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Abstract. If the nilradical nðgÞ of the Lie algebra g of a pro-Lie group G is finite dimensional
modulo the center zðgÞ, then every identity neighborhood U of G contains a closed normal
subgroup N such that G=N is a Lie group and G and N � G=N are locally isomorphic.
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Background and Introduction

A local morphism from a topological group G to a topological group H is a contin-
uous function l : U ! V , V JH, defined on an open identity neighborhood U of
G such that g; g 0; gg 0 A U implies lðgg 0Þ ¼ lðgÞlðg 0Þ. A local morphism l is called a
local isomorphism if it has an inverse l�1 : V ! U which is a local morphism from H

to G. If a local isomorphism from G to H exists, then G and H are said to be locally

isomorphic.
For a closed normal subgroup N of G let q : G ! G=N be the quotient morphism.

Then N is said to split locally if there is a local morphism l : U ! V from G=N to G

such that for the inclusion map j : V ! G, the composition q � j � l is the identity
map of U , that is, that qðlðuÞÞ ¼ u for all u A U JG=N.

Assume that N is a normal co-Lie subgroup, that is, G=N is a Lie group. Then let
L be the simply connected covering group of the identity component ðG=NÞ0 and let
p : L ! G=N be the coextension of the covering morphism. Let W be a connected
symmetric open identity neighborhood of L such that pðWÞJU . Then by the simple
connectivity of L there is a unique morphism f : L ! G such that f ðxÞ ¼ lðpðxÞÞ for
all x A W (see for instance [2], Corollary A2.26). There is a morphism a : L ! AutðNÞ
given by aðxÞðnÞ ¼ f ðxÞnf ðxÞ�1, allowing us to form the semidirect product N za L

and the morphism

m : N zL ! G; mðn; xÞ ¼ nf ðxÞ;

whose kernel is readily seen to be fð f ðxÞ�1; xÞ : x A f �1ðNÞgG f �1ðNÞ, a discrete
subgroup of N za L and whose image is the open subgroup of G generated by NlðUÞ.
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This simple and straightforward process allows us to view a closed normal co-Lie
subgroup N of G that splits locally as being given by an open morphism with discrete
kernel from a semidirect product N zL of N with a Lie group L. In particular,
N zL and G are locally isomorphic, as are L and G=N.

A closed normal subgroup of N is said to split locally and directly if the image
of some defining local morphism l : U ! V from G=N ! G commutes elementwise
with N. Then, if G=N is a Lie group, this happens if the semidirect product N za L is
direct and thus G and N � G=N are locally isomorphic. Iwasawa’s influential paper
[10] of 1949 contains the following powerful theorem:

Iwasawa Local Splitting Theorem. Let G be a connected locally compact group and U

an identity neighborhood of G. Then there is a closed normal co-Lie subgroup N con-

tained in U that splits locally and directly. In particular, G and N � G=N are locally

isomorphic.

Historically, our rendition of Iwasawa’s is not quite accurate. He formulated this
theorem for connected locally compact groups which are projective limits of Lie
groups. It was proved only three or four years later by Yamabe [13, 14] that every
connected locally compact group is indeed a projective limit of Lie groups.

Definition. A topological group is a pro-Lie group if it is complete and every identity
neighborhood contains a normal co-Lie subgroup. r

Thus every connected locally compact group is a particular example of a pro-Lie
group. Better still: A topological group G is said to be almost connected if the quo-
tient group G=G0 modulo its component is compact. Yamabe’s Theorem even es-
tablishes that any almost connected locally compact group is a pro-Lie group.

Evidently, a Local Splitting Theorem such as Iwasawa’s is of great power and
significance for the structure theory of connected locally compact groups and indeed
many authors have used it in one way or another. This motivates us to investigate
local splitting for the class of pro-Lie groups in general.

It is shown in [1], [4], and [9] that a topological group is a pro-Lie group if and only
if it is the limit of a projective system of finite dimensional Lie groups; it is not trivial
that this condition is su‰cient. Given this equivalence, it is not hard to recognize
another equivalent condition, namely, that G be isomorphic as a topological group to
a closed subgroup of a product of finite dimensional Lie groups (see [9]).

This paper is concerned with the local direct splitting of arbitrarily small closed
normal co-Lie subgroups of pro-Lie groups. Unfortunately, the local splitting of
small normal co-Lie subgroups does not hold for arbitrary pro-Lie groups, as we
shall see by exhibiting examples. So our challenge is to find and describe the general
obstruction to local splitting.

Our procedures require some prerequisites, notably, on the Lie theory of pro-Lie
groups for which we refer to recent papers [4] and [6]; a comprehensive source will
become available shortly [9]. The first step is to investigate the local splitting of nor-
mal co-Lie subgroups of pro-Lie groups in the spirit of our introductory remarks.
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The second step will be the study of the local splitting on the Lie algebra level, while
the third and final step is the local splitting on the group level.

Acknowledgment. The authors thank the referee for a careful scrutiny of their text
which helped them to avoid a number of typographical errors and led to various re-
visions that improved the presentation.

Locally Splitting Lie Group Quotients of Pro-Lie Groups

For our dealing with pro-Lie groups, we have pursued the strategy of preparing a
structure theoretical idea by first working as much as we can on the level of the pro-
Lie algebras. We begin by proving a result that will motivate and justify why we
should focus on the pro-Lie algebra level.

Let G be a connected pro-Lie group with Lie algebra g ¼ LðGÞ and N a closed
normal subgroup with Lie algebra n ¼ LðNÞ. Assume that g is the semidirect sum
nl h of the closed ideal n and a closed subalgebra h. We recall from [6] or [9],
Theorem 6.6(vi), that the functors G : proLIEALG ! simpconnproLIEGR and
L : simpconnproLIEGR ! proLIEALG implement an equivalence of categories
between the category of pro-Lie algebras and that of simply connected pro-Lie

groups. Define H ¼def
GðhÞ, the unique simply connected pro-Lie group with Lie al-

gebra h according to [6] and [9]. The inclusion ih : h ! g induces a morphism
GðihÞ : H ! ~GG ¼def

GðgÞ. Recall that we have a natural morphism pG : ~GG ! G, called
the universal morphism. (It is obtained as the back adjunction of the pair of adjoint
functors ðG;LÞ and reduces, in the case of connected Lie groups, to the universal
covering morphism.) We set j ¼def

pG � GðihÞ : H ! G. Then j is a morphism of to-
pological groups. Now we can define a group homomorphism a : H ! AutðNÞ by
aðhÞðnÞ ¼ jðhÞnjðhÞ�1 and see immediately that the automorphic action

ðh; nÞ 7! aðhÞðnÞ : H � N ! N

is continuous (irrespective of a potential topology on AutðNÞ). Therefore the semi-
direct product N za H, having the multiplication

ðn1; h1Þðn2; h2Þ ¼ ðn1aðh1Þðn2Þ; h1h2Þ

is well-defined. The reader should be alerted to the fact that for a subalgebra h of a Lie
algebra g, the inclusion ih : h ! g may not induce an embedding GðihÞ : GðhÞ ! GðgÞ
in general even in the case of Lie groups: If G ¼ ~GG is S3 G SUð2Þ, the unit quaternions
under multiplication with g ¼ R � i þR � j þR � k the set of pure quaternions as Lie
algebra and with the exponential function exp z ¼ ez ¼ 1 þ z þ 1

2 z2 þ � � � , and if
h ¼ R � i J g, then GðhÞGR while imGðihÞ ¼ hexpS3 hi ¼ eR�i ¼ S1 JC is a circle
subgroup of S3 and so GðihÞ : GðhÞ ! GðgÞ ¼ ~GG is not injective.

