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CONTRIBUTIONS TO THE STRUCTURE THEORY
OF CONNECTED PRO-LIE GROUPS

KARL H. HOFMANN AND SIDNEY A. MORRIS

Abstract. We present some recent results in the structure
theory of pro-Lie groups and locally compact groups, improve-
ments of known results, and open problems.

1. Background

A topological group G is a pro-Lie group if it is complete and
the set N (G) of all closed normal subgroups N such that G/N is
a Lie group is a filter basis converging to 1. A topological group G
is almost connected if G/G0 is compact, where G0 is the connected
component of the identity. Any connected group and any compact
group is almost connected. Every locally compact almost connected
group is a pro-Lie group. Our book [10] establishes a structure
theory of connected pro-Lie groups (and to some extent for almost
connected pro-Lie groups as well). It is the result of a project that
we pursued for a number of years; we reported on this project in
this journal at various stages of progress (see [7], [8], [11]). One of
our original motivations was to provide a systematic approach to a
structure theory of (almost) connected locally compact groups. All
results on (almost) connected pro-Lie groups as presented in [10]
apply directly to locally compact groups.
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In this context it is of interest to have various alternative con-
ditions for a connected pro-Lie group to be locally compact. We
devote Section 2 to a discussion of various topological conditions
that one might wish to impose on a pro-Lie group, such as being
σ-compact, metrizable, or separable. This involves the considera-
tion of cardinality invariants such as the weight and the density for
the topological space underlying a connected pro-Lie group.

In the structure theory of locally compact groups it was cus-
tomary since the middle of the last century to focus research on
special classes of topological groups such as MAP (=maximally
almost periodic) groups, SIN groups (=groups having small invari-
ant neighborhoods) and so on. So far no study of pro-Lie groups
in these classes has been made, and we start this discussion in Sec-
tion 3 with a characterization of connected pro-Lie MAP groups.
It clearly reduces to a well-known classical one in the special case
of locally compact groups.

There is recent interest in (topological) groups all of whose quo-
tient groups (modulo closed normal subgroups) have a certain prop-
erty P but which itself fails to have this property; such groups are
called just non-P groups. Typical for this concept are the just non-
finite groups. The first approach in the area of topological groups
is the article [15] on compact just non-Lie groups. The essential
result is that a compact just-non-Lie group is profinite, that is, is
a projective limit of discrete groups (cf. [10]). In the absence of
compactness this fails to be true as we shall show by an example
in Section 3. We shall prove however, that an abelian just non-Lie
pro-Lie group is isomorphic either to the group Zp of p-adic integers
or to the group Qp of p-adic rationals for some prime.

In Section 4 we offer a list of open problems on the structure of
pro-Lie groups—presumably of varying degrees of difficulty.

We shall make frequent reference to results from the books [9]
(19981, 20062) and [10] (2007).

2. Topological properties of connected pro-Lie groups

We first recall some basic facts.

Proposition 2.1. A pro-Lie group G is locally compact iff N (G)
contains a compact member.
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Proof. If G has a compact identity neighborhood U , then the
relation limN (G) = 1 implies the existence of an N ∈ N (G) with
N ⊆ U ; accordingly N is compact. Conversely, if N ∈ N (G) is
compact then G is an extension of N by a locally compact Lie
group and is therefore locally compact. !

By contraposition this says that whenever a pro-Lie group G fails
to be locally compact, none of the N ∈ N (G) is compact (or even
locally compact). One of the Fundamental Structure Theorems is
the following ([10], 12.81–12.86.):

Theorem 2.2. Let G be a connected pro-Lie group. Then there is
a closed subset M ⊆ G and a maximal compact subgroup C ⊆ G
such that

(i) there is a homeomorphism φ : RJ → M for a set J.
(ii) Every compact subgroup has a conjugate contained in C.
(iii) (v, c) $→ φ(v)c : RJ × C → G is a homeomorphism.

