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1. Introduction

In [6] and [2] Markov and Graev introduced their respective concepts of a
free topological group. Graev's concept is more general in the sense that every
Markov free topological group is a Graev free topological group. In fact, if FG(X)
is the Graev free topological group on a topological space X, then it is the Markov
free topological group FM(Y) on some space Y if and only if X is disconnected.
This, however, does not say how FG(X) and FM(X) are related.

We show that FM(X) is isomorphic to the coproduct (in the category of all
topological groups) of FG(X) and the discrete group Z of integers. This result is
analagous to one announced by Ward [16] namely that the Markov free abelian
topological group is isomorphic to the direct product of the Graev free abelian
topological group and Z. Both results are special cases of the following:

If 93 is a (non-indiscrete) variety of topological groups [7] and F(X, 93) and
G(X, 93) are respectively the Markov and Graev free topological groups of 93 on
X, then F(X, 93) is isomorphic to the coproduct in 93 of G(X, 93) and a one-
generator Markov free topological group of 93.

As an immediate consequence of this we see that topological spaces with
isomorphic Graev free topological groups have isomorphic Markov free topolog-
ical groups. Another consequence is that every G(X,93) is projective in 93. We also
use the above result to answer a question of Nummela [14] on Markov free topo-
logical groups.

In [8] we introduced the concept of a /^-variety as a variety for which the
Markov free topological groups have some pleasant properties. We show that we
obtain the same class of varieties if we based the definition of a jS-variety on
Graev free topological groups. This is noteworthy, since recent work [12] has
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shown (for example) that varieties generated by connected locally compact
groups are ^-varieties.

2. Definitions and results

DEFINITION. A non-empty class 93 of (not necessarily Hausdorff) topological
groups is said to be a variety of topological groups if it is closed under the opera-
tions of taking subgroups, quotient groups, arbitrary cartesian products and
isomorphic images.

DEFINITION. Let 93 be a variety, X a topological space and F(X, 93) a member
of 93. Then F(X, 93) is said to be a Markov free topological group of 93 on X if it
has the properties:

(a) there exists a mapping n: X -»F(X, 93) such that rj: X -* r\{X) is a
homeomorphism,

(b) for any continuous mapping y of X into any member H of 93, there
exists a unique continuous homorphism F of F(X, V) into H such that
Tri = y.

DEFINITION. Let 93 be a variety, X a topological space and G(X, 93) a member
of 93. Distinguish in X and arbitrary point e. Then G(Z,93) is said to be a Graev
free topological group of 93 on X if it has the properties:

(a) there exists a mapping r\: X -> G(X, 93) such that r\: X -* r\(X) is a
homeomorphism and n(e) is the identity element of G{X, 93),

(b) for any continuous mapping y of X into any member if of 93 such that
y(e) is the identity element of H, there exists a unique continuous homo-
morphism F of G(X, 93) into H such that Tn = y.

DEFINITION. Let 93 be a variety and {G,-: iel} a family of members of 93.
Then the topological group F in 93 is said to be a 93-product of {Gt: i e / } , denoted
by U9Gj, if it has the properties:

(a) for each i e I, there exists a mapping »/,: Gt -> F such that »/,•: G -»rj^G)
is an isomorphism,

(b) if for each i e /, yt is a continuous homomorphism of Gt into any member
if of 93 then there exists a unique continuous homorphism F of F into i / Z
such that Ttji — y,. for each i.

Every variety 93 defines a complete category [1]: the objects are the members
of 93 and the morphisms are the continuous homomorphisms between members
of 93. (93 has products and equalizers.) The forgetful functor S: 93-• Top (the
category of topological spaces) preserves products and equalizers and is therefore
continuous (preserves limits). The solution set condition is satisfied and Freyd's
adjoint functor theorem shows that S has a left adjoint F: Top-> 93. If*/: X^SFX
is the front adjunction, then for every continuous map 7: X-+SH, where H e93,
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there exists a unique continuous homomorphism F of FX into H such
that S{T)rj = y. Further, it is clear that r\: X -»• t](X) is a homeomorphism if and
only if V has a member with a subspace homeomorphic to X. Thus we have:

THEOREM 1. Let 23 be a variety and X a topological space. Then
exists if and only if 23 has a member with a subspace homeomorphic to X.

