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1. Introduction

The study of varieties of linear topological spaces was initiated in [4). (Selected
results from [4] were announced in [3).)

Before commenting on our results we briefly introduce our notation and
terminology.

A wvariety is defined to be a non-empty class of real Hausdorff locally convex
linear topological spaces (LCS’s) closed under the operations of taking subspaces
(not necessarily closed), separated quotients, arbitrary products and isomorphic
images. As examples we have

(a) the class & of all Schwartz spaces [6]
(b) the class A" of all nuclear spaces [19]
(c) the class of all LCS’s having the weak topology.

For any class ¢ of LCS’s, the variety generated by €, denoted by 7' (%), is the
smallest variety containing .

Notation. Let € be any class of LCS’s. Then (a) S(%), (b) @(%¥), (c) C(¥) and
(d) P(%) denote respectively the class of all LCS’s isomorphic to (a) subspaces of
LCS’s in ¢, (b) quotient spaces of LCS’s in €, (c) Cartesian products of LCS’s in €
and (d) products of finite families of LCS’s in €.

It was shown by S. A. Saxon [18] that if 4 is the class of all infinite-dimensional
Banach spaces, then (s ¥ (B) 2 #. The main purpose of our §2 is to find a
reasonable upper bound for (\z.e ¥'(B). We prove that (Neea ¥ (B) = &. This
leaves open the intriguing question: precisely what is () e ¥"(B)? More specifically,
we prove that if B is any reflexive Banach space then ¥"(B) n ¥(c,) € &, and that
ifl<p#qg<owthen?(1)n¥ ()< .

In §3 we report on recent progress on the questions asked in [4].

We will need the following basic theorem of [4).

THEOREM A. Let € be any class of LCS’s. Then
(i) ¥'(E) = QSC(¥) = SCQP(%);
(ii) if E is any normed vector space in ¥ (%€), then E € QSP(%).

2. Varieties generated by Banach spaces and the Schwartz variety, &

LemMaA 1. Let {F,:i€l} be a family of LCS’s and E a (linear topological) subspace
of the product T1;; F,. If f is a continuous linear operation of E into a Banach space B
then there exists a finite subset J of I, a closed linear subspace S of []j; F,, and con-
tinuous linear operators f, : E— S and f, : S — B such thar the diagram below com-
mutes.
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Proof. 1f Uy denotes the unit ball in B, then f ~!(Uy) is a neighbourhood of zero
in E. Since E is a subset of [];.; F;, there exists a finite subset J of I such that
UnEc f~'(Up), where U =1, UjxTTjes-y F;, each U; being an open neigh-
bourhood of zero in F;.

Let N = {(x)eE: x; = Oforall je J}. Then N is a linear space with the property
that f(N) < Up. This implies that f(N) = 0. Thus for each x = (x)€E, f(x) is
independent of the co-ordinates x; for iel—J.

Let p be the canonical projection of [],, F; onto [];, Fj, f; the restriction of
p to E, and S, = f,(E). Define a mapping g: S, - B by g(s) = f(f,~'(s)), for all
s€ S,. (We note that by our comments in the previous paragraph g is well-defined.)
Clearly g is a continuous linear operator. Let S be the closure in [, F; of S;.
Then there exists a continuous linear operator f, : S — B such that the restriction to
S, of f, is g. It s easily verified that the above diagram commutes, as required.

Remark. It is clear from the proof of the above lemma that the Banach space B
can be replaced by any locally bounded complete Hausdorff linear topological space.

LEMMA 2. Let B, and B, be Banach spaces. If for each Banach space D € ¥'(B,)
and each Banach space E eV (B,) every continuous linear operator u: D — E is
compact, then ¥ (B,) n ¥ (B,) & &.

Proof. Let G be any LCS in ¥"(B,) n ¥'(B,) and f a continuous linear operator
of G into any Banach space H. To prove that G is a Schwartz space it suffices (p. 275
of [6]) to show that f is compact.

By Theorem A, G e SCQP(B,). Noting that Q P(B,) contains only Banach spaces,
we see, by Lemma 1, that there exists a Banach space De77(B,) and continuous
linear operators f; : G — D and f, : D — H such that diagram (1) commutes.
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Applying Lemma 1 again, and using the fact that G e SCQ P(B,), we see that there
exists a Banach space Ee 7 (B;) and continuous linear operators f;: G —» E and
f4 1 E > D such that the diagram (2) commutes

G———— £3— ——>E
|
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D
Clearly then diagram (3) commutes
Gom=L_ap
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By our assumption, f, is compact. Consequently f is compact, as required.

THEOREM 1. Let B be any Banach space. Then either c,€ ¥ (B) or
YV (B)nY(cy) € &.

Proof. Suppose ¥ (B) n ¥ (c,) contains a non-Schwartz space. By Lemma 2,
there exist Banach spaces D in ¥7(¢,) and E in ¥°(B), respectively, such that some
continuous linear operator ¥ : D — E is not compact.