We shall retain the notation we have just introduced in the following result:
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Proposition 1.1 (The Splitting and Sandwich Theorem). Let N be a closed normal

subgroup of a pro-Lie group G and assume that the Lie algebra g of G is the semidirect

sum of the Lie algebra n of N and some closed subalgebra h of the Lie algebra g of G.

Then

(i) there is a simply connected pro-Lie group H with Lie algebra hG g=n, a semi-

direct product N za H and two morphisms

~GG ���!pNzaH
N za H ���!m G;

whose composition m � pNzaH is the universal morphism pG : ~GG ! G.

(ii) Both kernels ker pNzaH and ker m are totally disconnected, and all of the mor-

phisms pNzaH, m, and pG induce isomorphisms LðpNzaHÞ, LðmÞ, and LðpGÞ on the

Lie algebra level.

(iii) The function

h 7! ðjðhÞ�1; hÞ : j�1ðNÞ ! ker m; j : H ! G;

is an isomorphism of prodiscrete groups.

(iv) The semidirect product N za H is a pro-Lie group.

Proof. (i) Since hG g=n, by [4], Corollary 6.7(i) or Corollary 4.21(i) of [9], the
Lie algebra h may be identified with the Lie algebra LðG=NÞ. We set H ¼def

GðhÞ and
obtain in this fashion a simply connected pro-Lie group whose Lie algebra h agrees
with that of G=N. By the remarks preceding the theorem we have an automorphic
action of H on N via the morphism a : H ! AutðNÞ so that N za H is well-defined.

It remains to show that we may identify ~GG with ð ~NN za HÞ~ in a natural way, to define
m, and to verify m � pNzaH ¼ pG.

By the Strict Exactness Theorem 6.7 of [9], we may identify ~NN ¼ GðnÞ with a
closed normal subgroup of ~GG ¼ GðgÞ in such a fashion that pN ¼ pGj ~NN. For any
h A H, we shall abbreviate GðihÞðhÞ by ~hh. Now by Theorem 6.11 of [9] on the Preser-
vation of Semidirect Products, there is a natural isomorphism

m : ~NN zi H ¼ GðnÞzi GðhÞ ! ~GG ¼ GðgÞ;

mðx; hÞ ¼ xGðihÞðhÞ, x A ~NN J ~GG, h A H, where the action of H on the normal sub-

group ~NN of ~GG is by inner automorphisms so that iðhÞðxÞ ¼ ~hhx~hh�1. In particular,
~NN zi H is a pro-Lie group. Let us define m : N za H ! G by mðn; hÞ ¼ njðhÞ. Then
we claim to have a commutative diagram of morphisms

ð*Þ

~NN zi H ���!m ~GG

pN�idH

???y
???ypG

N za H ���!
m

G:
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Indeed, for ðx; hÞ A ~NN �H we have m � ðpN � idHÞðx; hÞ ¼ pNðxÞjðhÞ ¼ pGðxÞpGð~hhÞ ¼
pGðx~hhÞ ¼ pGðmðx; hÞÞ, which establishes our claim. If we identify Lð ~GGÞ with g so that
LðpGÞ becomes the identity and therefore Lð ~NNÞ becomes identified with n, applying L

to the diagram ð*Þ we obtain the commuting diagram

ð**Þ

Lð ~NN zi HÞ ���!LðmÞ
g ¼ nl h

LðpN�idH Þ

???y
???yidg

LðN za HÞ ���!
LðmÞ

g

of isomorphisms of pro-Lie algebras. It follows that ðpN � idHÞ � m�1 : ~GG ¼ GðgÞ !
N za H is pNzaH . This completes the proof of (i).

(ii) We have just observed that LðpNzaHÞ, LðmÞ, and LðpGÞ are isomorphisms. This
implies that their kernels are zero. But since L preserves kernels, it follows from 3.30
or 4.23 of [9] that the kernels of pNzaH , m, and pG are totally disconnected.

(iii) We have ðn; hÞ A ker m i¤ n ¼ jðhÞ�1 A N X jðHÞ i¤ h A j�1ðNÞ and n ¼ jðhÞ�1.
Thus b : j�1ðNÞ ! ker m, bðhÞ ¼ ðjðhÞ�1; hÞ is a bijective morphism having the in-
verse given by b�1ðn; hÞ ¼ h and is therefore an isomorphism between totally dis-
connected pro-Lie groups and consequently prodiscrete groups.

(iv) Let M A NðGÞ and K A NðHÞ, where NðGÞ is the set of normal co-Lie sub-
groups of G. Then ðM XNÞ � K is a normal subgroup of N za H, as is readily
verified. (For instance,

ð1; hÞðm; kÞð1; h�1Þ ¼ ðjðhÞmjðhÞ�1; hkh�1Þ A ðM XNÞ � K

if m A M XN and k A K). But ðN za HÞ=ðM � KÞGN=ðN XMÞzH=K is a semi-
direct product of Lie groups and is therefore a Lie group. r

Recall that semidirect products of pro-Lie groups need not be pro-Lie groups as is
exemplified by such locally compact groups as ðZ=2ZÞZ zZ with Z acting auto-
morphically on the power ðZ=2ZÞZ via the shift operation.

While G=N is not guaranteed to be a pro-Lie group, it does have a Lie algebra
isomorphic to g=nG h, and by the definition in [6], Theorem 4.6(ii 00) or in [9], Theo-
rem 2.22(i 00), we have gG=NG=N ¼ Gðg=nÞ ¼ GðhÞ ¼ H.

Let q : G ! G=N denote the quotient morphism. Then the situation is described in
the following commutative diagram:

ðyÞ

h ���!ih
g ���!LðqÞ

h

exp eG=N

???y
???yexp ~GG

???yexpH

gG=NG=N ���!GðihÞ ~GG ���!
~qq

gG=NG=N

pG=N

???y
j

???y ???ypG

???ypG=N

G=N G ���!
q

G=N
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where the top horizontal rows compose to the respective identity morphism and
where we recall j ¼ pG � GðihÞ.

We shall assume that G=N is a Lie group shortly after the following corollary re-
sumes the hypotheses of the preceding proposition and imposes additional ones.

Recall that a semidirect sum splitting g ¼ nl h implies that hG g=n, which al-
lowed us to identify GðhÞ and Gðg=nÞ ¼ gG=NG=N in view of the further natural iso-
morphism g=n ¼ LðGÞ=LðNÞGLðG=NÞ of [4], Corollary 6.7(i), or [9], Corollary
4.21(i).

In [9], 12.88 (see also [7, 8]) we prove the

Alternative Open Mapping Theorem. Let f : G ! H be a surjective morphism between

pro-Lie groups and assume that

(a) G=ker f is a pro-Lie group.