It is obvious that if F(Z,23) exists, then it is unique, up to isomorphism.
Noting that the class of groups of groups which, with some topology, appear in
23 is a variety of groups [13] it is shown in [7] that F(X,23) is the free group on
the set n(X) of the underlying variety of groups. In particular, n(X) generates
F(X, 23) algebraically. This distinguishes varietal categories from other categories
of topological groups. For example, if C is the category of compact groups, then
the forgetful functor S: C->Top has a left adjoint F : T o p - > C . However for
X eTop and r\ the front adjunction: X -> SFX, it is not true that t](X) generates
FX algebraically. Rather, the subgroup generated by r\{X) is dense in FX. (For
further comments see [11].)

Let us denote by Top0 the category of pointed spaces; the objects are (X,x0)
with xoeX eTop and the morphisms are base point preserving continuous maps.
There is a forgetful functor S0:23->Top0, since all groups are pointed at the
identity 1 and morphisms preserve identities. By Freyd s theorem So has a left
adjoint G: Top0-> 23. If rj0: (X,xo)-+(SoG(X,xo),l) is the front adjunction, then
for any continuous map y of X into S0H, where H e23 and y(x0) is the identity in
H, there exists a unique continuous homomorphismF of G(X, x0) into H such that
S(T)ri0 = y.Using arguments similar to those used for F(X,%}) in [7], we can show
that G(X,x0) is the free group on the set {x: xerjo(X) — x0} of the underlying
variety of groups. So no(X) generates G(X,x0) algebraically. Again we see that n0

maps X homeomorphically into rjo(X) if and only if there exists a member H of
23 having a subspace homeomorphic to X. [This statement is stronger than we
might expect but this is because we are dealing with categories of topological
groups. So if 6: X -»H is such that 6: X -* 9(X) is a homeomorphism, then by
defining 0o: X -> H by 0o(x) = 9(x)6(xo)~

l for each x e X, we see that
80: X -* 0o(X) is a homeomorphism and 90{x0) is the identity element of H.

THEOREM 2. / / 23 is a variety and X is a topological space, then G(X,23)
exists if and only if some member of 23 has a subspace homeomorphic to X.
Further, if G(X,23) exists then it is unique, up to isomorphism. {In particular,
it is independent of the choice of base point.)

PROOF. Our above discussion leaves only the last sentence to be verified. We
show that if xt and x2 are in X, the there is an isomorphism T: G(X,XX)

->G(X,x2). (We continue the above notation, with j / f : (.X>j)-> SoG^Xj),

i = 1,2.)
Define a continuous map yx: X -»S0G(X,x2) by yt(x) = r\2{x) n2(x1)~

l, for
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all xeX. Then yi(xt) is the identity element of G(X,x2). Therefore, there exists a
unique continuous homomorphism T: G(X,X{) -* G(X,x2) such that Sg^rjj^ = y1.
Similarly we can define a continuous map y2: X ->• SoGiXjXj) by y2(x) =
»7i(*) f i f o ) " 1 f ° r a u xeX, and there exists a unique continuous homomorphism
x':G{X,x2)^G{X,xi) such that SQ(x')n2 = y2.

It is easily verified that for each xeX, T'TO/IOO) = n^x). Since n^x) gener-
ates G(X,Xi) algebraically, T'T acts identically on G(Z,X!). Similarly r r ' acts iden-
tically on G(X,x2). Thus T is an isomorphism of G(X,x,) onto G(X,x2) and the
proof is complete.

Now we note that the forgetful functor T: Top0->Top has a left adjoint,
namely the functor P with PX = (XU{*},*), the space obtained by adjoining an
isolated base point. Since TS0: 33 ->• Top is just the forgetful functor S, then F is
naturally isomorphic to GP. Thus we have:

THEOREM 3. / / 33 is a variety, then every Markov free topological group of
33 is a Graev free topological group of 33. More precisely each F(X, 33) is iso-
morphic to G(Y,33), where Y is the disjoint union of X and a single point.

Our next theorem answers the question: When is a Graev free topological
group a Markov free topological group?

