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Abstract

The variety of topological groups generated by the class of all abelian kω-groups has been shown to equal
the variety of topological groups generated by the free abelian topological group on [0, 1]. In this paper
it is proved that the free abelian topological group on a compact Hausdorff space X generates the same
variety if and only if X is not scattered.
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1. Introduction and main theorem

In [7], it was shown that for every compact Hausdorff topological space X , the free
abelian topological group on X , F A(X), is contained in the variety of topological
groups generated by F A[0, 1], the free abelian topological group on [0, 1]. Observe
that, as a direct consequence of this, the variety of topological groups generated by
F A(X) is contained in the variety generated by F A[0, 1]. Here we characterize
compact Hausdorff spaces X such that the variety of topological groups generated
by F A(X) equals the variety of topological groups generated by F A[0, 1].

In this paper we prove the following theorem.

MAIN THEOREM. Let X be a compact Hausdorff space. Then the following
conditions are equivalent.

(i) X is not a scattered space.
(ii) V(F A(X))=V(F A[0, 1]).
(iii) V(F A(X)) contains F A[0, 1].
(iv) V(F A(X)) contains a Hausdorff group which is not totally path-disconnected.
(v) V(F A(X)) contains R, the additive topological group of all real numbers with

the euclidean topology.
(vi) V(F A(X)) contains T, the compact group consisting of the multiplicative group

of complex numbers of modulus 1 with its usual euclidean topology.
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We note that, trivially, (ii) implies (iii), (iii) implies (iv), (v) implies (vi) and (vi)
implies (iv).

We shall shortly show that (iii) implies (v). The remainder of the paper establishes
that the first four statements are equivalent by showing that (i) implies (ii) and (iv)
implies (i); this will complete the proof of the main theorem.

2. Preliminaries

For a topological group G, let |G| denote the group obtained from G by ‘dropping’
the topology. We call |G| the group underlying G.

For topological groups G1 and G2, we say that G1 is topologically isomorphic to
G2 if there exists a map f : G1→ G2 such that f is both an isomorphism of groups
and a homeomorphism.

DEFINITION 2.1 [5, Ch. I, Section 9, Part VI]. A topological space X is said to be
scattered if every nonempty subspace of X has an isolated point.

PROPOSITION 2.2 [14]. The product of two scattered topological spaces is also a
scattered topological space.

PROOF. Let X and Y be scattered spaces and A a nonempty subspace of X × Y .
Let pX : X × Y → X be the projection mapping onto X , and consider pX (A), a
subspace of X . Since X is scattered, pX (A) has an isolated point, a, say. Let
Aa = {y ∈ Y | (a, y) ∈ A} ⊆ Y . Clearly, Aa is nonempty and, as it is a subspace of
the scattered space Y , it has an isolated point, b. Now let O ⊆ X be a neighbourhood
of a such that O ∩ pX (A)= {a}, and let U ⊆ Y be a neighbourhood of b such that
U ∩ Aa = {b}. Then (a, b)⊆ O ×U and (O ×U ) ∩ A = {(a, b)}. Thus A has an
isolated point and so X × Y is scattered. 2

A nonempty class V of (not necessarily Hausdorff) topological groups is said to be
a variety of topological groups [8, 11] if it is closed under the operations of forming
subgroups, quotient topological groups and arbitrary products (with the Tychonoff
product topology). If � is a class of topological groups, then the smallest variety
containing � is said to be the variety generated by � and is denoted by V(�)
(see [8, 1]).

We recall the concepts of kω-space and kω-group.

DEFINITION 2.3 [13]. A topological space X is said to be a kω-space with kω-
decomposition X =

⋃
∞

n=1 Xn if X is a Hausdorff space with compact subspaces Xn ,
n = 1, 2, . . . , such that:

(i) X =
⋃
∞

n=1 Xn;
(ii) Xn ⊆ Xn+1 for all n; and
(iii) a subset A of X is closed in X if and only if A ∩ Xn is compact (or closed) for

all n.

