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Nonmeasurable subgroups of compact groups
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Abstract. In 1985 S. Saeki and K. Stromberg published the following question: Does
every infinite compact group have a subgroup which is not Haar measurable? An affirma-
tive answer is given for all compact groups with the exception of some metric profinite
groups which are almost perfect and strongly complete. In this spirit it is also shown that
every compact group contains a non-Borel subgroup.

Introduction

For a compact group G,measurable means “measurable with respect to the unique Note 1:
Red parts
indicate
major
changes.
Please
check them
carefully.

normalized Haar measure � on G.” Since Haar measure is a Borel measure,
every Borel subset of G is measurable. A subset S � G is a null set if �.K/ D 0
for each compact subset K of S , and if for each � > 0 there is an open neigh-
borhood of S such that �.U / < �. Every subset of a null set is measurable (see
[3, paragraph after Chapter IV, Section 5, no. 2, Definition 3, p. 172], or [12, p. 125,
Theorem 11.30]).

The topic of subsets of a (locally) compact group which are not measurable with
respect to Haar measure is a wide field. Hewitt and Ross provide an instructive
and far-reaching discussion of this topic in [12, pp. 226ff.]. The present question
differs insofar as in this paper we are looking for the existence of nonmeasurable
subgroups rather than just nonmeasurable subsets.

Question 1 ([25]). Does every infinite compact group contain a nonmeasurable
subgroup?

For abelian compact groups Comfort–Raczkowski–Trigos-Arrieta [4] showed
the existence of nonmeasurable subgroups. See also Kharazishvili [17]. For some
partial answers in the noncommutative case see Gelbaum [7, Section 4.45].

The first author was partially supported by Generalitat Valenciana, grant: PROMETEO/2014/062.
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1 The standard background material

We now present a systematic approach towards answering Question 1. First, we
introduce some pertinent notation.

The term card.G/ denotes the cardinality of G, notably when G is a group.
Secondly, if H is a subgroup of G and G=H is the set of cosets gH , g 2 G, then
.G W H/

def
D card.G=H/ denotes the index ofH inG. We say thatH has countably

infinite index (in G) if and only if .G W H/ D @0, and that H has countable index
(in G) if and only if .G W H/ � @0.

Proposition 1.1. Let G be a compact group and H a subgroup.

(a) If H has countably infinite index, then H is nonmeasurable. In particular,
H is not a Borel subset.

(b) If H is measurable, then either it has measure 0, or it has positive measure in
which case it is open (thus having finite index).

(c) If H has finite index in G and is not closed, then H is nonmeasurable. In
particular, a countable index subgroup H of G is either closed with finite
index or is nonmeasurable.

(d) If H is nonmeasurable in G, then H is an open (and therefore finite index)
subgroup of G.

(e) If H is a finite index subgroup, G D H [ g1H [ � � � [ gnH , then the largest
normal subgroup N D H \ g1Hg

�1
1 \ � � � \ gnHg

�1
n has finite index in G.

(f) Assume that H is nonmeasurable and that N is the largest normal subgroup
contained in the open subgroupH . Then N is open andH \N is dense inN
and nonmeasurable in N .

(g) Assume that f WG ! G1 is a surjective morphism of compact groups and
that H1 � G1 is a nonmeasurable subgroup of countable index. Then H def

D

f �1.H1/ is a nonmeasurable subgroup of G.

Proof. (a) (See [12, p. 227] and [25, Remark on p. 373].) Let ¹g1 D 1; g2; : : : º be
a system of representatives for G=H , that is,

G D

1[
nD1

gnH; a disjoint union. (1)

Suppose that H is measurable. Then gnH is measurable for all n and �.gnH/ D

�.H/ by the invariance of Haar measure. So (1) implies

1 D �.G/ D

1X
nD1

�.gnH/ D sup
ND1;2;:::

NX
nD1

�.gnH/ D sup
ND1;2;:::

N ��.H/: (2)
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In particular, ¹N ��.H/ W N D 1; 2; : : : º is a bounded set of nonnegative num-
bers, and this implies �.H/ D 0. Then N ��.H/ D 0 for all N D 1; 2; : : : and
so supND1;2;:::N ��.H/ D 0. This contradicts (2) and therefore our supposition
must be false. That is, H is nonmeasurable.