(b) H is connected.

(c) Lð f Þ : LðGÞ ! LðHÞ is surjective.

Then f is open.

We shall use this in the proof of the following

Corollary 1.2. Assume the hypotheses of Proposition 1.1 and the following hypotheses:

(v) The universal morphism pG=N : gG=NG=N ! G=N is surjective.

(vi) The quotient group ðN za
gG=NG=NÞ=ker m is a pro-Lie group.

Then the morphism m : N za
gG=NG=N ! G defined by mðn; hÞ ¼ njðhÞ as in Proposition

1.1 is a quotient morphism with a kernel isomorphic to the central prodiscrete subgroup

j�1ðNÞ of gG=NG=N.

Proof. From the diagram ðyÞ we extract the commutative diagram

H ¼def gG=NG=N ���!id gG=NG=N

j

???y
???ypG=N

G ���!
f

G=N:

Hypothesis (v) yields the surjectivity of pG=N , and thus that of f � j. So let g A G.
Then there is an h A gG=NG=N such that f ðgÞ ¼ f ðjðhÞÞ. Therefore gjðhÞ�1 A ker f ¼ N,

that is there is an n A N such that gjðhÞ�1 ¼ n; so g ¼ njðhÞ ¼ mðn; hÞ. Hence
m : N za H ! G is surjective. Now we invoke the Alternative Open Mapping Theo-
rem. Indeed its Hypothesis (a) is satisfied by Assumption (vi) above, Hypothesis (b)
is the connectivity of gG=NG=N, and Hypothesis (iii) is satisfied since LðmÞ is an iso-
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morphism by 1.1(ii). Therefore m is a quotient morphism and its kernel was identified
in 1.1(iii). r

The situation is particularly clear if G=N is a Lie group, in which case gG=NG=N ¼ H is
the universal covering group of ðG=NÞ0. Recall that NðGÞ is the filter basis of all
normal subgroups N such that G=N is a Lie group. Further recall from Chapter 9 of
[9] that for a pro-Lie group G and a closed subalgebra h of the Lie algebra g ¼ LðGÞ
of G we denote by AðhÞ the unique smallest analytic subgroup of G having h as its Lie
algebra.

Theorem 1.3 (Locally Splitting Lie Group Quotients). Assume, firstly, that G is a pro-

Lie group and that N is a normal subgroup of G such that G=N is a Lie group.

Assume, secondly, that the Lie algebra g of G is the semidirect product of the Lie

algebra n of N and some closed subalgebra of g.

Let m : N za
gG=NG=N ! G be the morphism defined by mðn; hÞ ¼ njðhÞ, j : gG=NG=N ! G,

as in Proposition 1.1.

Then the morphism m is an open morphism with a kernel isomorphic to a discrete

central subgroup of the Lie group gG=NG=N, and implements a local isomorphism between

N za
gG=NG=N and G.

If g ¼ nl h semidirectly, then the analytic subgroup AðhÞ of G having Lie algebra h

agrees with jð gG=NG=NÞ, and has a countable intersection with N.

N=N0 is locally compact metric totally disconnected and N has an open almost

connected subgroup N1 A NðGÞ for which the same conclusions hold when N is re-

placed by N1.

Proof. Since G=N is a Lie group, its identity component ðG=NÞ0 is open. There
is therefore an open subgroup G of G containing N such that G=N ¼ ðG=NÞ0. We

notice that gG=NG=N ¼ gG=NG=N. We observe that if the assertions of the theorem are proved
for G in place of G then they hold for G since G is open in G. For the purposes of the
proof we may therefore simplify notation by assuming that G=N is connected, which
we shall do henceforth.

Now we must verify the hypotheses of 1.2. Firstly, the assumptions of 1.1 are sat-
isfied. Next Hypothesis 1.2(v) is satisfied, since the universal morphism

pG=N : gG=NG=N ! G=N

of a Lie group is none other than the universal covering morphism which is surjec-
tive. Secondly, the kernel ker m of m is isomorphic to a totally disconnected central

subgroup of the Lie group gG=NG=N by 1.1(iii) and is therefore discrete. By 1.1(iv),

N za
gG=NG=N is a pro-Lie group. Then the quotient ðN za

gG=NG=NÞ=ker m is complete since
any quotient of a Hausdor¤ topological groups modulo a first countable closed or
locally compact normal subgroup is complete: see for instance [12], p. 242, Lemma
13.13, and [12], p. 206, Theorem 11.18. Thus 1.2(vi) is satisfied as well. Now 1.2
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applies and shows that the morphism m is a quotient morphism and that its kernel is a
discrete subgroup; it therefore implements a local isomorphism.

The subgroup

ðf1g � HÞ ker m

ker m
¼ ðN X jðHÞÞ � H

fðjðhÞ�1; hÞ : h A j�1ðNÞg
G

H

j�1ðNÞ

is mapped bijectively onto the analytic subgroup AðhÞ of G with Lie algebra h. It

intersects N in a countable subgroup since the subgroup ker pG=N of gG=NG=N is finitely
generated abelian and thus is countable.

By Definition 9.43 and Theorem 9.44 of [9], the factor group G=N0 is finite-
dimensional, hence locally compact metric. And it is no loss of generality that N=N0

corresponds to D in 9.44 of [9]. Therefore we may assume that N is almost connected
if we wish. r

Corollary 1.4. If, in the circumstances of Theorem 1.3, the sum g ¼ nl h is direct

with an ideal h, then there is a direct product N � gG=NG=N and an open morphism

m : N � gG=NG=N ! G with a discrete kernel implementing a local isomorphism. In partic-

ular, G is locally isomorphic to the direct product of N and the Lie group G=N.

Proof. We continue to write H and again assume without loss of generality that G=N

is connected. The closed connected subgroup jðHÞ is the minimal analytic subgroup
with Lie algebra h and is closed. Now h is not only a subalgebra, but an ideal. This
implies that jðHÞ is normal. Since N is normal, ½N; jðHÞ�JN X jðHÞ. Since jðHÞ is
connected, ½N; jðHÞ� is connected and contains 1. On the other hand, N X jðHÞ is
a countable Hausdor¤ topological group and is therefore totally disconnected. It
follows that ½N; jðHÞ� is singleton and thus N and jðHÞ commute elementwise. Thus
a : H ! AutðNÞ, aðhÞðnÞ ¼ jðhÞnjðhÞ�1 ¼ n is the constant morphism. Therefore
N za H is a direct product. r

With these results we are now poised to shift the emphasis of our research to the Lie
algebra.

The Lie Algebra Theory of the Local Splitting

The following definitions are put into place mainly for the purpose of convenience in
the formulations that follow.

Definition 2.1. An ideal n in a pro-Lie algebra is called complemented, respectively,
well-complemented if there a finite-dimensional subalgebra h such that g is the semi-
direct sum, respectively, direct sum, nl h algebraically and topologically. It is called
supplemented if there is a finite-dimensional subalgebra h such that g ¼ nþ h. r
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Every well-complemented ideal is complemented, and every complemented ideal
is supplemented. Every supplemented ideal n is cofinite-dimensional, that is,
dim g=n < y.

