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Varieties of topological groups II

Sidney A. Morris

This paper is a sequel to one entitled "Varieties of topological

groups". The variety £ of topological groups is said to be

full if it contains every group which is algebraically

isomorphic to a group in _V . For any Tychonoff space X , the

free group F of V. on X exists, is Hausdorff and

disconnected, and has X as a closed subset. Any subgroup of F

which is algebraically fully invariant is a closed subset of F .

If X is a compact Hausdorff space, then F is normal. Let V.

be a full Schreier variety and X a Tychonoff space, then all

finitely generated subgroups of F are free in V_ .

A 3-variety V. is one for which the free group of Y on each

compact Hausdorff space exists and is Hausdorff. For any

3-variety ^ and Tychonoff space X , the free group of V

exists, is Hausdorff and has X as a closed subset. A necessary

and sufficient condition for V_ to be a 0-variety is given.

The concept of a projective (topological) group of a variety V̂

is introduced. The projective groups of V̂  are shown to be

precisely the summands of the free groups of £ . A finitely

generated Hausdorff projective group of a Schreier variety V. is

free in V .

We will use the notation and terminology of [8]. Further by abelian

(Schreier) variety we will mean a variety of topological groups for which

the underlying variety of abstract groups is abelian (Schreier).
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1. Full varieties

DEFINITION. The group F is said to be moderately free on the space

X , and will be denoted by t"M(X) , if,

(i) F is a relatively free abstract group with X as a free

generating set,

(ii) the topology of F is the finest group topology (on F)

which will induce the same topology on X .

The first theorem is a generalization of Theorems h and 22 of [7] and

Theorem h.5 of [&].

THEOREM 1.1. Let FM(X) be moderately free on the Hausdorff spaae

X j then FM(X) is Hausdorff and has X as a closed subset.

Proof. By p. 32 of [7], X is a completely regular space. The main

theorem of [70] then implies that there exists a Hausdorff group topology

on Ffj(%) which induces the given topology on X and has A' as a closed

subset. It then follows immediately from the definition of moderately

free that ^u(X) is Hausdorff and has X as a closed subset.

DEFINITION. The variety i is said to be a full variety if whenever

G is any group such that G € V̂  , then ff f V .

Clearly the varieties of Example 2.k (a), (b) and (c) of [S] are full

varieties. Note that if F is a free group of a full variety on any

space X , then F is moderately free on X .

THEOREM 1.2. If v, is a full variety, then for any Tyohonoff spaae

X , F(X3 VJ exists.

Proof. This follows from the main theorem of [70] together with

Theorem 2.6 of [S].

We omit the proof of the next theorem because it is similar to that

of Theorem k.h of [S].

THEOREM 1.3. Let FM(X) be moderately free on the space X . If

A is a proper subgroup of F^f^) such that A is algebraically fully

invariant, then F (X)/A is moderately free.
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The following lemma is a corollary to the proof of Theorem 3.3 of

C8].

LEMMA 1.4. let FAX) be moderately free on the space X and V

the intersection of all full varieties containing FAX) . Then V, is a

full variety and FM(X) is F(X, VJ .

Markov [7] showed that if F is a Hausdorff free group then its

derived group is a closed subset of F . In a conversation with the

author, i.D. Macdonald conjectured that subgroups of F which are

algebraically fully invariant are closed subsets of F . Theorem 1.5

shows that this is indeed the case even when F is moderately free.

THEOREM 1.5. Let FAX) be moderately free on the Hausdorff space

X . If A is a proper subgroup of FAX) such that A is a fully

invariant abstract subgroup, then A is a closed subset of FAX) .

Further F (X)/A is moderately free on X .

Proof. Let / be the natural mapping of FAX) onto F(X)/A .

Then f maps X one to one onto f(X) = X' . (See Theorem h.k of [8].)

Define a topology x on X' as follows: 0 is open in x if and only

if f (0) n X is open in X . By the main result of [JO], there exists

a Hausdorff group topology Xi on FAX)/A which induces the topology x

on F" .

