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THE TOPOLOGY OF FREE PRODUCTS

OF TOPOLOGICAL GROUPS

Sidney A, Morris, Edward T. Ordman and H.B. Thompson

1. Introduction

In 3], Graev introduced the free product of Hausdorff topological groups &
and H (denoted in this paper by Z || ¥ ) and showed it is algebraically the free
product G * H and is Hausdorff., While it has been studied subsequently, for
example [4, 6, 7, 8, 11, 12], many questions about its topology remain unsolved. In
particular, partial negative results about local compactness were obtained in [7, 11,
12]. In this paper we obtain a complete solution by showing that G || # is locally
compact if and only if G, # and G ]| H are discrete. A similar line of reasoning
allows us to show that ¢ | # has no small subgroups if and only if & and Z have

no small subgroups.
We are able to obtain much stronger results when G and H are kw—spaces, a

class of spaces which includes, for example, all compact spaces and all connected

locally compact groups. In this case we are able to show that the cartesian subgroup,

gplG, H] = gp{g_lk_lgk tg€G,hn ¢ H |, of € |l # 1is a free topological group, show
that certain subgroups of & ﬂ H are themselves free products, and show that the
topology of G | # depends only on the topologies and not on the algebraic structure
of G and H .

2. Definitions and preliminaries

If X is a completely regular Hausdorff space with distinguished point ¢ , the
(Graev) free topologieal group on X, FG(X) , is algebraically the free group on
X\{e} , with e as identity element and the finest topology making it into a
topological group and inducing the given topology on X ; by [2], FG(X) is
Hausdorff.

This research was done while the second author was a visitor at the University
of New South Wales, partially supported by a Fulbright-Hays grant.
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If ¢ and H are topological groups, their free produyct ¢ | H is a
topological group whose underlying abstract group is the algebraic free product
G * H and whose topology is the finest topology making it into a topological group
and inducing the given topologies on ¢ and H ; by [3], if G and H are

Hausdorff then G J| # is Hausdorff.

For the remainder of the paper all topological groups and spaces will be

presumed Hausdorff.

A topological group is said to be NSS ({or to have no small subgroupe) if there
is a neighbourhood of the identity e which contains no subgroup other than {e} .
This property is most important for locally compact groups in that Hilbert's fifth

problem yields that a locally compact group is a Lie group if and only if it is NSS,

We require the following algebraic preliminaries: The identity map & » G and
the trivial map H » {e} c  extend simultaneously to a homomorphism

™ PGk H+ G5 by [3], this is also a continucus map from G| # to G .
Similarly Ty, PG H>H is a homomorphism and a continuous map on ¢ || # . The

map 7, X 7w, + G%* H> G x H has kernel gp[G, H] , where

1 2

[G, 7 = {gnlh_lgh tge Gy he H} . Indeed gp[G, H] is a free group with free

basis [G, H]\{e} . We find it convenient below to introduce a map

et Gx H»> [G, H] sgiven by olg, #) = [g, h] = g_lhﬂlgh . If w 1is any element of

G % H it has a unique representation w = ghk , where g ¢ &, h ¢ H and

k ¢ gp[G, H . We define a map ﬂc PG *x H > gp[Gs H] by

we(w) =k = ﬂz(w)_lnl(w)_lw { notice that it is not a homomorphism, Finally we note
that there is a bijection (not a homomorphismy p : ¢ X H X gp[&, H] = G % # given by

plg, h, k) = ghk . The inverse map is p—l(w) - (nl(w)’ ™, ), ﬂc<w)} .

In §4 we use some additional machinery, that of kw—spaces; we rely heavily on

[4]. A topological space X is said to be a kw-space with decomposition X = UXn R

if Xl’ X for all » , X= | X and

s +.. Aare compact subsets of ¥, ¥ < X
2 7 n+

1

the Xn determine the topology on X in the sense that a subset 4 of X is

closed if and only if 4 n X} is compact for all » . The decomposition X = UXn is
(2

essential, inm that X may be a union of some other ascending chain of compact subsets

which fail to determine the topology. If X =(Ux¥ and Y = Uyn where Xn and Yn
n

are ascending chains of compact sets, the two ascending chains determine the same

topelogy on X provided each X is contained in some Yk and each Y is
n n
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contained in some Xm .