(b) If H is measurable and has positive measure, then by [12, Section 20.17,
p. 296], the groupH D HH has inner points, and thus is open. See also [3, Chap-
ter VIII, Section 4, no. 6, Corollaire 1].

(c) If H has finite index in G, as in (a) above, let ¹g1 D 1; g2; : : : ; gN º be
a system of representatives for G=H . Assume that H is measurable. Then

1 D �.G/ D

NX
nD1

�.gnH/ D N ��.H/:

Thus �.H/ D 1
N
> 0. ThenH is an open subgroup by (b) and thus is also closed.

(d) Assuming thatH is nonmeasurable, we know thatH is not a null set by the
initial remarks in our introduction. So assertion (d) follows from (b).

(e) This is straightforward and is well known.
(f) The subgroupN is open and of finite index by (d) and (e). NowN D N \H

since N is open and H is dense in H . Also, since N is an identity neighborhood,
H � HN � H , that is, H D HN D NH . There are elements h1; : : : ; hk 2 H

such that H D N [ h1N [ � � � [ hkN is a coset decomposition of H .
Now suppose that N \H is measurable. Then hk.N \H/ D hkN \H is

measurable for all k D 1; : : : ; m, and so

.N \H/ [ .h1N \H/ [ � � � [ .hkN \H/ D H \H D H

is measurable in contradiction to the hypothesis onH . If � is Haar measure on G,
then .G W N/�1�jN is normalized Haar measure on N .

(g) If the index of H1 in G1 is infinite, then .G W H/ is infinite, whence H is
nonmeasurable by (a) above. If .G1 W H1/ <1, then .G W H/ <1 since G=H
is isomorphic to G1=H1. If H were measurable, then it would be open in G
by (b) and thus H1 would be open in G1 which is not the case. So H is non-
measurable.

Regarding condition (c) above we should note right away that an infinite alge-
braically simple compact group such as SO.3/ (see [15, Theorem 9.90]) does not
contain any proper finite index subgroups in view of (e) while, as we shall argue
in Theorem 2.3 below, it does contain countably infinite index subgroups. On the
other hand, a power AN

5 with the alternating group A5 of 60 elements does not
contain any countably infinite index subgroup as Thomas shows in [28, Theo-
rem 1.10], while it does contain nonclosed proper finite index subgroups. In [18],
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Kleppner shows (in terms of homomorphisms onto finite discrete groups) that
nonopen finite index normal subgroups are nonmeasurable.

In order to better understand the focus of our observations let us say that we
may distinguish the following classes of compact groups:

� Class 1: compact groups having subgroups of countably infinite index.

� Class 2: compact groups having nonclosed subgroups of finite index.

� Class 3: compact groups in which every countable index subgroup is open
closed.

In the direction of answering Question 1, the listing of known facts in Propo-
sition 1.1 allows us to say that all groups in Classes 1 and 2 have nonmeasurable
subgroups. The group SO.3/ is a member of Class 1 but is not in Class 2. The
group AN

5 belongs to Class 2 and not to Class 1. If G1 is a member of Class 1 and
G2 is a member of Class 2, then G1 �G2 is a member of the intersection of the
two classes. In the end we have to focus on Class 3, the complement of the union
of the first two classes; however, it will serve a useful purpose to understand how
big this union is and where familiar categories of compact groups are classified in
this system.