Clearly FAX)/A with the topology Xj belongs to every full

variety containing FAX) • Thus by Lemma l.U the map / , from F
M(X)

onto FAX)/A with the topology x^ , is continuous. Therefore the

quotient topology of FJ,X)/A is Hausdorff and induces the topology x

on X' . Consequently A is a closed subset of F,.(X) . Noting that X'

M

with the topology x is homeomorphic to X , it follows from Theorem 1.3

that PM(X) is moderately free on X .

DEFINITION. Let F be an abstract group with generating set X .

Then a t F is said to be of length n with respect to X if n is the
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least integer N such that a = x\ ... x , where e • = ±1 and
N 1>

x. (. X for i = 1 N . The set of all elements in F of length not

greater than m will be denoted by F .

Clearly Fx = X u X~ and F , m > 1 , is the product in F of m

copies of {X u X~ u e) , where e is the identity of F .

The following lemma can be proved in a similar manner to Theorems h

and 5 of [2].

LEMMA 1.6. Let F be a Bausdorff group with a compact subspace X

which generates F algebraically. Further, let the topology of F be

the finest group topology (on F) which induces the same topology on

X . Then the set V is open in F if and only if V n F is open in

the induced topology of F for each n = 1, 2, ... . Further, F is a

normal space.

THEOREM 1.7. Let F be moderately free on the compact Hausdorff

space X . Then F is a normal space and V is an open set in F if

and only if V n Fn is open in the induced topology of F for each

n = 1, 2, ... .

Proof. This follows immediately from Lemma 1.6 and Theorem 1.1.

THEOREM 1.8. Let F be a Hausdorff group with a compact subspace

X which generates F algebraically. If the topology of F has the

property that V is open in F if and only if V n F is open in F

for each n = 1, 2, ... , then the topology of F is the finest group

topology (on F) which will induce the same topology on X . In

particular, if F is algebraically relatively free on X , then F is

moderately free on X .

Proof. It is readily seen that every Hausdorff group topology on F

which induces the given topology on X induces the same topology on F ,

n = 1, 2, ... . The theorem then follows from Lemma 1.6.

DEFINITION. Let the set X be a free basis for the relatively free
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abstract group F . The subset Y of F is said to be regularly

situated with respect to X if in the subgroup Fy , generated

algebraically by Y , it is impossible to find a sequence of elements with

the following properties: the lengths of the elements with respect to Y

exceed all bounds and their lengths with respect to X have a uniform

bound.

Theorem 1.9 generalizes Theorem 10 of [2] and it can be proved

similarly.

THEOREM 1.9. Let V_ be a full variety, X a compact Hausdorff

space and Y a compact subset of F(X3 Vj . Then the subgroup Fy

generated algebraically by Y is a closed subset of F(X, Vj and the

topology of F is the finest group topology (on F ) which induces the

given topology on Y if and only if Y is regularly situated with

respect to X .

THEOREM 1.10. Let V be a full variety, X a Tychonoff space and

Y a compact subset of F(X, Vj . If Y is regularly situated with

respect to X , then the subgroup Fy algebraically generated by Y is a

closed subset of F(X, Vj and the topology of Fy is the finest group

topology (on Fy) which induces the given topology on Y . In

particular if v_ is a Schreier variety [9] and Y is a free algebraic

basis of Fv , then Fy is F(Y, Vj .

Proof. Let &(X) be the Stone-Cech compactification of X [5].

Then, by Theorems 1.1 and 1.2, F{$(X), VJ exists and is Hausdorff. Let

<j> be the imbedding map of X in $(X) . Then if is a continuous map of

X into F{&(X), v) . Therefore there exists a continuous homomorphism 0

of F(X, V; into F[e>(X), v) such that $\x = <J> . Clearly $ is an

algebraic isomorphism of F(X, VJ onto <b[F(X, Vj) . Further, t(Y) is

regularly situated in F[&(X), v) and is homeomorphic to Y . Therefore,

by Theorem 1.9, the subgroup Fi of F[$(X), v) generated algebraically

by $(Y) is a closed subset of F[8(X), v) and the induced topology of

?! is the finest group topology (on Fj) which induces the given

topology on <b(Y) . Thus, since $ is continuous and $~ (F\) = F , F
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has the required properties. The remainder of the theorem follows

immediately.