If ¢ 1is a topological group and a kw—space the decomposition G = UGn may be
chosen so that the Gn satisfy two additional conditions: 1if g ¢ Gn then

-1 ‘e ;
g €Gn,andlf geGn, heGk then grzeGn+k.

If X 1is any subset of a grouwp & , we let gpn(X) denote the set of elements

‘v

of G which are products of at most »n elements of X . Hence gpn{Gn} c G 2
n

The class of topological groups which are kw-spaces is large enough to include
many of the standard examples; in particular, every connected locally compact group
is a kw—space [12].

We rely heavily on the following result of [4]:

PROPOSITION. Let G be g topological group and X a subset which generates G
algebraiecally. Let X = ux, be a k,-épace. Then G has the finest growp topology

consistent with the original topology om X if and only if G is a k-space with

decomposition G = ngn(Xn} .

It follows that if X = UXn is a ?cw—space then FG(X) 1is a kw—space with
decomposition FG(X) = Ugp (X ) . If 6 =UG and H=Ud are k -spaces then
nyn n 7 W
G|lH is a kw-space with decomposition ¢ || # = ngn(Gn u Hn) .
Finally note that when we say that a continuous map f : X >~ Y of topological
spaces is quotient map we mean that Y has the finest topology for which F is

continuous; this is equivalent to requiring that A < ¥ 1is closed whenever f“] (4)

is closed in X .

3. Results for general topological groups

We begin with a few words about Graev's proofs of the existence of free

topological groups and free products of topological groups.

Let X be a completely regular space and ¢ a distinguished point of ¥ . Let

G(Xy be the free group on the set X\{g} , with g as the identity element of the

group. Let X' =Xy X—l . Being completely regular, the topology of ¥ is defined
by a family of pseudometrics. Let p be a continuous pseudometric on x . Graev

extended p to a two-sided invariant pseudometric on @(¥) as follows: Extend ¢

. -1 -
to X' by setting plx , y 1} = ox, y) and
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olz™t, y) = ples y) = oz, ) + oGy,

for £ and ¥ in X . For u and v in G(X) we have an infinity of

representations y = Ly eee oy V=Yg e Y, where x, and y, X . Extend

n
P to G&) by setting p(u, V) = inf[LE pﬁzi, yi)} , where the infimum is taken

over all representations u = Ty eee &, and v = Yy eo0 ¥, - The family of all such

two-sided invariant pseudometrics on G(X) yield a topological group Fs(X) . (It
is shown elsewhere that FE(X) is the free topological SIN group on X .) Now
Fg(X) is Hausdorff; FG(X) is the group G(X) with the finest Hausdorff topology
inducing the original topology on X . This topology FG(X) 1is in general 9] a

finer topology than FS(X) .

Next we let G and H be topological groups. Graev defined a topology T
(not the free product topology, in general) on G * H using the map
ptG*HXgp[G, H] > G * H . The method requires us to topologize gp[G, H] in
some way and then topologize G # F to make the map p a homeomorphism. Since p
is not a homomorphism it must be checked that this topology T on G * H is a group
topology. (This is in fact quite difficult but our brief comments suppress this

difficulty.) Let DG and pH be continuous right invariant pseudometrics on &

and H respectively, Define a pseudometric on [G, H] by

pgh
-1, -1 -1 -1 . .
pGH[gl Bigikys 9y By ggh,| = min(min(oy(g)s e}, py(s e))
+ min{e;(g,, 2}, 0,(ky, €))s 0,05, 9,040, 00y, B))]
The family of all such Pen gives rise to a completely regular topology on [G, H]

Next, noting that gp[G, H] 1is a free group on [G, H]\{e} , we topologize gp[G, H]
by putting (gp[G, H], Tl} = Fs[G’ H] . Finally we define the topology T on

G * H by making

p:GxHx* (gp[C, H], Tl) -+ (G * H, 1) a homeomorphism.