In particular, G has maximal compact subgroups and they are all
conjugate. We call M a manifold factor and card J the dimension
dimM of the manifold factor. The manifold factor is homeomor-
phic to the homogeneous space G/C = {gC : g ∈ G} and G is
homeomorphic to (G/C)×C. We shall also call dim M = dim G/C
the rank of G and denote it by rank(G). Clearly,

Corollary 2.3. A connected pro-Lie group G is locally compact if
and only if its rank rank(G) is finite.

(See [10], 12.87.)

Thus, additional conditions for G to be locally compact can safely
concentrate on the local compactness of weakly complete vector
spaces RJ . Recall that a topological group G is compactly generated
iff there is a compact subset K ⊆ G such that G = ⟨K⟩. A space
is σ-compact iff it is a countable union of compact subsets.

Proposition 2.4. Let G be a connected pro-Lie group and C one
of its maximal compact subgroups. Then the following statements
are equivalent:

(i) G is compactly generated.
(ii) G is σ-compact.
(iii) G/C is σ-compact.



228 KARL H. HOFMANN AND SIDNEY A. MORRIS

(iv) G/C is locally compact.
(v) rank(G) = dimG/C < ∞.
(vi) G is locally compact.

Proof. (i)⇒(ii) is true for every topological group.
(ii)⇒(iii): This follows from Theorem 2.2 since a product of two
spaces is σ-compact iff each factor is σ-compact,
(iii)⇔(iv)⇔(v): [10], Proposition A2.17 on p. 644, referring to prop-
erties of weakly complete vector spaces.
(iv)⇒(vi): This follows from Theorem 2.2.
(vi)⇒(i): Every connected group is generated by every identity
neighborhood and so every locally compact connected group is com-
pactly generated. !

This proposition improves [10], Corollary 12.87.

Recall that the weight w(X) of a topological space is
min{cardB : B is a basis of the topology of X}. The local weight
of a topological group G is min{cardB : B is a basis of the filter
of identity neighborhoods of G}. If G is a connected topological
group, then weight and local weight coincide.

Proposition 2.5. Let G be a nonsingleton connected pro-Lie group,
C one of its maximal compact subgroups, and T one of its maximal
compact connected abelian subgroups. Then

w(G) = max{ℵ0, rank(G), dim(C)} = max{ℵ0, rank(G), dim(T )}.
Proof. By Theorem 2.2 we have w(G) = max{w(G/C), w(C)} and
w(G/C) = w(RJ) = max{card J, w(R)} = max{rank(G),ℵ0} by
[9], EA4.3 following A4.8. The equation w(C) = w(T ) was shown
in [9], Theorem 9.36(vi). Finally, w(C) = max{ℵ0, dimC} and
w(T ) = max{ℵ0, dimT} are established in [9], Theorem 12.25. !

More information on the weight of compact groups is to be found
in [9], Chapter 12. For the dimension of compact groups see [9],
Theorem 9.52ff.

Since a connected group G is metric iff w(G) = ℵ0 iff G is Polish
(that is, is complete and second countable) we get

Corollary 2.6. Let G be a connected pro-Lie group and C one of
its maximal compact subgroups C. Then G is metric if and only if
C is metric and rank(G) ≤ ℵ0.



CONNECTED PRO-LIE GROUPS 229

In particular, there are Polish connected pro-Lie groups which
are not locally compact, for instance RN.

If a cardinal n is infinite we write logn = min{m : n ≤ 2m}. The
density d(X) of a space is min{cardD : X = D}. The following
observation is part of the cardinality folklore:

Lemma 2.7. If card J ≥ ℵ0, then d(RJ) = log card J.