Remember that the essential structural ingredient and invariant of a pro-Lie alge-
bra g is the filter basis IðgÞ of all cofinite dimensional closed ideals j, and recall that
IðgÞ converges to zero. So supplemented ideals always are elements of IðgÞ.

Definition 2.2. A pro-Lie algebra g is said to be rich, meaning ‘‘rich in complemented
ideals,’’ if g has arbitrarily small complemented ideals; that is, for every zero neigh-
borhood U of g there is a complemented ideal n contained in U . It is called very rich

if g has arbitrarily small well-complemented ideals. Finally g is said to be extremely

rich if all su‰ciently small ideals are well-complemented. r

Notice that the set CIðgÞ of complemented ideals of a pro-Lie algebra contains g and
thus is not empty. Therefore, an alternative way of expressing the condition of rich-
ness is saying that

g is rich i¤ CIðgÞ is cofinal in IðgÞ.

Every finite-dimensional Lie algebra is extremely rich by default since f0g is well-
complemented in this case.

We recall at this point that a pro-Lie algebra is called reductive if g ¼
Q

j A J sj for
a family of finite-dimensional simple Lie algebras sj or 1-dimensional algebras iso-
morphic to R. (See [9], Chapter 7, notably, Theorem 7.27.)

Proposition 2.3.

(i) Any ideal of a reductive pro-Lie algebra is a direct Lie algebra summand alge-

braically and topologically.

(ii) Every reductive pro-Lie algebra is extremely rich.

Proof. (i) follows from Theorem 7.27(a) of [9].
(ii) By definition of the product topology, given a zero neighborhood U , there is

a finite subset F J J and a family of zero neighborhoods Uj J sj for j A F such thatQ
j A J Wj is a zero neighborhood contained in U if

Wj ¼
sj for j A JnF ;

Uj for j A F ;

�

provided the finitely many Uj, j A F are selected small enough. Now for this partic-
ular set F we construct n as in (i) above. Then we indeed have nJ

Q
j A J Wj JU and

n is well-complemented as we saw in (i). r

A bit more generally, we can formulate the following result:
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Proposition 2.4. An arbitrary product of finite dimensional Lie algebras is very rich.

Proof. By following the line of argument of the proof of Proposition 2.3, the proof
follows straightforwardly. r

It is important that we take note of some examples which show that not every pro-Lie
algebra is rich, let alone very rich. We shall use some multilinear algebra for weakly
complete topological vector spaces which is provided in [9], Appendix 2, notably in
Lemma A2.21, Lemma A2.22, and Corollary A2.23, or in [2], Chapter 7, Definition
7.27¤.

Examples 2.5. (i) We write g ¼ RN0 , where N0 ¼ f0; 1; 2; . . .g; and for any subset
J JN0 we identify RJ with the obvious vector subspace of g. The bracket operation
of g is written

½ðx; r1; r2; . . .Þ; ðy; s1; s2; . . .Þ� ¼ ðx � ð0; 0; s1; s2; . . .Þ � y � ð0; 0; r1; r2; . . .ÞÞ

¼ ð0; 0; xs1 � yr1; xs2 � yr2; . . .Þ:

Then g has a descending sequence of ideals g½n� ¼ Rfnþ1;nþ2;...g, n ¼ 1; 2; . . . , each of
codimension one in the preceding one, but none of them is supplemented, let alone
complemented. Thus g is a pronilpotent (see [9], 7.42) center-free algebra which is not
rich.

(ii) For n A N, let Cn be the R-module defined on the underlying real vector space
of C defined by the action ðr; cÞ 7! r �n c ¼ 2pnirc : R�C ! C. This is the Lie alge-
bra action corresponding to the group action of the circle group R=Z given by
ðr þ Z; cÞ 7! e2pinrc : R=Z�C ! C. We consider the product module V ¼def Q

n AZ Cn

with the morphism a : R ! DerðVÞ given by aðrÞðcnÞn AZ ¼ ðr �n cnÞn AZ. Now we
form the semidirect product g ¼def

V za R, that is, the product V �R with compo-
nentwise addition and the bracket ½ðc; rÞ; ðd; sÞ� ¼ ðaðrÞðdÞ � aðsÞðcÞ; 0Þ.

Then g is a metabelian rich pro-Lie algebra that is not very rich.
(iii) This example will present the pro-Heisenberg algebra hðVÞ over a given weakly

complete topological vector space V with dim V > 1. We define

hðVÞ ¼ V �
V2

V ; ½ðv; xÞ; ðw; yÞ� ¼ ð0; v5wÞ;

with the componentwise topological vector space structure. Then dimb 2 implies
that hðVÞ is a class 2 nilpotent pro-Lie algebra, and ½hðVÞ; hðVÞ� ¼ zðhðVÞÞ ¼
f0g �

V2
V since the span of the v5w is dense in

V2
V . We record that g ¼def

hðVÞ is
its own nilradical nðgÞ and nðgÞ=zðgÞGV .

Now assume that g ¼def
hðVÞ is an ideal direct sum g1 l g2. Assume g1 J zðgÞ, then

zðgÞ ¼ ½g1 þ g2; g1 þ g2� ¼ ½g2; g2�J g2 and so g1 J g1 X g2 ¼ f0g. Thus suppose that
neither of the summands is zero. Then none of them is contained in zðgÞ. Let
ðv1; z1Þ A g1nzðgÞ and ðv2; z2Þ A g2nzðgÞ. Then ð0; 0Þ ¼ ½ðv1; z1Þ; ðv2; z2Þ� ¼ ð0; v15v2Þ.
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Thus v2 A R � v1 by Corollary A2.23 of [9], that is, there is a nonzero r A R
such that v2 ¼ r � v1, and so v15V ¼ v25V 0 f0g. Since g1 and g2 are ideals, we
have f0g � ðv15VÞ ¼ ½ðv1; z1Þ; g�J g1 and f0g � ðv25VÞ ¼ ½ðv2; z2Þ; g�J g2. Hence
fð0; 0Þg0 f0g � ðv15VÞJ g1 X g2, and this is a contradiction. Thus hðgÞ does not
allow an ideal direct sum decomposition.

In particular, if dim V ¼ y, then hðVÞ is a nilpotent class 2 pro-Lie algebra that
is not very rich. On the other hand, if V ¼ spanðfe1; e2gÞ, then V is the semidirect
product of the ideal zðhðVÞÞlR � ðe1:0Þ ¼ R � e1 �R � ðe15e2Þ and the subalgebra
R � ðe2; 0Þ.

The Campbell-Hausdor¤ multiplication on hðgÞ is given by ðv; xÞ � ðw; yÞ ¼
�
v þ w;

x þ y þ 1
2 ðv5wÞ

�
. The pro-Lie group ðhðgÞ; �Þ is called the pro-Heisenberg group

HðVÞ over the weakly complete topological vector space V . If dim V is infinite,
HðVÞ is an example of a nilpotent pro-Lie group of class 2 which does not satisfy
Iwasawa’s Local Splitting Theorem.