Since De ¥ (cy), Theorem A implies that De QSP(c,) = QS(cy), as ¢q is iso-
morphic to its own square. Thus there exists a closed subspace A of ¢, and a con-
tinuous linear operator f of A onto D. Noting that fis a quotient mapping, we see
that the continuous linear operator uf: A — E is not compact. By [16; Remark 4,
p. 212), this implies that E has a subspace isomorphic to ¢,. Thus ¢, € ¥"(E) < ¥'(B),
as required.

CorOLLARY 1. If B is any infinite-dimensional Banach space in ¥ (c,) then
V' (B) = ¥"(co).

COROLLARY 2. Let B be an infinite-dimensional Banach space which is either
(i) reflexive, (ii) quasi-reflexive [1] or (iii) has separable second dual. Then
vV (BYn¥(co) €.
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Proof. 1t is clear from Theorem A that if B has any one of the three properties
named then so does every Banach space in ¥"(B). Since ¢, does not possess any of
these properties, ¢, ¢ ¥'(B). The result now follows from Theorem 1.

Remark. It was shown by Saxon [18] that if B is any infinite-dimensional Banach
space, then 7" (B) o A4, where # denotes the variety of all nuclear spaces. Thus if
4 is the class of all infinite-dimensional Banach spaces, then (g ¥ (B) 2 A

In view of Corollary 2, we now have a nice upper bound for (.5 ¥ (B); namely,
nBeé’l ’V(B) c &

Question 1. Is (\p.g ¥ (B) equal to A", & or neither?

Recently Randtke [15] has shown that ¥"(c,) 2 &. This partially answers
Question 3 of [4]). We are left with

Question 2. For what Banach spaces B is it true that ¥°(B) > & ? In particular,
if 1 <p<oodoes¥(l,)>?

We now mention two (as yet unpublished) results of Professor H. P. Rosenthal.

(Ry) If E is any infinite-dimensional Banach space in QS(1,), 1 < p < o0, then E
has a subspace isomorphic to 1,.

(R))If1<p<q<oo and E and F are Banach spaces in QS(1,) and QS(1,)
respectively, then every continuous linear operator u : F — E is compact.

Using Theorem A, the fact that 1, is isomorphic to its own square and (R,)
we have

THEOREM 3. If 1 < p < oo and B is any infinite-dimensional Banach spacc in
¥ (1,), then ¥"(B) = ¥ (1,).

Using [4; Theorem 4.6] and Theorem 3 we obtain

COROLLARY 3. If 1 <p #q < oo, then any Banach space in ¥"(1,) n¥'(1,) is
finite-dimensional.

Remark. Corollary 3 answers affirmatively Question 4 of [4]. A stronger result
is presented in Theorem 4.

THEOREM 4. If 1 <p#q < oo, then ¥V (1) n¥ (1) € &. (Cf. (2])

Proof. Without loss of generality, assume p <g. Suppose ¥°(1,) n¥°(1,) con-
tains a non-Schwartz space. By Lemma 2, this implies that there exist Banach spaces
D and E in ¥"(1,) and ¥"(1,), respectively, such that some continuous linear operator
u: D = E is not compact. By Theorem A and the fact that 1, and 1, are isomorphic
to their own squares we have that De QS(1,) and E€ @S(1,). However this contra-
dicts (R;). Hence ¥"(1,) n ¥ (1,) = &.

In conclusion we note that Randtke [14] has found concrete examples of a
universal generator for the variety of all Schwartz spaces. This answers Question 2
of [4]. (An existence proof was given in [4].)
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3. Miscellaneous results

This section is concerned primarily with commenting on questions asked in [4].
We begin with an examination of the following remark which appeared at the end
of §4 of [4]:

«If B is a quasi-reflexive Banach space then for each n, B®", the (2n)-th dual of
B, is in ¥"(B). How close does this phenomenon come to characterizing quasi-
reflexivity ?”’

Notation: Whenever E is a Banach space we denote its Banach space dual by E’.

THEOREM 5. Let E and F be Banach spaces. If Ee ¥ (F), then E' € ¥"(F'). Hence,
if ¥ (E) = ¥ (F), then ¥ (E') = ¥V (F').

Proof. If Ee ¥ (F) then, by Theorem A, Ee QSP(F). Thus, using the rules on
duality for normed spaces, E' € SQP(F’). Hence E’e ¥ (F’). The final statement of
the theorem is now obvious.

Example. Let ([0, 1]) denote the space of Radon measures on [0, 1]. The
Riesz-Markov Representation theorem says that ([0, 1]) is the strong dual of
C([0, 1]). It was noted in [4] that ¥*(C([0, 1])) = ¥"(1,). Therefore, by Theorem 5,
V(#0, 1)) =7 (') =¥ (1o).