The following discussion of examples show how members of Class 1 and 2 may
arise. For this purpose letK be an arbitrary compact nonsingleton group. LetX be
an infinite set endowed with the discrete topology, for instance X D N. Then the
compact group G D KX has an alternative description. Indeed we consider X as
a subset of its Stone Čech compactification ˇX and note that, due to the compact-
ness of K, every element f 2 G, that is, every function f WX ! K has a unique
extension to a continuous function f WˇX ! K. The function f 7! f W G !

C.ˇX;K/ is an isomorphism of groups if we give C.ˇX;K/ the pointwise group
operations. If we endow C.ˇX;K/with the topology of pointwise convergence on
the points ofX , then C.ˇX;K/ is a compact group and f 7! f is an isomorphism
of compact groups with the inverse F 7! F jX . We shall identifyG and C.ˇX;K/
and note that G has a much finer topology, namely, that of uniform convergence
on compact subsets of ˇX (to compact-open topology) giving us a topological
group � with the same underlying group as G. Now let y 2 ˇX and let H denote
a proper closed subgroup of K. Then Gy;H D ¹f 2 � W f .y/ 2 H º is a closed
subgroup of � . We record the following lemma:

Lemma 1.2. The following statements are equivalent:

(a) Gy;H is closed in G.

(b) y 2 X .
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Proof. Since y 2 X implies that, for the continuous projection py W G ! K,
py.f / D f .y/, the set Gy;H is just p�1

y .H/, (a) follows trivially from (b).
Now suppose (a) is true and (b) is false. We must derive a contradiction. Since

ˇX is zero dimensional (in fact extremally disconnected), the point y has a basis U

of open-closed neighborhoods Let g 2 K nH and define, for each U 2 U, a con-
tinuous function fU WˇX ! K by

fU .z/ D

´
g if z 2 ˇX n U ,
1 if z 2 U .

(�)

Since G is compact, there is a cofinal net .Uj /j2J in U such that f D limj2J fUj

exists in G. By .�/ we have f 2 Gy;H . Since y is not isolated in ˇX as (b) fails,
also from .�/ we have a net xj 2 X n Uj converging to y such that fUj

.xj / D g.
LetN be an open neighborhood of g inK with 1 … N . The continuity of f implies
the existence of a closed neighborhood W of y in ˇX such that f .W / \N D ;.
Now let k 2 J be such that j � k implies xj 2 W . Then for i � k we have
g D limj�k fUj

.xi / D f .xi / 2 f .W /, and thus g … N , a contradiction.

The argument shows in fact that for y 2 ˇX nX , the proper subgroup Gy;H is
dense in G.

Corollary 1.3. Every compact group G of the form G D KX , for an infinite set X
and a profinite group K, has nonmeasurable subgroups.

Proof. LetH be a proper subgroup ofK of finite index. Then for each y 2 ˇX nX ,
the subgroup Gy;H fails to be closed by Lemma 1.2. On the other hand, since
G=Gy;H Š K=H algebraically, Gy;H has finite index and thus is not measurable
by Proposition 1.1 (c).

In particular, for each finite group F and each infinite set X , the profinite group
FX has nonmeasurable subgroups.

As a an extension of Corollary 1.3 we mention the following observation which
is obtained as a simple application of Proposition 1.1 (g).

Corollary 1.4. IfG D
Q

j2J Gj for a family of compact groupsGj and there is an
infinite subset I � J such that Gj Š K for all j 2 I and for a profinite groupK,
then G has nonclosed finite index and therefore nonmeasurable subgroups.

Proof. We may identify each Gj with K for j 2 I and define the morphism
f WG ! KI as the obvious partial product. Then KI has a nonmeasurable sub-
groupH1 by Corollary 1.3. SoH def

D f �1.H1/ is a nonmeasurable subgroup of G
by Proposition 1.1 (g).
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2 The case of countably infinite index subgroups

In [11, Corollary 1.2] we noted that every uncountable abelian group has a proper
subgroup H of countably infinite index. (See also [12, p. 227].) Accordingly, by
Proposition 1.1 (a), we have

Proposition 2.1 ([4]). An infinite compact abelian group has a nonmeasurable
subgroup.