Thowpson [13] showed that Fs(X) is NSS if and only if X admits a continuous

metric. (Thompson's result is stronger than that of Morris and Thompson [10] which

showed that FG(X) 1is NSS if and only if X admits a continuous metric.)

Now if G 1is NSS, then ( admits a continuous metric [10}]; so if G and X
are NSS, then G X H admits a continuous metric. Thus [G, H] with the pseudometric

topology described above admits a continuous metric. Hence fE[G, H] 1is NSS if ¢

and H are NSS. We are now able to prove the following theorem:
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THEQREM 1. G | B is NSS ©f and only if G ond H are NSS.

PROOF. 1If G | H is NSS then any subgroup must be NSS. Im particular, & and
H must be NSS,

If G and H are NSS, then the above discussion yields that FS[G, H] is NSS.

We shall prove that (G % H, 1) is NSS, as then G || # which has the same algebraic
structure but a finer topology will also be NSS. Suppose that (G * &, 1) , which
is homeomworphic to & X H X F_[G, H} , fails to be NS5, Let N and X be

<o

neighbourhoods of ¢ in G and H , respectively, which contain no non-trivial sub-

groups. Then w;l(IV) n ﬂgl(M) is a neighbourhood of e in (G * H, T) . Let 4

be a subgroup contained in rll(N) n ﬂzl(M) . Since ™ is a homomorphism and

¢ . Thus

T?l(A) < J we must have ﬂl(,é_) =g ., Similarly ‘nz(/i)

AC FS[F, G} < (¢ % H, 1) . Since FB{G, H] 1is NSS, 4 = {g} , as desired.

REMARKS. (1) This theorem generalizes the main result of [8] which says that
if G and H are connected locally compact groups then & | # 1is NSS when and only

when G and H are Lie groups.

(2) Note that the proof of Theorem 1 actually yields: (& % H, 1) 1is NSS if
and only if G and # are NSS,

The fact that (G #% H, 1) 1is homeomorphic to G ¥ H X gp[G, H] 1leads us to ask

if a similar result is true for ¢ || # . It is!

THEOREM 2. If gplG, H] is topologized as a subset of G | H , then G || H
is homeomorphic to G X H X gp(G, H] (the homeomorphism is given by the map p ).

PROOF. Since G _U_d is a topological group, the product map
@G lom*EloH*x B +G6H, given by (g, h, k) » ghk 1is continuous, and
so is its restriction p ¢ G *x H * gp{G, H] » G || H + We must show that the inverse

map is continuous. The maps mod GJ]H>G and m, G || H+ H are continuous, so

rc(w) = ﬂz(w)—lﬂl(w)_lw is a product of continuous maps and thus continuous. Hence

the map w - (Wl(w), ﬂz(w), ﬂc(w)) = (g, h, k) 1is continuous, completing the proof.

THEOREM 3. Suppose G # {e} and H # {e} are topological growps. Then
G | B is not a locally compact space or a complete metric space wiless G and 4
are both discrete. (Of course if G and H are discrete, G || H is also discrete,

and consequently locally compact and complete metric.)

PROOF. Suppose G J_LH is a locally compact space of a complete metric space;
then so is the closed subgroup gp[G, H] . But as gp[G¢, H] 1is algebraically a free
group it follows from Dudley [1] that gp{G, H] 1is discrete. Now & 1is also
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discrete: for if {ga} is a non-constant net converging te g € ¢ and h € E\le} ,

then {E?S’ k]} is a non-constant net converging to [g, ] in gplG, H] , which is

impossible, Similarly # is discrete. Finally we see G || # , which is
homeomorphic to & X H * gp[G, H] , is also discrete.

REMARK. Theorems 2 and 3 hold (with the same proofs) for any group topology W

on G % H for which the projections LI (G H, W) G and LI (G* H, W > H

are continuous and which induce the given topologies on (¢ and # . Thus it would
be of interest to answer!

QUESTION 1.' Is there awy growp topology u on G % H such that either
projection LA (G * Hy W) > G or T, (G * H, Wy * B 1is discontinuous?