Proof. The inequality d(RJ) ≤ log card J follows from the famous
Hewitt-Marczewski-Pondiczery Theorem (see for instance [6],
Theorem 2.3.15, p. 81). The inequality w(X) ≤ 2d(X), that is,
logw(X) ≤ d(X), holds for every regular space (see e.g. [6],
Theorem 1.5.7, p. 39). From 2.5 we have w(RJ) = cardJ , whence
log card J ≤ d(RJ). !
Proposition 2.8. Let G be a nonsingleton connected pro-Lie group,
C one of its maximal compact subgroups, and T one of its maximal
compact connected abelian subgroups. Then d(G) =

max{ℵ0, log rank(G), logdimC}= max{ℵ0, log rank(G), logdim T}.

Proof. By Theorem 2.2, d(G) = max{d(Rrank(G)), d(C)}. For J ̸=
∅, the density of RJ is max{ℵ0, logcard J} by 2.7. The density of C
is d(C) = max{ℵ0, logdim(C)} (see [9], Theorem 12.25). Moreover,
d(C) = d(T ) by [9], Theorem 12.24. Putting all things together we
arrive at the asserted conclusion. !

If G = R then log rank(G) = dimC = 0, d(G) = ℵ0. We recall
that a space X is called separable if d(X) ≤ ℵ0.

Corollary 2.9. A connected pro-Lie group G is separable if and
only if w(G) ≤ 2ℵ0.

Proof. By Proposition 2.8, G is separable iff log rank(G) ≤ ℵ0 and
logdim C ≤ ℵ0, that is, iff rank(G) ≤ 2ℵ0 and dim C ≤ 2ℵ0 iff
w(G) ≤ 2ℵ0 by 2.5. !
Proposition 2.10. Every connected pro-Lie group is a Baire space.

Proof. It is shown in [14], Theorem 6, that
(a) a product of a family of spaces each of which is completely

metrizable or locally compact is a Baire space.
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Now let G be a connected pro-Lie group. From 2.2 we know that
G is homeomorphic to RJ ×C where J is a set and C is a maximal
compact subgroup of G. By (a), RJ × C is a Baire space. The
assertion then follows. !

A sample application is the following:

Proposition 2.11. Let G be a σ-compact topological group, H a
connected pro-Lie group, and f : G → H a surjective morphism of
topological groups. Then f is open, and H is locally compact.

Proof. By Proposition 2.10 and Proposition 2.6 of [11], f is open.
Clearly, H is σ-compact. Then Proposition 2.4 shows that H is
locally compact, as asserted. !

3. Special classes

A topological group G is called maximally almost periodic or
a MAP-group iff the almost periodic functions on G separate the
points, and that is the case if and only if there is an injective mor-
phism of topological groups f : G → K into some compact group
K. We denote the Lie algebra of a pro-Lie group G by L(G) or by
g. The center of a group G is denoted by Z(G), and the center of
a pro-Lie algebra g by z(g).

Proposition 3.1. Let G be a connected pro-Lie group. Then the
following statements are equivalent:

(i) G is a MAP-group.
(ii) G is isomorphic to RJ × C for some set J and a unique

largest compact subgroup C of G.

Proof. (i) ⇒(ii). We have an injective morphism f : G → K for
a compact group K which we may assume to be connected. This
yields an injective morphism L(f) : L(G) → L(K) (see [10], 4.20(ii)).
Now L(K) = Z(L(K))× L(K ′) where Z(L(K)) ∼= RI for some set
I and L(K ′) = L(K)′ =

∏
j∈M sj for a family of simple compact

Lie algebras sj (see [10], 12.36). Let R(G) denote the radical of
G (see [10], p. 431ff.). Then f(R(G)) is a prosolvable connected
subgroup of K and thus f(R(G)) is prosolvable connected sub-
group of K by [10], 10.11(v) and 10.18. We may and will assume
that f(G) is dense in K. Then f(R(G)) is normal. So by [10],
10.25, f(R(G)) ⊆ R(K) ⊆ Z(K), and thus L(f(R(G))) ⊆ z(L(K))
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(see [10], 9.17(ii)). Hence L(R(G)) ∼= L(f(R(G))) is abelian and
indeed central in L(G). Now L(G) ∼= R(L(G)) ×

∏
j∈P sj for a

family of simple Lie algebras. (See [10], 7.52 and 7.77.) The ana-
lytic subgroup Sj generated by sj in G is injected into the compact
group K. Hence Sj is compact, and so

∏
j∈P sj is a compact pro-

Lie algebra. Thus L(G) is procompact ([10], 12.10) and so G is
potentially compact ([10], 12.46). The assertion then follows from
[10], 12.48. !