[For a verification of the details of Example 2.5(i), for a finite subset F JZ, identify
VF ¼

Q
n AF Cn in the obvious way with a subgroup of V . Show that ðVZnF � f0gÞz

ðVF �RÞ with the action of VF �R on VZnF � f0g via R. Show that a direct prod-
uct decomposition as required in a rich algebra is not possible.] r

If dim V ¼ 2, then HðVÞN is a class 2 nilpotent pro-Lie group satisfying the Iwasawa
Local Splitting Theorem.

Every pro-Lie algebra g contains a unique smallest ideal ncoredðgÞ such that g=ncoredðgÞ
is reductive; moreover ncoredðgÞ is pronilpotent and equals ½g; rðgÞ� for the radial rðgÞ
of g. (See [9], Definition 7.65 and Theorems 7.66, 7.67). We call ncoredðgÞ the cor-
eductive radical of g.

Lemma 2.6. Let g be a pro-Lie algebra.

(i) Assume that f is a finite-dimensional ideal such that g=f is rich, respectively, very

rich. Then g is rich, respectively, very rich. Indeed there are arbitrarily small ideals

i A IðgÞ for which there is a finite-dimensional subalgebra, respectively, ideal h

containing f such that g ¼ il h.

(ii) Assume that dim ncoredðgÞ < y. Then g is very rich.

Proof. (i) Since dim f < y and limIðgÞ ¼ 0 we find a j0 A IðgÞ such that j0 X
f ¼ f0g. Then j A IðgÞ and jJ j0 implies jX f ¼ f0g. Since f is finite-dimensional,
j0 þ f is closed and since f is an ideal, j0 l f is an ideal direct sum and ðj0 l fÞ=f A
Iðg=fÞ. Since g=f is rich, there is an ideal i of g containing f such that iJ j0 l f and
that g=f is a semidirect sum i=fl h=f for a subalgebra h of g such that dim h=f < y,
implying that dim h < y. So g ¼ iþ h and iX h ¼ f while, on the other hand, fJ
iJ j0 l f. Then the modular law implies i ¼ ðiX j0Þl f. Therefore g ¼ iþ h ¼
ðiX j0Þl fþ h ¼ ðiX j0Þ þ h and iX j0 X h ¼ j0 X f ¼ f0g. Thus, since h is finite-
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dimensional, g is the semidirect sum ðiX j0Þl h with iX j0 A IðgÞ. Since j0 may be
taken arbitrarily small, this shows that g is rich. If g=f is very rich, h may be chosen to
be an ideal, and so the sum ðiX jÞl h is direct, showing that g is very rich. If g=f is
extremely rich, the argument works for all su‰ciently small i A IðgÞ, and this shows
that g is extremely rich.

(ii) is an immediate consequence of (i). r

Proposition 2.7. Let g be a pro-Lie algebra, g 0 ¼ ½g; g� its commutator algebra, and zðgÞ
its center. Then the following statements are equivalent:

dim g 0 < y;ðAÞ
dim g=zðgÞ < y:ðBÞ

If these conditions are satisfied, then g 0 is finite-dimensional, and therefore closed. Let

zJ zðgÞ be a cofinite-dimensional closed vector subspace and v be a finite-dimensional

vector subspace such that g ¼ zl v.

(i) f ¼ g 0 l v is a finite-dimensional ideal containing g 0 and satisfying g ¼ zþ f. In

particular, there is a central ideal a A IðgÞ such that g ¼ al f and aJ z.

(ii) g is very rich.

Proof. (B) ) (A): Write g ¼ zðgÞl v with a finite-dimensional vector subspace v.

Then g 0 ¼def ½g; g� ¼ spanf½z þ v; z 0 þ v 0� : z; z 0 A zðgÞ; v; v 0 A vg ¼ spanf½v; v 0� : v; v 0 A vg
is finite-dimensional since v is finite-dimensional.

(A) ) (B): Assume that dim g 0 < y. Denote by b : g� g ! g 0 the continuous bi-
linear map given by bðx; yÞ ¼ ½x; y�. Then it follows from Lemma A2.21 of Appendix
2 of [9] that there is a cofinite-dimensional closed vector subspaces E of g such that
½E; g� ¼ f0g and that therefore E J zðgÞ. Thus zðgÞ is cofinite-dimensional as asserted.

(i) We note that f contains g 0 and recall that every vector subspace of a Lie al-
gebra g containing g 0 is an ideal. We find a closed vector subspace a of z such that
z ¼ al ðzX fÞ. Then g ¼ al f is a direct sum of pro-Lie algebras and aJ zJ zðgÞ.

(ii) This follows from (i) and Lemma 2.6. (It is also immediate from (ii) di-
rectly.) r

The implication (B) ) (A) is always true while the implication (A) ) (B) fails in
general as is shown by the example g ¼ RðNÞ �R with the bracket

��Py
n¼1

un; r

�
;

�Py
n¼1

vn; s

��
¼
�

0;
Py
n¼1

detðun; vnÞ
�
:

Here f0g �R is g 0 and zðgÞ at the same time, and the center therefore is far from
being cofinite-dimensional.

As an exercise, we verify the following
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Remark. (i) Let g be a pro-Lie algebra and z an ideal contained in the center zðgÞ of g.
If g=z is pronilpotent, then g is pronilpotent.

(ii) The nilradical nðg=zðgÞÞ of g=zðgÞ is nðgÞ=zðgÞ.

[Outline of proof. (i) Let j A IðgÞ. Then ðg=jÞ=ððzþ jÞ=jÞG g=ðzþ jÞ is a finite-
dimensional quotient of g=z and is, therefore, a nilpotent Lie algebra. Also, ðzþ jÞ=j
is contained in the center of g=j. Therefore g=j is nilpotent. Thus g is pronilpotent.

(ii) Let m be that ideal of g containing zðgÞ for which m=zðgÞ ¼ nðg=zðgÞÞ. Since
this quotient is pronilpotent, by (i) above we know that m is pronilpotent. Hence
mJ nðgÞ. Since nðgÞ=zðgÞ is pronilpotent, by Lemma 7.56(ii) and Theorem 7.57 of
[9], we have nðgÞJm. Thus m ¼ nðgÞ.]

Lemma 2.8. (i) Let p : h ! k be a surjective morphism of pro-Lie algebras. Then

pðncoredðhÞÞ ¼ ncoredðkÞ, and if ker pJ zðhÞ, then pðnðhÞÞ ¼ nðkÞ.
(ii) Let j be an ideal of a pro-Lie algebra g and assume that it contains the center.

Then nðjÞ=zðjÞ is a quotient of an ideal of nðgÞ=zðgÞ. In particular, if nðgÞ=zðgÞ is finite-

dimensional, so is nðjÞ=zðjÞ.

Proof. (i) Let p : h ! k be a surjective morphism of pro-Lie algebras. Then
pðrðhÞÞ ¼ rðkÞ by Proposition 7.54 of [9]. Thus p maps ½h; rðhÞ� onto ½k; rðkÞ�. The im-
age of ½h; rðhÞ� by p is closed according to Theorem A2.12(b) in Appendix 2 of [9]
or [4], Proposition 3.1. Hence, in view of Theorem 7.67 of [9], we get pðncoredðhÞÞ ¼
pð½h; rðhÞ�Þ ¼ ½k; rðkÞ� ¼ ncoredðkÞ. Moreover, pðnðhÞÞ is a pronilpotent ideal and there-
fore is contained in nðkÞ. Now assume that ker p is central; then p�1ðnðkÞÞ=zðhÞG nðkÞ
is pronilpotent and thus p�1ðnðkÞÞ is pronilpotent by the Remark preceding this
Lemma.

