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VARIETIES OF TOPOLOGICAL GROUPS
GENERATED BY SOLVABLE AND NILPOTENT GROUPS

BY

SIDNEY A. MORRIS (SYDNEY)

1. This paper is a sequel to [6]. In [2] it was shown that any connected
Lie group in a variety of topological groups generated by solvable (nil-
potent) connected Lie groups is solvable (mnilpotent). This result was
extended in [6] from solvable connected Lie groups to solvable connected
locally compact groups. We prove a similar result here for the nilpotent
case and also attack the connectedness condition.

Our notation and terminology will be that introduced in [6], and
we will use the following basic result [1] on generating varieties:

THEOREM. If Q is any class of topological groups and G i3 a Hausdorff
group in V (Q2), then @G ¢SCQSD (Q).

2. Our first theorem generalizes Theorem 2 of [6].

THEOREM 1. If Q i8 a class of locally compact groups each of which
has the component of thé identity solvable, then any connected locally compact
group G in V() is solvable. ,

Proof. According to the theorem in Section 1, GeSC6S_D(Q); that
is, G is a subgroup of a product ” A,;, where each A, eﬁgD(Q).

We claim that each A; has tl;élproperty that the component of the

identity is solvable. Firstly, we observe that each member of §D(.Q) has

this property. Let Bie§D(.Q) and let f be an open continuous homomor-
phism of B; onto 4,. If K, and K; are the components of the identity in 4,
and B;, respectively, then, by Theorem 7.12 of [3], f(K;) is dense in K.
Since K; is solvable, f(K;) is solvable and, consequently, K; is solvable;
that is, our claim has been proved.

Let p;(@) be the projection of @ in 4;, and let G; be the closure in A;
of p,(@). Since @ is connected, G; = K,. Thus, each G, is a solvable connect-
ed locally compact group. Finally, noting that G ¢SC{G;: I}, we infer,
by Theorem 2 of [6], that G is solvable.
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COROLLARY. If 2 48 a class of solvable locally compact groups and G
18 a connected locally compact group in V(L2), then G s solvable.

Remark. We note that if the connectedness restriction on G is
removed, then the resulting proposition is false. For example, let 4,,,
m =1, 2,..., be discrete finite solvable groups such that each 4, is of

solvability length not less than m. Then the product group [] A4,, is
m=1

a compact non-solvable group in V{4,:m =1,2,...}. However, we
shall see that we can drop the connectedness restriction on G if we insist
instead that G be a Lie group.

LeMMA 2. If Q is any class of topological groups and G is a discrete
in V(RQ), then G <QSD(Q).

Proof. We will show that Ge§D6§D(Q). This suffices as clearly [1]

SDQSD(2) = SQDSD(2) = QSDSD(2) = QSD(2).

If we put I' = -QED(Q), then, using the theorem in Section 1, we
infer that @ ¢SC(I"); that is, @ is a subgroup of a product [| F;, where

el
each F, is in I'. Since G is discrete, there exist a,, ..., a, in I such that

e = (i]_I[O,-)nG,

where ¢ is the identity element of G, each O; is an open set in F; and,

n
for ¢ # o; and some je{l,...,n}, O; =F;. Let F =[] Fo; and let p

j=1

be the natural projection mapping of n F, onto F. It is readﬂy seen

that p (@) is 1somorphlc to G. Thus @ eSD(F) Finally, we note that since @
is complete, G «SD ().

THEOREM 3. If 2 is a class of solvable locally compact groups, then
any Lie group G in V() is solvable.

Proof. Let C be the component of the identity in @. Since C is
a connected Lie group in V(£2), by Theorem 1 we infer that C is solvable.
Now, G/C is a totally disconnected Lie group, and hence it is discrete. There-
fore, by Lemma 2, G/C ¢QSD(2) and, consequently, must be solvable.
Finally, since ¢ and G/C are solvable, so G is too.

THEOREM 4. If Q 8 a class of locally compact groups each of which
has the component of the identity nilpotent, then any connected locally compact
group in V() is nilpotent.

Proof. According to Section 4.6 of [5], G has a compact normal
subgroup N such that G/N is a Lie group. Further, by Section 4.13 of
[6], N is contained in a compact connected subgroup M of G. Since
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M eV (2), by Theorem 1 of [6] we infer that M is abelian. Thus N is a com-
pact normal abelian subgroup of &, and, consequently, [4] it is central.
We now prove that G/N is nilpotent, and hence G is nilpotent.

Now suppose that each member of £ is connected. Then, as in Theo-

rem 2 of [6], V(£2) = V(I') for some class I' of connected nilpotent Lie
groups. Since G/N is a connected Lie group in V(I'), by Corollary 3.4
of [2] we infer that G/N is nilpotent. Finally, note that the connected
restriction on 2 can be removed as in Theorem 1.
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