If continuity of ™ and T could be shown even under the hypothesis that
Gy, H and (G * H, W) are locally compact, we could conclude that no group topology

on an algebraic free product is locally compact (except trivially).

What is the topology that gp[G, H] rtecelves as a subset of & || # 7 It is
natural to hope that it has a free topological group topology, on an appropriate

topology for [G, H] .

QUESTION 2. (a) LIoes the topology induced on gplG, H] as a subgrow of
G || B make it the free lopological growp FG[G, H] ?

(b) Is the topology induced on [G, H] as a subset of G | H, the same as the
quotient topology under the map G X H =~ [G, H] given by (g, h) ~ [g, k] ?

We have already noted that Graev's Topology Fs[G’ H] is not, in general,

FG[G, H] . Example 1 in §5 shows that 2 (b) is also false for Graev's topology;
that is, Graev does not give [G, H] the quotient topology. On the other hand we

will answer both 2 (g) and 2 (b} affirmatively when G and H are kw~groups.

4. Results for groups which are k,-spaces

We begin by answering Question 2 (b} for this case.

THEOREM 4. ILet & and H be topological groups which are k -spaces. Then
et GXH>[G, Bl <G | B is a quotient map.

PROOF. Let the km—space decompositions of G and H be G = UG and

n

H = UH?'E « In view of the Proposition stated in §2, & & is & kw-space with
decomposition § || § = ngnEG” U Hn) . [Thus a set 4 is closed in ¢ Il # if and
only if 4 n = an U HM) is compact for all n , where gpn(Gn U Hn] is the set of

! This question has since been answered in the affirmative.
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elements of ¢ ll_H which are products of at most n elements of Gn u Hn 3 it is
compact in G || H )

Now let A4 < [G, H] be such that c_l(A) is closed in ¢ % H . We must show
A is closed in [G, H] . It will suffice to show 4 is closed in G | # . We

-1 ( 1

hall that n G = ¢ *x H s the
shall prove 4 gpn( Y H”} c[c @ n anz Fﬁzn I gpn(Gn U Hm) as
right hand side is the intersection of a continuous image of a compact set with a
compact set it is compact.

If n < 4, both sides are trivial, so assume 7 > &4 ., Now if
w € gpn(Gn u Hn} s W= Ty wen @ with x; € Gn or Hn 3 in reduced form

w = g_lh_lgh , 80 clearly g is a product of at most » terms from Gn 3 Thence

g €G 9 - Similarly h ¢ H 2 Since w = e(g, k) we have that
n T

w € cIa-l(A) 8l [G g X H 2}] . The other inclusions needed are easy. Hence
n n

An gpniGn U Hn) is compact for all #n , and A 1is closed, as required.

Note that it follows from the Proof of Theorem 4 that [G, #] 1is closed in
G | #. We now turn to Question 2 (a/.

THEOREM 5. Let G and H be topological groups which are k epaces. Then
the topology on gplG, H] as a subgrowp of G

H is the free topological group

1

topology FG[G, H) .

PROOF. Again let @G = UGn and H = UHn be km~space decompositions. Then
Gll#=ue,lG v Hn) and (G, H] = U([G, ] e, (G, v Hn]) are k -space
decompositions,

Now from the Proposition given in §2, FG[G, H] is a km~space with
decomposition FG[G, H] = ngn([G, H n gpn(Gn vl Hn}] . On the other hand, gp[G, H]
is a closed subgroup of ¢ || # and hence a kw—space with decomposition
gp[G, H] = U{gplG, #] n gp (6, v Hn}) .