(ii) According to (i), the quotient map j=zðgÞ ! j=zðjÞ maps nðjÞ=zðgÞ onto nðjÞ=zðjÞ.
Since nðjÞ as a characteristic ideal of j is a pronilpotent ideal of g, we have nðjÞJ nðgÞ
and thus nðjÞ=zðgÞJ nðgÞ=zðgÞ. This proves the first assertion of (ii), and the second is
an immediate consequence. r

If we apply 2.8(i) to the quotient morphism

p : g ! g=zðgÞ;

we obtain

ðncoredðgÞ þ zðgÞÞ=zðgÞ ¼ ncoredðg=zðgÞÞ;

and so the full inverse image p�1ðncoredðg=zðgÞÞ agrees with ncoredðgÞ þ zðgÞ.

Definition 2.9. The pronilpotent pro-Lie algebra nðgÞ=zðgÞÞ ¼ nðg=zðgÞÞ is called the
nilcore of g. It is written nilcoreðgÞ.
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g

j
rðgÞ
j

nðgÞ
j

zðgÞ þ ncoredðgÞ
j

ncoredðgÞ
j

f0g

g

j
rðgÞ
j

nðgÞ
j

ncoredðgÞ þ zðgÞ
j

zðgÞ
j

f0g

¼ nilcoreðgÞ

9>>>>>>=
>>>>>>;

We recall the following elementary examples showing that all containments are
proper in general. In the Heisenberg algebra spanfX ;Y ;Zg, ½X ;Y � ¼ Z, we have

zðgÞ ¼ ncoredðgÞ ¼ zðgÞ þ ncoredðgÞ ¼ R � Z 0 g ¼ rðgÞ ¼ nðgÞ;

in the motion algebra spanfX ;Y ;Zg, ½X ;Y � ¼ Z, ½X ;Z� ¼ �Y ,

f0g ¼ zðgÞ0 ncoredðgÞ ¼ spanfY ;Zg ¼ zðgÞ þ ncoredðgÞ ¼ nðgÞ0 rðgÞ ¼ g;

in spanfU ;X ;Y ;Zg, ½U ;X � ¼ Y , ½U ;Y � ¼ Z we have

f0g0 zðgÞ ¼ R � Z 0 ncoredðgÞ ¼ zðgÞ þ ncoredðgÞ

¼ spanfX ;Y ;Zg0 nðgÞ ¼ g;

in the direct sum of the motion algebra with R we have

zðgÞU ncoredðgÞ;

in soð3Þ we have

rðgÞ0 g:

In the sum of all of these, all of the containments in the tall Hasse diagram are proper.
The following Lemma deals with the case that ncoredðgÞJ zðgÞ.

Lemma 2.10. Let g be a pro-Lie algebra satisfying ncoredðgÞJ zðgÞ. Then

(i) g ¼ rðgÞl sðgÞ is a direct sum algebraically and topologically of the radical and a

unique Levi summand sðgÞ.

(ii) ½rðgÞ; rðgÞ� ¼ ½g; rðgÞ� ¼ ncoredðgÞJ zðgÞ and rðgÞ is nilpotent of classa 2, that is

rðgÞ½2� ¼ ½rðgÞ; ½rðgÞ; rðgÞ�� ¼ f0g. We have nðgÞ ¼ rðgÞ.
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(iii) ½g; g� ¼ ½rðgÞ; rðgÞ�l sðgÞ, and this is a reductive pro-Lie algebra. If a is chosen so

that zðgÞ ¼ ncoredðgÞl a, and rðgÞ ¼ zðgÞl v for a closed vector subspace v then

ncoredðgÞl v is a nilpotent ideal of classa 2 and g ¼ sðgÞl al ncoredðgÞl v.

(iv) If dim rðgÞ0 < y, then there is a finite-dimensional ideal f of g and a closed vector

subspace a of zðgÞ such that g is the ideal direct sum sðgÞl al f, and g is very

rich. If dim nilcoreðgÞ < y, then dim rðgÞ0 < y.

Proof. (i) By Corollary 7.75 and Theorem 7.77(i) of [9], two Levi summands are
conjugate under an inner automorphism of the form a ¼ ead x for some x A ncoredðgÞ.
By our hypothesis x A ncoredðgÞ implies ad x ¼ 0 and thus a ¼ idg. Hence there is only
one Levi summand. Thus, by Theorem 7.77(ii) of [9] we conclude (i).

(ii) From Theorem 7.67 of [9] we know that ncoredðgÞ ¼ ½g; g�X rðgÞ ¼ ½g; rðgÞ� and
by hypothesis ncoredðgÞ is central. Conclusion (i) and Lemma 7.26 of [9] imply
g 0 ¼ ½g; g� ¼ rðgÞ0 þ s. The factor algebra rðgÞ=zðgÞ is the center of g=zðgÞ. Thus (ii)
follows.

(iii) is now straightforward from (ii).
(iv) Since ½rðgÞ; sðgÞ� ¼ f0g by (i), we have zðgÞ ¼ zðrðgÞÞ. Therefore, if rðgÞ0 is

finite-dimensional, then Proposition 2.7 shows that rðgÞ ¼ al f with a central ideal a
and a finite-dimensional ideal f of rðgÞ and then also of g by (i). Then (i) also implies
g ¼ sðgÞl al f. Since sðgÞl a is reductive and dim f < y, Proposition 2.3 and
Lemma 2.6 imply that g is very rich. The nilcore nilcoreðgÞ is rðgÞ=zðgÞ; so if this al-
gebra is finite-dimensional then rðgÞ0 is finite-dimensional by 11.13 of [9]. r

Now we are ready for the structure theorem that is the Lie algebra nucleus of the
local splitting theorems of this paper.

Theorem 2.11 (The Structure of Pro-Lie Algebras with Finite-Dimensional Nilcore).
For a pro-Lie algebra g, the following two conditions are equivalent:

(i) The nilcore nilcoreðgÞ ¼ nðgÞ=zðgÞ of g is finite-dimensional.

(ii) g is an ideal direct sum, algebraically and topologically, of a reductive pro-Lie al-

gebra and a finite-dimensional Lie algebra.

If these conditions are satisfied, then all su‰ciently small cofinite-dimensional ideals of

g are direct summands.

If the maximal compactly embedded ideal mðgÞ is cofinite dimensional in g then

dim nilcoreðgÞ < y.

Proof. Propositions 2.3 and Lemma 2.6 show that Condition (ii) implies that g is
very rich. If (ii) is satisfied, then g is a direct sum g1 l g2 with a reductive ideal g1 and
a finite-dimensional ideal g2. Then nðgÞ ¼ nðg1Þl nðg2Þ and zðgÞ ¼ zðg1Þl zðg2Þ
and, accordingly, nilcoreðgÞG nilcoreðgÞ1 � nilcoreðgÞ2. But nilcoreðgÞ1 ¼ f1g and
dim g2 < y. Accordingly, dim nilcoreðgÞ < y.