Further, a topological group that is a kω-space is said to be a kω-group.
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Of course, every compact Hausdorff space X is a kω-space, with kω-decomposition
X =

⋃
∞

n=1 Xn where Xn = X for all n = 1, 2 . . . . Every connected locally
compact Hausdorff group G is a kω-group [6, Section 2], with kω-decomposition
G =

⋃
∞

n=1 K n where K is any compact symmetric neighbourhood of the identity in
G [10, Corollaries 1 and 2 to Proposition 8]. For example, R is a kω-space with kω-
decomposition R=

⋃
∞

n=1[−n, n].
We now recall the definition of a free abelian topological group [3].

DEFINITION 2.4 [3]. Let X be a completely regular Hausdorff space and e a
distinguished point in X . The abelian topological group F A(X) is said to be a free
abelian topological group on the space X if it has the following properties:

(i) X is a subspace of F A(X);
(ii) X generates F A(X) algebraically; and
(iii) for any continuous mapping φ of X into any abelian topological group G which

maps the point e onto the identity element of G, there exists a continuous
homomorphism 8 of F A(X) into G such that 8(x)= φ(x) on X .

The topological group F A(X) has the finest topological group topology on the free
abelian group on the set X\{e} that satisfies property (i) in Definition 2.4. In [3],
Graev showed the existence of the free abelian topological group, F A(X), on each
completely regular Hausdorff space X . Graev further showed that any two free abelian
topological groups on a given space X are topologically isomorphic; that is, F A(X) is
unique up to topological isomorphism.

We note that |F A(X)|, the group underlying F A(X), is the free abelian group on
the set X\{e}, and e is the identity element [12, Proposition, p. 376].

Every element w of F A(X) can be represented as a product of members of
X ∪ X−1 in an infinite number of ways. One of these representations is the reduced
representation1 with no occurrences of e (unless w = e) and where, if x ∈ X appears
in the word, then x−1 does not appear in the word.

REMARK 2.5. Let X be a completely regular Hausdorff space, let Y be a subspace of
X , and let n ∈N. We shall denote by F An(Y ) the set of all words in F A(X) whose
reduced representation has length less than or equal to n with respect to Y .

If X is a kω-space with kω-decomposition X =
⋃
∞

n=1 Xn , then F A(X) is a kω-space
with kω-decomposition F A(X)=

⋃
∞

n=1 F An(Xn) [6, Corollary 1 to Theorem 1].
(Note that in every Hausdorff group topology on |F A(X)| inducing the given topology
on X , the set F An(Xn) inherits the same compact topology.)

REMARK 2.6. In [7, Theorem A], it was shown that the variety of topological groups
generated by F A[0, 1] is exactly the variety generated by the class of all abelian
kω-groups.

STEP 1. We prove that (iii) implies (v) of the main theorem.

1 We use the term reduced representation where Hall [4] uses the term reduced word.
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PROOF. As F A[0, 1] ∈V(F A(X)), we know that V(F A[0, 1])⊆V(F A(X)).
Therefore every kω-group, indeed R, is in V(F A(X)) (see Remark 2.6). 2

We make use of the following result concerning free abelian topological groups,
whose proof is straightforward.

LEMMA 2.7. Let X and Y be completely regular Hausdorff spaces such that there
exists a quotient mapping φ : X→ Y . Then φ extends to a quotient homomorphism
8 : F A(X)→ F A(Y ), where F A(X) and F A(Y ) are the free abelian topological
groups on X and Y , respectively.

3. Proof of the main result

We note the following result proved in [7, Corollary 5.2].

THEOREM 3.1. Let X be any compact Hausdorff topological space. Then F A(X) is
contained in V(F A[0, 1]).

We now consider the Cantor space {0, 1}ℵ0 , which is a compact metric space.

REMARK 3.2 [2, Exercises 6.2.A(c)]. The Cantor space can be characterized as
follows. Every nonempty compact totally disconnected perfect (that is, having no
isolated points) metrizable space is homeomorphic to the Cantor space.