Clearly each gpﬂ([@, H] n gpn{(}n ¥ Hr}s is contained in
gplG, H] n gpk(Gk 5 Hk} , for k = ?’Lz 3§ we must show for each % there is an =
o~ (e 3
such that gplG, #] n gpn{c-'n U E’n} < gp, {[G, H] n gpm{Gm U Hm)} .
Let w € gp[G, H] n gpn{Gn U Hn) . Without loss of generality suppose n > 4

and write w = glhng ‘e gn—lhn , each g; € Gn and each hi eHn . We shall
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discuss a way of writing ® as a product of commutators.
9T o Tpaly
. -1 ; .,
- [ 915 My ]hZ(QIQB)nA v Gty
-1 -1t
{?1 , B }[ﬂglg3) Ry ] (9,99 ()1 )gg -ov g, 4R,

[ ][l ™ 1] o™ pd ] o oy e ) Oy e )

The last line has » - 3 commutators. Since ﬂl(w) = TFZ(LJ) = ¢ we see that

w

[}

. 1
gy vt Gy hZ Ve hn =e¢ . So w is a product of #n - 3 commutators [g, k] R

where each g is a product of at most »n factors from Gn and hence lies in & g "
n

Similarly for h . So for any m = n2 we have

[g» B] € [Gy H] 0 gpm[Gm U Hm)

and
ween ([6, 5 nep, (6 v},
as desired. Thus the topologies of FCG[G, ] and gp[f, H] are the same, completing
the proof.
REMARK. It follows that if (G and H are topological groups and kw—spaces,
G ]| B contains a free topological group FG[G, H] on a kw—space [Gy H] . 1In this

case we can draw somewhat stronger conclusions than Theorem 3; for instance, & _[L H
is (except trivially) not metrizable and not SIN. (A topological group is said to be
a SIN group if every neighbourhood of e contains a neighbourhood of the identity

invariant under inner automorphisms of the group.) This leads us to ask

QUESTION 3. If G and H are topological groups, at least one of which is

not a discrete space, can G | H be
(a) metriaable, or
(b) a SIN group?
By methods exactly similar to those used in Theorem 5 we obtain
THEOREM 6. Let G and H be topological groups which are k -spaces; let 4

be a closed subgrovp of G and B be a closed subgroup of H., Then the subgroup of
G || H generated by A u B is closed and is (topologically and algebraically)
Al B.

For general G and X, A and B closed does imply that the group generated
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by AuB in G | & 1is clesed; this however requires a careful examination of the
Graev topology (G * H, 1) introduced before Theorem 1. It does not provide an

answet to:

QUESTION 4. Let G and H be topological groups and A and B closed sub-
groups of G and # respectively. Let gp(4 u B) denote the subgroup of G | H
generated by A u B . Algebraically it t¢ A %« B . Is gp(d u B) the topological
free product A | B 7

It is natural to ask whether the topology of & ﬂ»H depends only on the
topologies of (¢ and H or also on the group structures. One may be inclined to

conjecture that if it G, > H and fé : ¢, » H, are hcemowmorphisms, perhaps a

1 2 2
homeomorphism fl * f2 : Gl * G2 > Hl * H2 can be constructed by letting
= £ 1p ¢
£l * fz(rlsl RN rnsn) Jl(rljjz(sl) .. fl(rn)fz(sn} » vhere 7, ¢ ¢ and
5; € Gz , This fails in general! For instance, if {35} is a net converging to &

in 62 y fé(e) =e and r and r, are elements of G with

£l f () # 7 (rymy) , then

lim f) £, (zsery) = lin £ (235, (530 () = 7 ()7, ()
while

FE e T O e BP I oY COEOL B ) COE R o R P ES

80 fl * fé is discontinuous.
In the kw—space case, another apprcoach succeeds:
THEOREM 7. LIet G and i be topological groups which are Kk -spaces, for

i=1,2. If Gi is homecmorphic to Hi , T =1, 2 tihen Gl ﬂ_Gz 1s homeomorphic
to H [ H, .

PROOF, As G G is homeomorphic to G, X G X FG[Gl’ sz and H || F is

1ﬂ2 1 2 1 =72

homeomorphic to El X H2 X FG Hl’ HZI and as FG(X) and FG(Y) are homeomorphic if

X and Y are homeom§rphic (independent of the choice of basepoints) it will suffice

to show that [Gl’ G

2 is homeomorphic to Q?l, HZ] . Let 7 B Gi > Hi be a

homeomorphism for ¢ = 1, 2 ; since topological groups are homogeneous, we may

assume that the f% have been chosen so that f%(e) = ¢ for each 7 . Hence the

diagram
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SRR

GoX 02 ——— H X H

c c

[Gl’ Gz] 7—’ [Hls Hz]

is commutative, where j([gl, 92]} = Lfl(gl), fé(gz)] » and as each vertical map is a
quotient map, J is a homeomorphism. This completes the proof.