A bit more generally, the fact that an infinite abelian group has a subgroup of
countably infinite index and Proposition 1.1 (c) yield

Corollary 2.2. If the algebraic commutator group G0 of a compact group G has
infinite index in G, then G has nonmeasurable subgroups. If the subgroup G0 has
finite index it is either open closed or nonmeasurable.

Here is a partial answer to Question 1:

Theorem 2.3. Every infinite compact group G that is not profinite has a subgroup
of countably infinite index and thus contains a nonmeasurable subgroup.

Proof. Assume that G is not profinite. Let N be a closed normal subgroup of G
such that C D G=N is an infinite compact Lie group ([15, Corollary 2.43]).

We will show that C contains a subgroup with countably infinite index; for the
pullback to G of a subgroup of countably infinite index in C yields a subgroup of
countable index in G. A subgroup of the identity component C0 of C with count-
ably infinite index has countably infinite index in C as C=C0 is finite. Now C0 is
a compact connected Lie group and we claim that it has a subgroup of countably
infinite index.

The commutator subgroup C 00 of C0 is closed ([15], Theorem 6.11) and so, if
C 00 ¤ C0, then C0=C

0
0 is a connected abelian Lie group and thus is infinite and

therefore contains a subgroup of countably infinite index by Lemma 1.2. Thus C0

has a countably infinite index subgroup.
Next we assume that C 00 D C0 and thus that C0 is semisimple and there is

a homomorphism onto a compact connected simple and centerfree Lie group S .
(See [15, Theorem 6.18].) Now S has no subgroup of finite index, because if H
were a finite index subgroup of S , then the intersection of the finitely many con-
jugates of H would be a finite index normal subgroup which cannot exist (see
[15, Theorem 9.90]).

Now S has a faithful linear representation as an orthogonal matrix group (cf.
[15, Corollary 2.40]). By a theorem of Kallman [16], therefore S has a faithful
algebraic representation as a permutation group on N. Since all orbits of S on N
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are countable, the isotropy groups all have countable index. Since S has no finite
index subgroups, all isotropy subgroups of S have countably infinite index. Every
such pulls back to a countably infinite index subgroup of G.

At this stage there remains the case of profinite groups.
Before we address this case let us observe that even in the compact abelian case

the issue of countably infinite index subgroups is far from trivial. From [13] we
quote (cf. also [15], Theorem 8.99):

Theorem 2.4. There is a model of set theory in which there is a compact group G
with weight @1 D 2

@0 such that the arc component factor group �0.G/ D G=Ga

is algebraically isomorphic to Q. In particular, the arc component Ga of the iden-
tity is a countably infinite index subgroup and, accordingly, is nonmeasurable.

3 Profinite groups

We record next that not all compact groups have countably infinite index sub-
groups:

Example 3.1. Let A5 be the alternating group on five elements, the smallest finite
simple nonabelian group. ThenG D .A5/

N has no subgroups of countably infinite
index.

This follows from Theorem 1.10 of Thomas [28]. In fact Thomas classifies
infinite products of finite groups in which every subgroup of index < 2@0 is nec-
essarily open; such groups do not have countably infinite index subgroups. From
Corollary 1.3 it follows that G in Example 3.1 has nonmeasurable subgroups.

The literature provides some guidance on the situation of finite index subgroups.
We begin with a result of M. G. Smith and J. S. Wilson [27].

Proposition 3.2. LetG be a profinite group. Then all finite index normal subgroups
are open if and only if there are countably many finite index subgroups.

Since the cardinality of the set of open normal subgroups in a profinite group is
the weight of the group, an immediate corollary is

Corollary 3.3. LetG be a profinite group of uncountable weight. ThenG contains
nonclosed finite index subgroups and these are, accordingly, nonmeasurable.