PROPOSITION 3.3. Let G = {0, 1}ℵ0 be the Cantor space. Then V(F A(G))
=V(F A[0, 1]).

PROOF. As G is a compact metric space, F A(G) ∈V(F A[0, 1]) by Theorem 3.1, and
hence V(F A(G))⊆V(F A[0, 1]).

Now, there exists a continuous mapping φ of G onto [0, 1] and, as both G and
[0, 1] are compact, φ is a quotient mapping. Therefore, by Lemma 2.7, there exists a
quotient homomorphism from F A(G) onto F A[0, 1], and the result follows. 2

REMARK 3.4. In the proof of the following proposition, we need to find two open
nonempty sets in a topological space that have disjoint closures. For a topological
space X that has at least two elements and is regular and Hausdorff, we point out
that you can indeed find two open nonempty sets that have disjoint closures. To see
this, take a, b ∈ X ; then there exist open sets U1 and U2 such that a ∈U1, b ∈U2 and
U1 ∩U2 = ∅. Note also that U1 ⊆ X\U2 and so U1 ⊆ X\U2, giving b 6∈U1. Given
the regularity of X , there exist open sets O1, O2 such that U1 ⊆ O1 and b ∈ O2 with
O1 ∩ O2 = ∅. Now, we have O2 ⊆ X\O1 and so O2 ⊆ X\O1. Therefore, we have
two open sets U1 and O2 such that U1 ∩ O2 = ∅.

As each subset A of X is also regular and Hausdorff, the procedure above applies
to A as well.

The technique used in Proposition 3.3 to show that F A[0, 1] ∈V(F A(G)), where
G is the Cantor space, suggests that if we can find a quotient mapping from a space
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X onto [0, 1], then F A[0, 1] ∈V(F A(X)) by Lemma 2.7. Therefore, the following
proposition is the key to proving that (i) implies (ii) of the main theorem.

The following proposition is folklore; however, we include the proof here for
completeness. We thank Vladimir Uspenskiı̆ for providing an outline of the proof.

PROPOSITION 3.5 [14]. A compact Hausdorff space admits a continuous mapping
onto [0, 1] if and only if it is not scattered.

PROOF. Let X be a compact Hausdorff space that admits a continuous (closed)
mapping f : X→ [0, 1]. Let Y be a subspace of X such that f |Y : Y → [0, 1] is
one-to-one and onto. Then Y is a closed subspace of X such that f (Y )= [0, 1] and
no proper closed subset of Y is mapped onto [0, 1]. Suppose p ∈ Y is an isolated
point. Then Y\{p} is a proper closed (in X ) subset of Y , and hence f (Y\{p}) 6= [0, 1].
Therefore, f (Y\{p})= [0, 1]\{ f (p)} is a closed subspace of [0, 1], and so [0, 1] has
an isolated point, which is impossible. Thus, Y has no isolated points and so X is not
scattered.

Conversely, let X be a compact Hausdorff space that is not scattered. Let Y be a
subspace of X that has no isolated points. Furthermore, Y is compact Hausdorff and
has no isolated points. If we can show there exists an onto mapping f : Y → [0, 1],
then by the Tietze–Urysohn extension theorem, f can be extended over X . Therefore,
without loss of generality, we shall assume that X has no isolated points.

Let V0 and V1 be any two open nonempty subsets of X with disjoint closures
(see Remark 3.4). Find V00 and V01, two open nonempty subsets of V0 with disjoint
closures in V0, as well as V10 and V11, two open nonempty subsets of V1 with disjoint
closures in V1. Continuing in this manner, we construct open nonempty sets Vs for
each finite sequence s of {0, 1}. Note that the construction is possible as X has no
isolated points and so no open set is a singleton set.