By Corollary 12.34(iii) of [9], mðgÞX rðgÞ ¼ zðgÞ. Therefore, if g=mðgÞ is finite-

Iwasawa’s Local Splitting Theorem for Pro-Lie Groups 621

Brought to you by | University of Calgary
Authenticated

Download Date | 5/28/15 2:45 AM



dimensional, then rðgÞ=zðgÞ ¼ rðgÞ=ðrðgÞXmðgÞÞG ðrðgÞ þmðgÞÞ=mðgÞ is finite-
dimensional and thus certainly nðgÞ=zðgÞ is finite-dimensional, that is, (i) holds.

It therefore remains to prove (i) ) (ii): By Lemma (ii) of the Remark preceding
Lemma 2.8, nðg=zðgÞÞ ¼ nðgÞ=zðgÞ. So, by hypothesis, g=zðgÞ has a finite-dimensional
nilradical. Since the nilradical contains the coreductive radical (see Theorem 7.66¤.
of [9]), g=nðgÞ is reductive. So g=nðgÞ is very rich by Proposition 2.3(ii). Thus Lemma
2.6(i) applies with g=zðgÞ in place of g and with nðgÞ=zðgÞ in place of f and shows that
there are two closed ideals j and h of g, both containing zðgÞ such that

g ¼ jþ h; jX h ¼ zðgÞ; nðgÞJ h; and dim h=zðhÞ < y:ð1Þ

We notice that ½j; h�J jX h ¼ zðgÞ. Thus the commutator function ðx; yÞ 7! ½x; y� :
j� h ! zðgÞ is a Z-bilinear continuous morphism. Thus for each b A h the morphism
x 7! ½x; b� : j ! zðgÞ vanishes on ½j; j�, and for each a A j, the morphism y 7! ½a; y� :
h ! zðgÞ vanishes on ½h; h�. Thus

½½j; j�; h� þ ½j; ½h; h�� ¼ f0g:ð2Þ

Next we discuss the ideal j: The nilradical nðjÞ of j is a characteristic ideal and is
therefore a pronilpotent ideal of g. Hence it is contained in nðgÞJ h, and so it is
contained in fact in jX h ¼ zðgÞ. Since ncoredðjÞJ nðjÞ this entails ncoredðjÞJ zðjÞ.
Now Lemma 2.10 applies to j and shows that rðjÞ is nilpotent of classa 2 and

j ¼ rðjÞl sðjÞ;ð3Þ

a direct sum with a unique Levi summand sðjÞ. Now sðjÞJ ½j; j� commutes element-
wise with h by (2) and with rðjÞ by (3). Hence it is an ideal of g ¼ jþ h while g is the
semidirect sum of rðgÞ and any Levi summand s by the Levi-Mal’cev Theorem 7.52(i)
of [9]. Now sðjÞJ s by the Levi-Mal’cev Theorem 7.77(iv) of [9]. Since s is semi-
simple, s is a direct sum sðjÞl t with a semisimple direct factor t of s, and so
g ¼ sðjÞl g1 where the ideal direct summand g1 is rðgÞl t. If g1 has the structure
asserted in Statement (ii) of the Theorem, then (ii) holds for g. We may and will
therefore assume that sðjÞ ¼ f0g, that is, that j is nilpotent of classa 2, that is,
j ¼ nðjÞ and dim j=zðgÞ < y. Then (1) implies dim g=zðgÞ < y.

By Proposition 2.7 applied to g where zðgÞ takes the place of z, there is a finite-
dimensional ideal f of g containing g 0 ¼ sþ ncoredðgÞ (where s is any Levi summand
of g), and there is a central ideal aJ zðgÞ such that

g ¼ al f ¼ ðal rðfÞÞl s:ð4Þ

This completes the proof of (ii). r

In Example 2.5(iii) we saw that for every infinite-dimensional weakly complete to-
pological vector space V , the class 2 nilpotent pro-Heisenberg algebra hðVÞ fails
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to be very rich, and its nilpotent core nilcoreðhðVÞÞ is isomorphic to V . This ex-
ample shows that Theorem 2.11 is likely to come very close to the best possible if one
looks for a reasonably general su‰cient condition for a pro-Lie algebra to be very
rich.

Splitting on the Group Level

We now return from the pure algebra level to the pro-Lie group level. Recall that the
nilradical NðGÞ of a connected pro-Lie group is the largest connected pronilpotent
normal subgroup. We notice that if G is a pro-Lie group, then NðG0Þ=ZðG0Þ0 is a
pro-Lie group by Theorem 4.28(i) of [9], where it is shown that the quotient of a
connected pro-Lie group modulo a connected closed normal subgroup is a pro-Lie
group. This pro-Lie group is called the nilcore of G. It is written nilcoreðGÞ.

Proposition 3.1. Let G be a connected pro-Lie group. Then

(i) its nilcore nilcoreðGÞ is a simply connected pronilpotent pro-Lie group.

(ii) Its Lie algebra LðnilcoreðGÞÞ is naturally isomorphic to the nilcore nilcoreðgÞ of

its Lie algebra g ¼ LðGÞ.

(iii) The function exp : ðnilcoreðgÞ; �Þ ! nilcoreðGÞ is a natural isomorphism of pro-

Lie groups, where � denotes the Campbell-Hausdor¤ multiplication on the pro-Lie

algebra nilcoreðgÞ.

Proof. By Theorem 9.50 of [9], the maximal compact subgroup of NðGÞ is contained
in the center ZðGÞ. From 11.26 of [9] it follows that nilcoreðGÞ has no nontrivial
compact subgroups. Then (i) and (iii) follow from Theorem 11.27 of [9].

(ii) By Theorem 10.42 of [9] we have LðNðGÞÞ ¼ nðgÞ, and by Proposition 9.23 we
know LðZðGÞÞ ¼ zðgÞ. Now [4], Corollary 6.7(i) or Corollary 4.21(i) proves the claim.

(iii) A combination of Theorem 8.5, Proposition 8.8, Theorem 8.15 of [9] shows,
that for a simply connected nilpotent pro-Lie Group N, the exponential function
expN : ðLðNÞ; �Þ ! N is an isomorphism of topological groups. The assertion is now
a consequence of conclusion (iii) above. r

The structure of the nilcore of a connected pro-Lie group is therefore completely
known when its Lie algebra is known. Trivially, ZðGÞ0 JNðGÞXZðGÞ. Conversely,
NðGÞXZðGÞJZðNðGÞÞ, and by Proposition 11.20(i) of [9], the center of NðGÞ is
connected. So

ZðGÞ0 JNðGÞXZðGÞJZðNÞ0;

but Example 2.5(ii) shows that ZðGÞ ¼ f0g and ZðNÞ0 ¼ ZðNÞ0 f0g may oc-
cur. Since NðGÞ=ZðNðGÞÞ is a quotient of nilcoreðGÞ, the finite-dimensionality of
NðGÞ=ZðNðGÞÞ is a weaker condition than that of nilcoreðGÞ.
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We are now ready for our general pro-Lie group version of the Iwasawa Local
Splitting Theorem.