In fact as a consequence of Peterson’s Theorem 1.2 (2) of [21] it has been known
for some time that these large profinite groups contain at least 22@0 nonmeasurable
subgroups.
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The focus therefore is on profinite groups with countably many finite index
normal subgroups, and in accordance with some authors we use the following
definition (see [22, Section 4.2, pp. 124ff.])

Definition 3.4. A strongly complete group is a profinite group in which every finite
index subgroup is open.

An infinite group G is almost perfect if .G W G0/ is finite for the algebraic com-
mutator subgroup G0 of G.

Including Corollary 2.2, we summarize our findings:

Theorem 3.5. An infinite compact group in which every subgroup is measurable
is a strongly complete almost perfect group.

Proof. Let G be a compact group. If it is not totally disconnected, then it has
a subgroup of countably infinite index by Theorem 2.3 and thus a nonmeasur-
able subgroup. If all subgroups of G are measurable, then G is profinite. If it has
a subgroup of finite index that fails to be open closed, then such a subgroup is non-
measurable by Proposition 1.1 (c). Thus all finite index subgroups of G are open
closed and so G is a strongly complete group. Corollary 2.2 finally secures almost
perfectness.

So Question 1 reduces to

Question 2. Does every infinite strongly complete and almost perfect group con-
tain a nonmeasurable subgroup?

We keep in mind that Smith and Wilson [27] showed that a profinite group is
strongly complete if and only if it has only countably many finite index subgroups.
Such a group is necessarily metric. Segal and Nikolov [20] showed that all topo-
logically finitely generated metric profinite groups are strongly complete, as had
been conjectured by Serre.

Typical examples in this class of groups are countable products of pairwise
nonisomorphic simple finite groups. A result of Saxl and Wilson [26] says:

Proposition 3.6. Let ¹Gn W n 2 Nº be a sequence of finite simple nonabelian
groups and G D

Q
n2N Gn. Then the following conditions are equivalent:

(a) Infinitely many of the Gn are isomorphic.

(b) G is not strongly complete.

We have observed in Theorem 3.5 that (b) implies

(c) G has nonmeasurable subgroups.
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The implication “(a) implies (b)” also follows from our Corollary 1.4 above.

4 Metric compact groups

We propose to calculate the cardinality of the set S.G/ of (not necessarily closed!)
subgroups ofG. We let c D 2@0 denote the cardinality of the continuum and B.G/

the set of all Borel subsets of G.

Proposition 4.1. If X is an infinite second countable metric space, then

card.B.X// � c:

Proof. In [2, Chapter 9, Section 6, Exercise 4 c)] it is established that the cardinal-
ity of the set of Borel subsets of a metric second countable space is � c.

Remark 4.2. For Haar measure � on a compact metric group G, a subset X is
measurable if and only if there are sets B1; B2 2 B.G/ such that B1 � X � B2

such that �.B2 nX/ D 0 D �.X n B1/.

(See e.g. [24, Section 10.10]; the argument given there is quite general.)
We now observe that an infinite compact metric group has as many subgroups

as it has subsets.

Theorem 4.3. Let G be an infinite metric compact group. Then

card.S.G// D 2c:

Proof. By Zelmanov’s Theorem [30], G contains an infinite abelian subgroup A
which we may assume to be closed. Then A is a compact metric abelian group.
Therefore, if the assertion of the Theorem is true for abelian groups, then it is true
in general. Thus the claim follows from [1, Corollary 1.2].

Corollary 4.4. Every infinite compact group has a subgroup which is not a Borel
subset.

Proof. By Proposition 4.1 and Theorem 4.3, every infinite compact metric group
has more subgroups than it has Borel subgroups.

By the results preceding Section 4, every compact group which fails to be a met-
ric profinite group has a subgroup which is nonmeasurable for Haar measure. Since
all Borel subgroups are Haar measurable, none of these is a Borel subgroup.

Acknowledgments. We are grateful for our referee’s useful comments. In partic-
ular, the suggestion that originally we had overlooked [1] shortened the proof of
Theorem 4.3 considerably.
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