Construct the set F ⊆ X consisting of all points x ∈ X such that x ∈
⋂
∞

n=1 Vg1g2...gn

for some infinite sequence g1g2 . . . gn . . . , where gn ∈ {0, 1} for each n ∈N. We
shall show that F is closed. Let f ∈ F ; then there exists an infinite sequence
f1, f2, . . . , fα, . . . that converges to f , where fα ∈ F for each α = 1, 2, . . . . Now,
F ⊆ V0 ∪ V1, and so f belongs to exactly one of V0 and V1, which we shall denote
by Vg1

. Note that for each n ∈N, there exists α ∈N, α > n, such that fα ∈ Vg1
. Thus,

there exists an infinite sequence contained in Vg1
∩ F that converges to f , giving

f ∈ Vg1
∩ F ⊆ Vg10 ∪ Vg11. As before, we have f belonging to exactly one of Vg10

and Vg11, which we shall denote by Vg1g2
. Continuing in this way, it is clear that

f ∈
⋂
∞

n=1 Vg1g2...gn
for some infinite sequence g1g2 . . . gn . . . , where gn ∈ {0, 1} for

each n ∈N. Therefore f ∈ F and so F is closed.
We define a mapping φ from F to {0, 1}ℵ0 , the Cantor space, as follows. Let

x ∈ F and x ∈
⋂
∞

n=1 Vg1g2...gn
; then φ(x)= 〈g1, g2, . . . , gn, . . .〉. Clearly, φ is onto.

To show that φ is continuous, we first note that for a finite sequence s of {0, 1},
(Vs0 ∪ Vs1) ∩ F = Vs ∩ F , and this is open in F . Now, let a basic open set in the
Cantor space be given by O =

∏
∞

i=1 Oi , where Oi = {0, 1} for all but a finite number
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of values for i , and let m be the largest value for which Om 6= {0, 1}. Let K =
∏m

i=1 Oi
and let k = 〈k1, . . . , km〉 ∈ K . We claim that φ−1(O)= (

⋃
k∈K Vk1k2...km ) ∩ F ,

which is open in F . Let x ∈ φ−1(O). Then x ∈ F and x ∈
⋂
∞

n=1 Vg1g2...gn
for

some infinite sequence 〈g1, g2, . . . , gn, . . .〉 ∈ O . Clearly, 〈g1, g2, . . . , gm〉 ∈ K and
x ∈ Vg1g2...gm0 or Vg1g2...gm1, giving x ∈ Vg1g2...gm

. Conversely, let x ∈ Vk1k2...km

∩ F where k = 〈k1, k2, . . . , km〉 ∈ K . Now, x ∈
⋂
∞

n=1 Vh1h2...hn for some infinite
sequence h = 〈h1, h2, . . . , hn, . . .〉 in the Cantor space. Suppose h1 6= k1; then
x ∈ V0 and x ∈ V1, which is not possible. Thus, h1 = k1. Similarly, for each
i = 1, . . . , m, we have hi = ki , and so h ∈ O; this gives φ(x)= h ∈ O , that is,
x ∈ φ−1(O). Therefore φ is continuous.

We therefore have a continuous map from a closed subspace F of X onto the Cantor
space, which in turn admits a map onto [0, 1]; that is, F admits a continuous map onto
[0, 1]. Thus, by the Tietze–Urysohn extension theorem, X admits a continuous map
onto [0, 1]. 2

STEP 2. We prove that (i) implies (ii) of the main theorem.

PROOF. As X is not scattered, by Proposition 3.5 there exists a continuous mapping
f from X onto [0, 1]. Now f is a quotient mapping and, by Lemma 2.7, F A[0, 1] is
a quotient group of F A(X). Thus V(F A[0, 1])⊆V(F A(X)), and we have equality
from Theorem 3.1. 2

The final part of the proof of our main theorem is not as straightforward as one
might first expect.

DEFINITION 3.6. A nonsingleton continuous Hausdorff image of [0, 1] is called a
Peano curve.

REMARK 3.7. A Peano curve P is uncountable. To see this, note that as
P is a continuous image of a compact connected space, P is also compact
connected. Further, as P is Hausdorff, this implies that P is a completely regular
Hausdorff connected topological space. Thus, there exists a continuous mapping
8 : P→ [0, 1] such that8(P) is connected and hence contains an interval. Therefore
P is uncountable.