THEOREM 1.11. Let X be a Tychonoff space and V, a full variety.

If Y is a finite subset of F(X, VJ , then the induced topology on the

subgroup H , algebraically generated by Y 3 is discrete. Also H is a

closed subset of F(X, Vj . Further, if £ is a Schreier variety and Y

is a free basis of ~§Y 3 then H is F(Y3 VJ .

Proof. Since Y is finite, Y £ X , for some subgroup K of

F(X, VJ algebraically generated by a finite subset Z of X . Clearly

Z is regularly situated with respect to X and thus by Theorems 1.10 and

1.1, K has the discrete topology. Consequently H , which is a subgroup

of K , has the discrete topology. Then by Theorem 5.10 of [4] and

Theorem 1.1, E is a closed subset of F(X, V) . The remaining part of

the theorem is now an immediate consequence.

We point out that Theorem 1.11 appears to be new even in the case

that _V is the variety of all (all abelian) groups.

The next theorem is in the spirit of Theorems 1.9> 1.10 and 1.11 and

follows immediately from §7 of [<5] together with Theorems 1.1 and 1.2 and

Lemma 1.k.

THEOREM 1.12. Let FM(X) be moderately free on the Hausdorff space

X . If Y is a closed subset of X , then the subgroup generated

algebraically by Y is a closed subset of F^(X) .

THEOREM 1.13. If FM(X) is a Hausdorff (non-trivial) moderately

free group then it is disconnected.

Proof. Let ^ be the intersection of all full varieties containing

FM(X) . By Lemma l.k, FJX) is F(X, VJ • L e t H t e a n v (non-trivial)

group in V. with the discrete topology. Define the mapping <J> of X

into H by $(x) = a for all x in X , where a is any element of H

other than the identity. Clearly <j> is continuous and thus there exists

a continuous homomorphism 4> of FM(X) into H such that 4>|z = <fi .

Then $ {a} is an open and closed proper subset of F^(X) , and the
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proof is complete.

2. B-Varieties

In analogy with [6] we introduce the following definition.

DEFINITION. The variety V. is said to be a 3-variety if for every

compact Hausdorff space X , F(X, VJ exists and is Hausdorff.

THEOREM 2.1. Every full variety is a ^-variety.

Proof. This follows immediately from Theorems 1.1 and 1.2.

THEOREM 2.2. If V^ is a fc-variety, then for any Tyahonoff space

X , F(X, VJ exists. Further, X is a closed subset of F(X, VJ and

F(X, VJ is Hausdorff.

Proof. Let J be the Stone-Cech compactification of X . Then

F(Y, VJ exists and is Hausdorff. Thus X is a subspace of F(Y, VJ

which, by Theorem 2.6 of [8], implies F(X, VJ exists.

Let <j> be the imbedding mapping of X in Y . Then <J> is a

continuous map of X into F(Y, VJ and therefore there exists a

continuous homomorphism <b of F(X, VJ into F(Y, VJ such that

<t\X = <j) . Since 1 is a closed subset of F(Y, VJ , (i>~1('v>> = X is a

closed subset of F(X, VJ . It follows immediately that F(X, VJ is

Hausdorff.

We will now give a characterization of B-varieties and in so doing

give an alternative proof of Theorem 2.2

THEOREM 2.3. Let X be the set of non-negative reals not greater

than one3 with the usual topology. Then V^ is a ^-variety if and only

if F(X, VJ exists and is Hausdorff.

Proof. Clearly if V is a 3-variety then F(X, VJ exists and is

Hausdorff. Conversely we will show that if F(X, VJ exists and is

Hausdorff then for every Tychonoff space Y , F(Y, VJ exists and has Y

as a closed subset.