A topological group is said to be an SIN-group if the filter
basis of identity neighborhoods which are invariant under all
inner automorphisms converges to 1.

Proposition 3.2. A connected pro-Lie SIN group G is isomorphic
to RJ × C for some set J where C is a unique maximal compact
subgroup of G.

Proof. We know G = limN∈N (G) G/N such that all factor groups
G/N are Lie groups; since G is connected so are all G/N . If G
is an SIN-group, then all G/N are SIN-groups and connected Lie
groups. Then they are MAP-groups (see e.g. [13], Corollary 12.1
on p. 55). Thus the projective limit G is an MAP-group and hence
has the asserted form by Proposition 3.1. !

4. Just Non-Lie Groups

There is considerable recent interest in groups that fail to have
a property P but are such that all nontrivial quotient groups have
property P . Such groups are called just-non-P groups, for instance
just-nonfinite groups. In the realm of topological groups, “quo-
tient group” has to mean “quotient group modulo a closed normal
subgroup”. The first paper along these lines is Russo’s article on
compact just-non-Lie groups [15] in which it is shown that a com-
pact just-non-Lie group is profinite. An essential step was prov-
ing that a compact abelian just-non-Lie group is isomorphic to the
group Zp of p-adic integers for some prime p. We note that the
group Qp of p-adic rationals is a locally compact abelian just-non-
Lie group. Recall that a topological group is called prodiscrete iff
it is a totally disconnected pro-Lie group iff it is complete and the
identity element has a neighborhood basis of open subgroups (cf.
[10], Definition 3.25 and Proposition 4.23).
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Proposition 4.1. An abelian just-non-Lie pro-Lie group is iso-
morphic to Zp or Qp.
Proof. Let G be an abelian just-non-Lie pro-Lie group. We know
that any abelian pro-Lie group G is of the form G ∼= RI ×H where
H0 is compact (see [10], Theorem 5.20). By [15], Lemma 1.1, a just-
non-Lie group does not contain any nonsingleton closed normal Lie
subgroup. Hence we have I = ∅, that is G = H . In [10], Defi-
nition 5.4, we defined comp(G) to mean the union of all compact
subgroups; we showed that in an abelian pro-Lie group, this union
is a closed fully characteristic subgroup ([10], Theorem 5.5.(i)). If
g /∈ comp(G) then ⟨g⟩ ∼= Z by Weil’s Lemma for pro-Lie groups
([10], Theorem 5.3). Again by [15], Lemma 1.1, such a subgroup
does not exist. Hence G = comp(G). If G0 ̸= {0}, then G0 is open
by definition of just-non-Lie groups. Since G0 is compact connected
abelian, G0 is divisible, and thus, being open, is a direct summand
algebraically and topologically. Hence if G0 ̸= G, the group G0 is
a nontrivial quotient of G and thus is a Lie group, but G does not
have proper Lie subgroups by Lemma 1.1 in [15]. By [15], Theo-
rem 2.1, we cannot have G = G0. Thus G0 = {0} follows, that is,
G = comp(G) is totally disconnected and so prodiscrete. Since any
nonzero proper subgroup N has a Lie group quotient G/N , it must
be open. In particular,
(1) every nonzero proper compact subgroup C of G is open.
Since G = comp(G), it follows that G is locally compact (and
nondiscrete as a non-Lie group).