Our first lemma concerning Peano curves essentially shows that if a product of
topological spaces contains a Peano curve, at least one of the factors also contains a
Peano curve—though not necessarily the same curve.

LEMMA 3.8. For each i ∈ I where I is some index set, let Ri be a Hausdorff
topological space. If

∏
i∈I Ri contains a Peano curve, then for some i ∈ I , Ri contains

a Peano curve.

PROOF. Firstly, we note that for each j ∈ I , the projection mapping p j :
∏

i∈I Ri
→ R j , given by p j (

∏
i∈I ri )= r j , is continuous onto R j . Now, let f : [0, 1]

→
∏

i∈I Ri be a continuous mapping such that f [0, 1] ⊆
∏

i∈I Ri is a Peano curve.
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Clearly, for each j ∈ I , p j ◦ f = h j : [0, 1] → R j is a continuous mapping into
R j . Further, if h j [0, 1] ⊆ R j were a singleton set for each j ∈ J , then f [0, 1]
⊆

∏
j∈J h j [0, 1] would be a singleton set. However, f [0, 1] is a Peano curve, and

therefore cannot be a singleton set. Thus, for some j ∈ J , h j [0, 1] ⊆ R j is not a
singleton set. Finally, we note that as R j is Hausdorff, h j [0, 1] is also Hausdorff.
Therefore R j contains a Peano curve. 2

LEMMA 3.9. Every nonempty open subset O of a Peano curve P contains a Peano
curve.

PROOF. By the Hahn–Mazurkiewicz theorem, P is compact, connected, locally
connected and metrizable; so O contains a connected neighbourhood of a point a ∈ O .
If this neighbourhood were a singleton, then {a} would be a closed and open subset of
the connected space P , which is a contradiction. Therefore, O is uncountable because
it contains a nonsingleton, connected, completely regular (as P is completely regular)
Hausdorff space.

Let f : [0, 1] → P be a continuous map onto P . Consider f −1(O). As O is open,
f −1(O) is an open set in [0, 1] and hence is a countable union of open intervals.
Suppose the image of each interval were a singleton. Then O would be countable.
However, we know O is uncountable and, therefore, the image of one of the intervals
in f −1(O) is not a singleton. Let [a, b] ⊆ f −1(O) be such an interval (if the only one
happens to be open, take a smaller closed interval). Then f ([a, b])⊆ O and hence O
contains a Peano curve. 2

LEMMA 3.10. Let P be a Peano curve contained in A ∪ B where A and B are closed
in the Hausdorff space A ∪ B. Then A or B contains a Peano curve.

PROOF. We know that (A ∪ B)\B = A\B is open in the space A ∪ B. Either
(A\B) ∩ P is nonempty or P ⊆ B (in which case we are done). We note that
(A\B) ∩ P is an open subset of P and so, by Lemma 3.9, (A\B) ∩ P contains a Peano
curve. Therefore either A contains a Peano curve or B contains a Peano curve. 2

LEMMA 3.11. Let φ : X→ Y be a quotient mapping from X onto Y , where both
X and Y are compact Hausdorff spaces. Further, let f : [0, 1] → Y be a nontrivial
continuous mapping into Y . Then [0, 1] is a quotient space of X.

PROOF. Clearly, f ([0, 1]) is a compact connected Hausdorff space contained in Y .
Therefore, there exists a continuous mapping g of f ([0, 1]) onto [0, 1]. Thus, by the
Tietze–Urysohn extension theorem, g can be extended to a continuous mapping of Y
onto [0, 1]. Finally, we see that g ◦ φ : X→ [0, 1] is a continuous surjective map and
hence is a quotient map. 2
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NOTATION.

• Let X be a subset of a group G. We denote the subset
⋃n

i=1(X ∪ X−1)i of G by
gpn(X).

• Let X and Y be disjoint topological spaces. We denote by X t Y the free union
of X and Y ; in other words, X t Y is the set X ∪ Y with the coarsest topology
inducing the given topologies on X and Y and having X and Y as open subsets.