By Theorem 7, Chapter k, of [5], Y can be imbedded in a cartesian

product of copies of X . Consequently Y can be imbedded in a cartesian

product of copies of F(X, VJ . Thus by Theorem 2.6 of [S], F(Y, VJ
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Suppose there is a limit point y1 ... y of Y not in Y ,

where y^ € Y and e. is a non-zero integer for each i . Let

& l 5 ..., b^ be the distinct y^ . Choose distinct elements a\, ..., a

of X . By Theorem 3.6 of [4], there exists a continuous map if of J

into X such that <\>{b-) = a- , i = 1, ..., r . Then (J> is a

continuous map of Y into F(X, VJ , which implies that there exists a

continuous homomorphism $ of F(Y, VJ into F(X, VJ such that

( e j e •> e j E

J/1 • • • y = ̂ i ... a; , where a\, ..., a
J

are the distinct x• .

Since $ is continuous, 9(Y) ĉ  X , and X is closed in F(X, VJ ,

e 1 e el £

we must have ii ... a; i X . Thus Ki ... a; £ = e, , where e-y
ft fl

i s the ident i ty of F(X, VJ and t £ X . This implies, using Theorem 2.8

of [ 8 ] , that for at leas t one i , Xj . . . x nx.~ = e . Therefore
fl 1r

n_ -1

[S] again, we see that y \ . . . yn y^ = e2 , where e2 is the

identity of FfY, VJ . Thus J/J ...2/ d Y , which is a

contradiction. Consequently Y is a closed subset of F(Y, VJ and

therefore F(Y, VJ is Hausdorff.

LEMMA 2.4. Let ^ be an dbelian ^.-variety and X be the closed

interval [a, b] of reals with the usual topology. Then the subgroup A

of F(X, VJ j algebraically generated by {a} , is a closed subset of

F(X, VJ .

Proof. Suppose there exists a limit point c of A which is not in

A . Define the continuous mapping <p of X into F(X, VJ by

4>(x) = a x for each x in X . Then there exists a continuous

endomorphism 4> of F(X, VJ such that $\x = ej> . Clearly $(A) = e ,
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the identity of F(X, Jj , and since {e} is a closed set, §(c) = e .

However if a = X\ ... x , x. € X and e. a non-zero integer for

n
each i , then Q(c) = a~me where m = £ £^ . This implies c is in

i=l

A , which is a contradiction.

THEOREM 2.5. Let V be an abelian ^-variety and Z a Tyehonoff

space. If 1 is a (.non-empty) closed subset of 2 , then the subgroup

Fy of F(Z, V) algebraically generated by Y is a closed subset of

F(Z, V . (cf. Theorem 1.12).

ei e
n

Proof. Suppose a = X\ ... x is a limit point of Fy which is

not in Fv , where the x- are distinct elements of Z and the e. are

non-zero integers. Without loss of generality we can assume X\ is not

in 1 .

Let the symbols X, a, b and A be as in Lemma 2.k. Now

Y u {x2, ..., x } is a closed subset of Z . Therefore there exists a

continuous mapping (|) of Z into X such that (j> \Y u {x2, •••» xv.H = a

and <$>(xi) = b . Then there exists a continuous homomorphism $ of

F(Z, VJ into F(X, VJ such that $|z = <(> . Clearly <t>(/y) =
 A a n d

$fe,) = b a , where m = ][ e. . By Lemma 2.it, /I is a closed subset of
i=2

F(X, ¥J and thus $Cc; i A . This implies b is in 4 which is

clearly a contradiction.

3. Project!ve groups

Hall [3] introduced the notion of a projective group for the category

of Hausdorff abelian groups based upon the requirement that the class of

projective groups contains the class of (Hausdorff) free abelian groups.

We extend this notion to that of projective in a variety.

We omit all proofs in this section since they are similar to the

proofs of the corresponding results in [3],
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DEFINITION. A sequence of the form f : A •*• B -* 0 is said to be

exact if A and B are groups and / is a continuous homomorphism of A

onto B .