If C is any nonzero proper compact subgroup of G, then due
to its openness, it is itself a just-non-Lie group. Hence from [15],
Theorem 2.1, we know that there is a prime p = pC such that
C ∼= Zp. Now let C1 and C2 two nonzero compact subgroups of
G. Then C1 and C2 are open, whence both D

def= C1 ∩ C2 and
C

def= C1 +C2 are compact open in the nondiscrete group G. Hence
D is a nonzero compact subgroup of C1 and C2. The closed nonzero
subgroups of the group Zp of p-adic integers are of the form pnZp,
n ∈ N0 = {0, 1, 2, . . .}. It follows that pC1 = pD = pC2 . Hence
there is a unique prime p such that
(2) all nonzero compact subgroups of G are isomorphic to Zp.
It thus follows that also C ∼= Zp. Hence we find nonzero integers n1

and n2 such that Ck = pnk ·C for k = 1, 2. Without loss of general-
ity we may assume that n1 ≤ n2. Then C2 = pn2 ·C ⊆ pn1 ·C = C1.
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Therefore
(3) The set of compact subgroups of G is totally ordered with
respect to containment “⊆”.
If G is itself compact, then G ∼= Zp (see also [15]). Let us now
assume that G is not compact and fix one compact open subgroup
C. Since C ∼= Zp, the set {pnC : n ∈ N0} is a basis for the filter
of identity neighborhoods in G and contains all compact subgroups
contained in C. Now let K be a compact subgroup of G which is
not contained in C. Then we have K ∼= Zp by (2) and C ⊆ K by
(3). Hence there is an m ∈ N0 such that pm·K = C, and since
K ∼= Zp, the equation K = p−m·C is meaningful. Thus
(4) The set of nonzero compact subgroups is {pn·C : n ∈ Z} and

G =
⋃

n∈N0

p−n·C = colim{C incl−−→1
p
·C incl−−→ 1

p2
·C incl−−→ · · ·}.

Moreover, any isomorphism φ0 : Zp → C = pm·K of additive com-
pact abelian groups is the restriction of a unique isomorphism
p−mZp → K, that is, for each n ∈ N0, an isomorphism φ0 : Zp → C
induces an isomorphism
φn : 1

pn ·Zp → 1
pn ·C, giving us a morphism of topological groups

Φ : Qp → G such that the following diagram commutes:

Zp
incl−−→ 1

p ·Zp
incl−−→ 1

p2 ·Zp
incl−−→ · · · Qp

φ0

⏐⏐$ φ1

⏐⏐$ φ2

⏐⏐$
⏐⏐$Φ

C −−→
incl

1
p ·C −−→

incl

1
p2 ·C −−→

incl
· · · G.

Since all φn are isomorphisms, Φ is an isomorphism. This completes
the proof. !

The following example exposes a 3-dimensional locally compact
connected (hence pro-Lie) group which is a just-non-Lie group:

Example 4.2. Let S̃ be the simply connected covering group of
SL(2, R) and Z ∼= Z its center with z being one of its two generators.
Then G = (Zp × S̃)/D, D = {(−n, zn) : n ∈ Z} is a 3-dimensional
connected locally compact just non-Lie group whose nonsingleton
closed normal subgroups are (pnZp × {1})D/D ∼= pnZp.

A few additional comments follow rather immediately: If G is a
connected pro-Lie just-non-Lie group and the coreductive radical
N is nonsingleton, then G/N is a reductive Lie group. If N = {1}
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then G is reductive, and L(G) ∼= RK ⊕
∏

j∈J sj for a set K and a
family of simple Lie algebras sj . Let Sj be the analytic subgroup
generated by sj . Now Sj is a normal subgroup M such that G/M
is a Lie group. Then L(G/M) ∼= RK ⊕

∏
i∈J\{j} si. We conclude

that K and J \ {j}, and thus J , are finite. Hence
if g is the Lie algebra of a connected pro-Lie just-non-Lie group and
n its coreductive radical, then g/n is finite dimensional.
In fact, if N happens to be a nonsingleton coreductive radical, then
all G/N [[n]], n = 0, 1, . . . are Lie groups and G ∼= limn G/N [[n]].
Thus
A connected pro-Lie just-non-Lie group with a nondegenerate core-
ductive radical is Polish.