In view of this it appears that general solutions to Question 2 (a) and 2 (b)

would allow a general solution of:

QUESTION 5. Let G, and g be topological growps for < =1,2 . If ¢,

g homeomorphic to 4, for =1, 2 1is G1 1L G2 necessarily homeomorphic to
?
B |l 8,
It was shown in Ordman [12] that if (¢ and H are arcwise connected topological
groups, then the fundamental group
TG | H) = (G X H) X L = m(G) % m(H) XL

for some group L . It was conjectured that [ 1is always trivial. We now see that
m(G || ) = m(G) x w(H) * n{gp[G, H]) , where gp[G, Y] has the induced topology from
Gl # . Further if ¢ and H are ku—spaces, then

(G || H) = w(G) x w(#) x n(FG[G, H]) .

So the group L has now been identified. However we have been unable to prove that
T(FG[G, H]) 1is trivial in any case other than the one covered in [12]; that is,
when (¢ and H are countable (W-complexes with exactly one—zero—cell. It seems
reasonable to conjecture that 1f G and # are simply comnected then
(G ﬂ_H) = mM(G) X T(H) . However for this we need to answer

QUESTION 6. If X 4is sinply conmnected is FG(X) necessarily simply connected?

Is it true under the additional assumption that X 18 a kw—Opace?

5. Examples
We conclude by giving two elementary examples which bear on the preceding.

EXAMPLE 1. The map ¢ : G X H > [G, H] © (6 * H, T) is not a quotient map, in
general, where T 1is Graev's topology. Let (G = H = R , the additive group of

reals with the usual topology. Consider the sequence a, = (n, 1/n) in R X K .
Now c(an} converges to e in (R % R, 1) , for

D(c(an), e) = min(|n], [1/2]) = 1/m e,
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where P is the metric (described in §3) arising from the usual metric on each copy

of R . However c(an} fails to converge to ¢ in R ] ® . To see this note that
R is a kw-space with decomposition R = U[-n, n] . Since {e[ak} t k=1, 2, ...}
has finite intersection with each gpn([—n, 7} u [y n]) (here the first

[n,n] € R =G, the second [, n] @ R =14#), it is a closed set in R | F and

hence does not converge to ¢ .
Since a[an) € [R, R| for all n and e € [R, B] , it follows that [R, R] is

topologized differently in (R % K, T) than in & | B . Hence answering Question 2

will require more than an appeal to Graev's topology.

Incidentally the above argument also shows that the topology comnstructed in
Ordman {11 (I)] also yields a topology on R * B other than the free product
topology.

EXAMPLE 2. While the free product of compact groups is a kw—space, it is very

large. Although every discrete subgroup of a compact group is finite, the free
product T || 7 of two circle groups contains a discrete subgroup which is not even
finitely generated. Consider the subgroup {e, 2} of order 2 of the first factor
and the subgroup {e, b, bz} of order 3 of the second factor. The free product
{e, a} ﬂ‘{e, b, bz} is discrete and by Theorem 6 it is a subgroup of T [ T . Hence
its subgroup gp[{e, al, {e, b, bz}} , the free group on the two generators
z = [a, b] and y = [a, sz is discrete. This group in turn contains the free
2 =2

b

group on the countable set {x, ymy_l, y Y

On the other hand, compact subgroups of T ﬂ_T are very small. Every compact

subset of 7 u T 1is contained in some group gpﬂ(T u T) 3 that is, has bounded word

length, However the only subgroups of 7T * T with bounded word length are those
which are conjugates of subgroups of one of the two factors. Hence every compact
subgroup 7 || I' is either finite, or a conjugate of one of the two factors and hence

itself a circle group.

QUESTION 7. What are the locally compact subgroups of T | T ?
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