• Let � be a class of (not necessarily Hausdorff) topological groups. Then S(�)
denotes the class of all topological groups G such that G is isomorphic to a
subgroup of a member of �. Similarly, the operators Q, C and P denote,
respectively, Hausdorff quotient group, arbitrary cartesian product with the
Tychonoff topology and finite product.

STEP 3. We prove (iv) implies (i) of the main theorem.

PROOF. Let G be a nontotally path-disconnected Hausdorff topological group
contained in V(F A(X)). Clearly, G contains a Peano curve. Now, by [1, Theorem 2],
G ∈ SC Q P(F A(X)). Thus G is a subgroup of H =

∏
i∈I Hi , where each

Hi ∈ Q P(F A(X)). Note that H contains a Peano curve. By Lemma 3.8, there
exists i ∈ I such that Hi ∈ Q P(F A(X)) contains a Peano curve. Now F A(X)
× F A(X) is topologically isomorphic to F A(X1 t X2), where X1 and X2 are copies
of X [9, Theorem 6]. Therefore, for K ∈ P(F A(X)), K is topologically isomorphic
to F A(X1 t X2 t · · · t Xn), where each X i is a copy of X . Thus, we have
Hi ∈ Q(F A(X1 t X2 t · · · t Xn)), and Hi contains a Peano curve. Noting that
Y = X1 t X2 t · · · t Xn is compact, we see that F A(Y ) is a kω-group and hence Hi is
a kω-group. Let θ : F A(Y )→ Hi be the quotient homomorphism onto Hi . Then a kω-
decomposition of Hi is given by Hi =

⋃
∞

j=1 gp j (θ(Y )), as gp j (θ(Y ))= θ(F A j (Y )).
Moreover, every compact subspace of Hi lies in gpm(θ(Y )) for some m ∈N (see
[6, Section 2]). So we choose m to be the smallest value such that gpm(θ(Y ))
contains the Peano curve Pi in Hi . Let g : [0, 1] → Hi be the mapping such that
Pi = g([0, 1]); then g : [0, 1] → gpm(θ(Y )) is continuous and nontrivial. We now
have that U = Pi ∩ (gpm(θ(Y ))\gpm−1(θ(Y ))) is an open nonempty subset of the
Peano curve Pi and so, by Lemma 3.9, contains a Peano curve. Consider

gpm(θ(Y ))\gpm−1(θ(Y )) = θ(F Am(Y ))\θ(F Am−1(Y ))

⊆ θ(F Am(Y )\F Am−1(Y ))

= A1 ∪ A2 ∪ · · · ∪ A2m = A,

where each Ak = θ(Y ε1Y ε2 · · · Y εm )= θ(Y )ε1 · · · θ(Y )εm , with εi =±1 for
i = 1, . . . , m. Now, each Ak is compact and A contains a Peano curve. Thus, by
Lemma 3.10, Ak for some k contains a Peano curve, Pk . Now,

Ak = θ(X1 t · · · t Xn)
ε1 . . . θ(X1 t · · · t Xn)

εm

= [θ(X1)
ε1 t · · · t θ(Xn)

ε1] · · · [θ(X1)
εm t · · · t θ(Xn)

εm ],
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so we see that Ak is the union of closed sets of type θ(Xl1)
ε1 · · · θ(Xlm )

εm , where each
Xli is a copy of X . It follows from Lemma 3.10 that for some collection l1, . . . , lm ,
θ(Xl1)

ε1 · · · θ(Xlm )
εm , which is homeomorphic to θ(Xn), contains a Peano curve. As

Xn is compact, θ(Xn) is a compact quotient space of Xn . Applying Lemma 3.11, we
obtain that [0, 1] is a quotient space of Xn , and so Xn is not scattered. Finally, if X
were scattered, then by Proposition 2.2 Xn would also be scattered. Therefore X is
not scattered. 2

This completes the proof of the main theorem.
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