5. Open problems on connected pro-Lie groups

Proposition 2.4 above suggests the following question

Problem 5.1. Is a compactly generated pro-Lie group locally com-
pact?

Even for abelian pro-Lie groups, it is not known whether a com-
pactly generated prodiscrete group without nontrivial compact sub-
groups is finitely generated free. (Cf. [10], p. 237.) A contribution
to Problem 5.1 even for abelian pro-Lie groups would be welcome.

Let G be a pro-Lie group and N a closed normal subgroup. We
know examples in which G is abelian connected and N is prodiscrete
and algebraically a free group in countably many generators such
that G/N fails to be complete (see [10], Corollary 4.11, p. 179). We
also know that G/N is complete if N is almost connected and G/G0

is complete (see [10], Theorem 4.28(i), p. 202). We do not know
whether G/G0 has to be complete. An answer to the following
problem would be therefore significant:

Problem 5.2. Is the component factor group G/G0 of a pro-Lie
group complete?

Despite a full chapter on the structure theory of abelian pro-
Lie group presented in [10], such a theory is far from complete.
Therefore we formulate:
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Problem 5.3. Develop a structure and character theory of prodis-
crete abelian groups.

(a) Special case: compact-free prodiscrete groups. As a typi-
cal example, the kernel F = Hom(ZN, Z) of the morphism
Hom(ZN, R) → Hom(ZN, R/Z) is a closed and nondiscrete
subgroup of Hom(ZN, R) ∼= RR and is algebraically isomor-
phic to Z(N). The character group and bicharacter group of
F have not been investigated. (See [10], pp. 173ff.)

(b) Special case: prodiscrete groups consisting of compact ele-
ments. A relevant example, due to Banaszczyk [4], p. 159f.,
is as follows: Let Z(2) = Z/2Z be the group of 2 elements
and Ω the first uncountable ordinal. The group Z(2)(Ω) has
a nondiscrete group topology making it a prodiscrete (hence
pro-Lie) group T such that the filter basis consisting of the
subgroups Z(2)({ν:α<ν}) is a basis for the filter of identity
neighborhoods. Then T is a torsion group, hence T is the
union of all compact subgroups. The bidual ̂̂

T is discrete
(see [4], p. 160); the evaluation morphism T → ̂̂

T is bijective
and open but not continuous.

The following comment may be helpful. It requires that we know
the concept of a nuclear group, for whose definition we refer to
W. Banaszczyk’s monograph [4] or to Außenhofer’s survey [2]. The
class of nuclear groups is closed under the formation of arbitrary
products and passage to subgroups, hence under the formation of
projective limits. Since R, T, and all discrete abelian groups are
nuclear, so are all Lie groups, being isomorphic to Rm ×Tn ×D for
a discrete group D. Thus we note:

Remark 5.4. All commutative pro-Lie groups are nuclear groups.

The relevance of the remark in the context of Problem 5.3 is that
nuclear groups have a comparativley good duality theory that has
been investigated by Banaszczyk [4], Aussenhofer [2], [3], and other
authors (cf. [2]).

We saw earlier that Theorem 2.2 has formidable consequences not
all of which we discussed here. It is reasonable to expect that the
answer to the following question is positive:
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Problem 5.5. Does Theorem 2.2 remain valid for almost connected
pro-Lie groups G?

Similarly, it is not unreasonable that the answer to the following
question is yes:

Problem 5.6. Let G be an almost connected pro-Lie group. Does
there exists a profinite subgroup P such that G = G0P?

The answer is yes for locally compact G.

Acknowledgement. Our anonymous referee has found quite a few
typographical errors in our original TEXscript and has correctly
demanded a recasting of the proof of Proposition 4.1. Thanks!
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