Remark. If B is any Banach space then B is isomorphic to a subsapce of B”.
Therefore ¥ (B) < ¥ (B”). If B” € ¥°(B), then ¥"(B) = ¥'(B"'). By Theorem 5 this
implies that ¥"(B) = ¥ (B?"), for all n > 0.

Thus we see that if B is a Banach space with the property that B”’ € ¥"(B), then
B?"M e ¥°(B), for all n > 0. We now display a Banach space with this property which
is not quasi-reflexive. (Cf. [5].)

Let I be a countably infinite set, and for each iel let X, be the quasi-reflexive
space described by James [7]. Let X be the 1,-sum of these spaces. It was noted in
[5] that X' = II(X) @ 1,, where II is the canonical map of X into X”, and that X
has a subspace isomorphic to 1,. From these remarks we see that X is not quasi-
reflexive but ¥ (X) = ¥ (X").

We now give an example which shows that the converse of Theorem 5 is false.

Example. Let E = c3(R) and F = C([0, 1]). Then we have:
(a) E¢ ¥ (F), since F is separable but E is not. (See Corollary 4.16 of [4).)

(b) F¢ ¥ (E), since E is almost reflexive while F is not. (See [9], [13] and
[4; Theorem 4.9].)

(c) ¥ (E")Y = ¥ (F"), since by Theorem 5 and [4; Corollary 4.18], we have
Y (E) = 7(co(R)) = 7 (1,(R)) = ¥ (1,,) = ¥(C(0, 1))") = ¥ (F").
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Remark. The extension of Theorem 5 to Fréchet spaces E, F and their strong
duals E'y, F'; is not possible without some extra conditions. For example, let E = R
and F = R®, the product of countably many copies of R. Then we have

(a) ¥ (E) = ¥ (F) but
(b) ¥'(E'p) € ¥ (F'p), by [4; Theorem 3.6].

It was noted above that if E and F are Banach spaces such that ¥ (E') = ¥ (F'),
then ¥"(E) and ¥"(F) need not be comparable. However we do have

THEOREM 6. Let E be a separable Banach space. Then ¥ (c,) € ¥ (E) if and only
if v (1, s v(E).

Proof. Using Theorem 5 we only have to show that ¥(1,) € ¥ (E’) implies
¥ (¢co) € ¥ (E). Now by Theorem A, ¥(1,) € ¥ (E’) implies 1, e QSP(E’). Using
Lemma 3.1 of [12] we have that 1, € SP(E’) or equivalently 1, € S((PE)’). Now by
Theorem IV.3 of [8], ¢, € Q(PE), so that ¢, € QP(E). Hence ¢, € ¥'(E) and the proof
is complete.

We now turn briefly to Question 5 of [4]: “If 1 < p 3 q < o0, for what r does
1,e¥ ({1, 1,})?” Our next theorem gives a partial answer.

THEOREM 7. Let 1 < p# 2 < 0. Then 1,€ ¥ ({1,, 1,}) if and only if r is between
pand 2,

Proof. Both 1, and 1, belong to ¥(L,0,1)); so if 1,e¥ ({1, 15}), then
1,€ ¥ (L,(0, 1)), which by Theorem 4.7 of [4] yields that r is between p and 2.

Conversely it is clear from [17] that if r is between p and 2, then 1, is a quotient of
a subspace of 1, @ 1,, and hence 1,e ¥"({1,, 1,}).

This suggests the following question:

Question 3. If 1 < p < oo, does L,(0, 1)e ¥ ({1,, 1,})?

Question 12 of [4] was concerned with the possibility of there existing a separable
reflexive Banach space E such that ¥"(E) contains all separable reflexive Banach
spaces. We give the following (negative) partial result in this direction.

THEOREM 8. Let @ be the class of all separable reflexive Banach space and let
Ee . Suppose E is isomorphic to E2. Then 8 & ¥ (E).

Proof. If ¥"(E) contains £, then since E is isomorphic to E*, Z < QS(E). Now
using the notation of [20] and [21], we have that if #(E) = « then for any F € QS(E),
n(F) € n(E), by [20; Proposition 2.3} and [21; Lemma 3]. Thus #(F) < « for each
F e 4, which contradicts Proposition 3.2 of [20], where it is exhibited that there
exists, for each a, F € & with n(F) > a.
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Remark. T. Figuel announced that there exists a reflexive Banach space which is
not isomorphic to its own square. Thus it remains open whether or not the hypothesis
that E be isomorphic to its own square can be removed from Theorem 8.

In conclusion we note that Question 11 of [4] which asked if distinct Orlicz
sequence spaces are necessarily of incomparable linear dimension has recently been
answered in the negative by [10] and [11]. So we record the question:

Question 4. If the reflexive Orlicz spaces 1® and 1¥ are of incomparable linear
dimension, does ¥ (1®) n ¥"(1¥) consist entirely of Schwartz spaces?
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