply that G
is a simple simply connected Lie group. Let {2 be the class of all non-
-simply connected Lie groups locally isomorphic to G. Then G¢ S(£Q).
However, if the intersection of all the proper non-trivial subgroups of
Z (@) is {e}, then Lemma 5 implies that G belongs to SC(£) and hence also
to V(£2). So G does not have property 8.

Now let G be a compact simple simply connected Lie group having
the intersection of all proper non-trivial subgroups of Z(G) not equal
to {e}. If I' is any class of Lie groups such that Ge V (I"), then Lemma 7
implies Ge SD(I')< S8C(I'). Now, Lemma 5 implies that Ge S(I'), as
required.

Remark. We note that the compact simple simply connected Lie
groups having the property that the intersection of all proper non-trivial
subgroups of Z(G) is not {¢} are precisely those with the following Lie
algebras (see p. 504-506 of [7] and [8]):

A,, n+1 a prime power.
B,, n>2.
C,, n=>3.

D,, n>4 and n an odd prime power.
G
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