THEOREM 4. Let X be a topological space and 33 a variety such that G(X, 33)
exists.

(i) If X is connected then G(X, 33) is connected. Consequently, if 33 con-
tains any non-indiscrete group then G(X,33) is not a Markov free topological
group of 33.

(ii) If X is disconnected, then there exists a topological space K such that
G(Jr,33) is isomorphic to f(/C,33).

PROOF. Let n0: X -* S0G(X, 33), as before.
(i) Since tjo(X) is connected and contains the identity element 1 of G(X, 33),

the component of 1 contains no(X) and hence is the whole group G(X, 33).
(ii) If 1 is an isolated point of no(X), then by the comments preceding The-

orem 3, G(X, 33) is isomorphic to F(X- 1,33). That G(X, 33) is not a Markov free
topological group of 33, for 33 non-indiscrete, follows from Theorem 6.1 of [9].

Now assume only that X is disconnected. Then r\0{X) = Xx U X2 where X^
and X2 are open subsets of no(X). Let l e ^ and / be any element of X2. Put
Y = { l J u / Z i U Z j . It is clear that G(X,^8) is G(7,33). To complete the proof we
only have to show that 1 is an isolated point of Y.

Since G(X, 33) is not indiscrete there is an element a e G(X, 33) such that a
#cl.{l}. Then leAcU, where A is closed in G(X,^}), U is open in G(X, 33) and a
4 U. Define a mapping y of X into G(X,33) by y(x) = 1 if no(x)eXl andy(x) = a
if fo(*)e %2- Since y is continuous there exists a continuous homomorphism F of

3) into itself such thatr / / 0= y. Clearly H / Z j ) =r(X2) = a whiler(l) = 1.
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=r~ 1 ( t7)ny = 1. Hence 1 is an isolated point of Y. Thus the
proof is complete.

In [10] the following is proved:

THEOREM 5. Let 93 be a variety and {Gf: i e / } a family of members of 93.
Then \J% exists and is unique, up to isomorphism.

We note that a 93-product is simply a coproduct in the category 93. Looking
at coproducts in our other categories we have: if {Xt: iel} is a family in Top,
then the coproduct ]J Xt is the disjoint union of the Xt. If {(.X^x,.); i e /} is a fam-
ily in Top0, then the coproduct ]J (-X^Xj) is the space obtained from the coprod-
duct in Top by identifying all points xt (when considered in the coproduct) to a
single point x0. Now we use the well known fact that left adjoints preserve colim-
its—in particular, coproducts. So we have

(1)

(2) G(U(Xhx,)) =

Then (2) gives:

THEOREM 6. Let 93 be a variety and {X;: iel} a family of topological
spaces. In each Xt distinguish a point ei and let Y be the free union of the Xt

with all the et identified. If G{Y, 93) exists, then it is isomorphic to ]JsG(Xj,93).

PROOF. By Theorem 2, the existence of G{Y,V) implies the existence of
G(Xh 93), for each i E / . The result is then an immediate consequence of statement
(2) above.

We could state a similar theorem for Markov free topological groups. How-
ever, we first prove a lemma which allows us to prove a stronger version.

DEFINITION. Let G be a topological group and X a subspace of G which gen-
erates G algebraically. Then G is said to be a relatively free topological group
with free generating space X, if every continuous mapping of X into G can be
extended to a continuous endomorphism of G. (See [7])

Clearly each F(X, 93) is a relatively free topological group with free generating
space n(X).

LEMMA. Let G be a relatively free topological group with free generating
space X. If G is not indiscrete, then the identity element 1 is an isolated point of
Y =

PROOF. Since G is not indiscrete, there is a geG such that g$cl.{l}. Then
g e Ac U, where A is a closed subset of G,U is an open subset of G and 1 £ U.
Define a mapping y of X into G by y(X) — g. Since y is continuous, there exists a
continuous homomorphism F of G into itself such that T\X = y. Now F(X) = g
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and T(l) = 1. So r~\A)nY = r~l(U)n Y = X. Hence 1 is an isolated point
of Y.

Our next theorem says somewhat more than Theorem 3.10 of [10].