DEFINITION. A group G is projective relative to a family £ of

exact sequences of the form

f
(1) A •* B •* 0

if for each (l) in e and each continuous homomorphism g from G to B

there exists a continuous homomorphism h from G to A such that

fh = g •

DEFINITION. Let V lie a variety and £(VJ be the family of all

exact sequences of the form (l), with A and B in _V , such that all

free groups of V. are projective relative to z(VJ . Then a group G in

V_ is said to be projective in ^ if it is projective relative to £(VJ .

Clearly every free group of a variety V. is projective in V. .

LEMMA 3.1. The sequence (l) is in E(VJ if and only if A and B

are in V_ and there is a continuous function g from B into A such

that fg is the identity function on B .

Consequently for every B £ V_ , the sequence

a
F(B, v; -* B -»• o

where a is the natural homomorphism, is in zCVj .

THEOREM 3.2. If the group G is a summand [3] of a protective

group of ^ j then G is a projective group of V̂  .

THEOREM 3.3. A group is projective in a variety V, if and only if

it is a summand of a free group of V. .

COROLLARY 3.4. If P is projective in ^ then P is a projective

abstract group of V̂  . (See [9].) Further, if V. is a Schreier variety

then P is free in V_ .

The next theorem is a generalization of Theorem 2 of [3]. We point

out, however, that Theorem 2 of [3] could be deduced from Theorems 3.3 and

1.11, whilst the theorem below could not.
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THEOREM 3.5. Let P be a Hausdorff finitely generated protective

group of the Sahreier variety .V . Then P is a free group of V, .

THEOREM 3.6. Let P\, ..., Pn be protective groups of the abelian

variety \[ . Then the direct product group of the P. is protective in

V .

4. Other results

THEOREM 4.1. Let G be a relatively free group with free

generating space X . Then G is a continuous algebraic isomorphic image

of a quotient group F/A of the free group F on X , where F/A has

generating space X and A is a fully invariant subgroup of F .

Proof. Noting Lemma k.3 of [g] we only have to show A is a fully-

invariant subgroup of F . Clearly it is sufficient to show that for

every continuous endomorphism 6 of F there exists a continuous

endomorphism E, of G such that $6 = £$ , where $ is the natural

homomorphism of F onto G .

Let 6 be a continuous endomorphism of F . Then 8\X is a

continuous mapping of X into F and $6\X is a continuous mapping of

X into G . Since G is relatively free on X , there exists a

continuous endomorphism ^ of C such that E,\X = §&\X . It is readily

verified that $6 = £* .

Neumann has various equivalents of "the free abstract group of an

algebraic variety", namely 13-11, 13.21, 13.22 and 13.23 of [9]. In §5 of

[S] the relationships between topological analogues of these properties

were examined. In particular it was shown that these analogues are not

equivalent. Here we modify the topological analogues and show that the

modified ones indeed are equivalent.

(4.2) G is relatively free with generating space X and the

topology of G is the finest group topology (on G) which induces the

same topology on X .

(4.3) G has a generating space X such that every relator of X

is a law in G and the topology of G is the finest group topology

(on G) which induces the same topology on X .
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(4.4) G has a representation G = F/A as the quotient group of the

free group F on X by a fully invariant subgroup A of F and the

natural homomorphism $ of F onto C maps X homeomorphically onto

<b(X) .

(4.5) G has a representation G = F/R , such that every continuous

endomorphism of the free group F on X induces the natural endomorphism

of F , and the natural homomorphism $ of F onto G maps X

homeomorphically onto §(X) .

THEOREM 4.6. The properties (U.2), (1*.3)., (h.h) and (1*.5) are

equivalent.

Proof. Clearly {k.'h) and (it.5) are equivalent. By Theorems 5-8 and

5.11 of [£], (U.2) and (1+.3) are equivalent. Also, by Theorem l».l,

property C*.2) implies (U.U). Using Theorem 5-8 of [5] we see that

property (k.k) implies (k.2). The proof of the theorem is complete.

We leave the proof of the final theorem to the reader.

THEOREM 4.7. Let Fu ..., Fn be free groups of the abelian

variety V . Then the direct product of the F^ is a free group of £ .

It is not true, in general, that the direct product of an arbitrary

set of free groups of V, is a free group of V_ . (see Example 2 of [3].]
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