THEOREM 7. Let 93 be a non-indiscrete variety and {X,: iel] a family of
topological spaces. If F(Xt, 93) exists for each i e I, then \J_9F(Xb 93) is isomorphic
to ^(^,93), where Y is the free union of the Xt.

PROOF. Using the above lemma we see that Y is homeomorphic to a subspace
o f r L e / FCA",,93). Therefore, by Theorem 1, F(Y,^) exists. It is now clear from
earlier statement (1) that F(7,93) is isomorphic toJJ!BF(A'i,93).

Now let X and Y be topological spaces with x e X and X\\Y their free union.
Then (X\\Y,x) = (X,X)\J(YKJ{X},X) = (X,x)\J PY. Hence we have

G{X]]Y,x) = G(X,x) ]JGPY.

Since the functor GP is naturally isomorphic to F, we have

(3) G(X\jY,x) = G(X,x)UFY.

THEOREM 8. Let 93 be a non-indiscrete variety and X and Y topological
spaces such that F(X,^8) and F(Y,^B) exist. If Z is the free union of X and Y,
then G(Z,93) is isomorphic to both F(X,%)U9G(Y,%) and G(A')93)L[s/'(y,93).

PROOF. It is shown in Theorem 7 that if F(X,V) and F(Y,V) exist, then so does
F(Z,93). Therefore, by Theorem 2, G(Z, 93) exists. The result is then an immediate
consequence of the above statement (3).

COROLLARY 1. Let 93 be a non-indiscrete variety and X a topological space
IfF(X,$S) exists, then it is isomorphic to G(X,93)^F(Y,93), where Y is a one-
point topological space, {cf. [15].)

REMARK 1. The above corollary is of most interest when 93 contains the dis-
crete group Z of integers, in which case f(y,93) is isomorphic to Z.

COROLLARY 2. / / 93 is a variety and X and Y are topological spaces such
that G(A:,93)andG(y,93) are isomorphic then f(X,93) and F(r,93) are isomor-
phic.

REMARK 2. As an application of our work we answer a question of Nummela
[13].

Let X be a compact group, FG(X) the Graev free topological group on X
(in the variety of all topological groups) and a: FG(X) -> X the canonical quo-
tient morphism. Nummela shows that if H is the kernel of a, then H is a Graev
free topological group. (Consequently, every compact group has "projective di-
mension" one.)

He asks if the above proposition is true with FG(X) replaced by FM(X), the
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Markov free topological group on X, and "Graev" replaced by "Markov". The
answer is in the affirmative.

\ J c note \haX F M (J5T) = F G^X^WZ and \i a' \s V\ve catvomca\ quotient moxpYvism.
from FM(X) onto X, then the kernel of a' is H\\Z (where H is as above) and con-
sequently is a Markov free topological group, since H is a Graev free topological
group.

REMARK 3. Projective topological groups have been studied in [8], [10], [3],
[4], [5], [13], [14] and [15]. For our purposes here, we say the topological group
P e93 is projective in 93 if P is a retract of F(X,93), for some topological space X.
We point out that Corollary 1 implies that for any non-indiscrete variety 93,
GCY.93). is a retract of F(Z,93).Thus we see that for any variety 93,0(^,93) is
projective in 93.

DEFINITION. A variety 93 is said to be a jS-variety if for each Tychonoff space
X, F(X, 93) exists and is Hausdorff.

For comments on jS-varieties see [8] and [12].

THEOREM 9. A variety 93 is a ^-variety if and only if G(X, 93) exists and is
Hausdorff for each Tychonoff space X.

PROOF. Let 93 be a jS-variety and X a Tychonoff space. Then F(*,93) exists
and is Haudorff. Corollary 1 implies that G(A",93) exists and is isomorphic to a
sub-group of F(AT,93). Therefore G(X,93) is Hausdorff.

Conversely let 93 be a variety such that G(X,93) exists and is Hausdorff for
each Tychonoff space X. Let Y be the disjoint union of X and {a}. Then Y is a
Tychonoff space. Consequently G(Y, 93) exists and is Hausdorff. However, by
Theorem 3, G(y,93) is isomorphic to F(X,93); that is, F(X,93) exists and is
Hausdorff.
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