Theorem 3.2 (Local Splitting Theorem). Let G be a pro-Lie group whose nilcore

nilcoreðGÞ ¼def
NðG0Þ=ZðG0Þ0

is finite-dimensional. Then every identity neighborhood contains a closed normal almost

connected subgroup N such that G=N is a Lie group and that there is a morphism

j : gG=NG=N ! G such that the morphism m : N � gG=NG=N ! G, mðn; xÞ ¼ njðxÞ is an open

morphism having a discrete kernel. In particular, G, N � gG=NG=N, and N � G=N are lo-

cally isomorphic.

Proof. Let g ¼def
LðGÞ be the Lie algebra of G. By Proposition 3.1, nilcoreðgÞ ¼ g=nðgÞ

is finite-dimensional. Then by 2.11, the Structure Theorem of Pro-Lie algebras with
Finite-Dimensional Nilcore, g is extremely rich (see Definition 2.4.) Thus all su‰-
ciently small cofinite-dimensional ideals are well-complemented. By [4], Corollary
6.7(ii) or by Corollary 4.21(ii) of [9], fLðNÞ jN A NðGÞg converges to zero. Hence
for all su‰ciently small N A NðGÞ, the ideal LðNÞ is well-complemented. Now The-
orem 1.3 of the Local Splitting of Lie Group Quotients and its Corollary 1.4 together
prove the Theorem. r

The following discussion requires the theory of analytic subgroups of pro-Lie groups
which we expounded in Chapter 9 of [9]. By the definition of analytic subgroups in [9]
(see Definition 9.5, Proposition 9.6), imðjÞ is an analytic subgroup whose Lie algebra f

is the direct summand for which g ¼ nl f. We note that ðn; xÞ A ker m i¤ n ¼ jðxÞ�1 A
N X im j ¼ AðfÞ. That is, x 7! ðjðxÞ�1; xÞ : j�1ðNÞ ! ker m is an isomorphism. Let L

be the underlying Lie group of the analytic group AðfÞ. Then, the morphism ðn; lÞ 7!
nl : N � L ! G is a surjective morphism implementing a local isomorphism. Its
kernel fðl�1; lÞ j l A N XAðfÞg is algebraically isomorphic to a discrete and hence
central normal subgroup of L and is therefore a finitely generated abelian group; it is
algebraically isomorphic to N XAðfÞ.

We retain the notation of the Local Splitting Theorem 3.2 and provide additional
information on the local splitting.

Proposition 3.3 (Sandwich Theorem for Local Splitting). Let G be a connected pro-Lie

group whose nilcore nilcoreðGÞ ¼def
NðGÞ=ZðGÞ0 is finite-dimensional. We assume that

AðfÞ ¼ im j is a closed analytic subgroup L. Then 3.2 applies, and the quotient map

q : G ! G=D, D ¼ N XL implements a covering morphism. Further,

n : N=D � L=D ! G=D; nððnD; lDÞÞ ¼ nlD;

is an isomorphism. Let qN : N ! N=D and pL=D : gG=NG=N ! L=D be the quotient mor-

phisms, each with kernel isomorphic to D. Then the sandwich diagram
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N � gG=NG=N ���!m G

qN�pG=D

???y
???yq

N=D � L=D ���!
n

G=D

commutes.

Proof. Given the information in Theorem 3.2, all of the assertions of the corollary
amount to a straightforward verification. r

We should record, that the Structure Theorem of Pro-Lie algebras with Finite-
Dimensional Nilcore 2.11 contains some information which is not yet reflected in the
theorems that we have formulated so far.

Corollary 3.4 (The Structure Theorem for Groups with Finite-Dimensional Nilcore).
Let G be a connected pro-Lie group. Then the following statements are equivalent:

(i) The nilcore nilcoreðGÞ is finite-dimensional.

(ii) G is locally isomorphic to the product of a closed normal almost connected sub-

group N, whose identity component N0 is reductive, and a connected Lie sub-

group L.

Proof. (i) ) (ii): By the Local Splitting Theorem 3.2 we find a closed normal sub-
group N (which we may choose as small as we like) a connected Lie group L such
that N � L and G are locally isomorphic and that g ¼ nl f where n ¼ LðNÞ and
f ¼ LðLÞ. By Theorem 2.11, if N and then n is small enough, n is an ideal of a re-
ductive algebra and is, therefore, reductive itself. By Theorem 10.29(i) of [9], this
shows that N0 is reductive.

(ii) ) (i): If (ii) holds, then g ¼ nl f with a reductive Lie algebra n ¼ LðNÞ
and a finite-dimensional ideal f ¼ LðLÞ. Then nilcoreðgÞ ¼ nilcoreðnÞl nilcoreðfÞ ¼
nilcoreð f Þ, is finite-dimensional since f is finite-dimensional. r

Information on the structure of reductive connected pro-Lie groups is to be found in
[9] in Theorems 10.29, 10.32, 10.48, and 11.8.

Our discussion now leads back to the domain of locally compact groups, where
the original theorem of Iwasawa’s started. It was concerned with connected locally
compact groups. The following consequence of our present theory is, therefore, more
general.

Corollary 3.5 (Strong Iwasawa Local Splitting Theorem). Let G be a locally compact

pro-Lie group. Then there is an open subgroup G of G and there are arbitrarily small

compact normal subgroups N of G such that G=N is a Lie group and G and N �G=N

are locally isomorphic.

Iwasawa’s Local Splitting Theorem for Pro-Lie Groups 625

Brought to you by | University of Calgary
Authenticated

Download Date | 5/28/15 2:45 AM



Proof. We recall from [11], p. 175, that a locally compact group is automatically a
pro-Lie group if it is almost connected. So let G be an open almost connected sub-
group of G which always exists because every locally compact totally disconnected
group (such as for instance G=G0) has compact open subgroups.

Let g ¼ LðGÞ ¼ LðGÞ. By Corollary 12.88 of [9], g=mðgÞ the factor algebra mod-
ulo the largest compactly embedded ideal is finite-dimensional. Hence from the
Structure of Pro-Lie Algebras with Finite-Dimensional Nilcore 2.11 and from Prop-
osition 3.1(ii), we know that nilcoreðgÞ ¼ LðnilcoreðGÞÞ is finite-dimensional. So the
Local Splitting Theorem 3.2 applies to G and proves the assertion. r

Additional Structural Information

The hypotheses of the Local Splitting Theorem 3.2 allow us to draw additional
structural conclusions which are important.

In Chapter 12 of [9] we have discussed the special structure of centrally supple-
mented groups: see [9], Definition 12.72¤. We recall that every connected pro-Lie
group G has a unique characteristic largest compact normal abelian and hence cen-
tral subgroup KZðGÞ, and that G=KZðGÞ has no nontrivial compact central sub-
groups (see [9], Definition 9.47¤., notably Theorem 9.50). Recall from Theorem 3.1
that we denote by AðgÞ the unique smallest analytic subgroup of G having g as its Lie
algebra.

Theorem 4.1 (Theorem on Central Supplementation). Let G be a connected pro-Lie

group whose nilcore nilcoreðGÞ ¼def
NðGÞ=ZðGÞ0 is finite-dimensional. Then

G ¼ KZðGÞAðgÞ:

In particular, G is centrally supplemented.

Proof. We factor KZðGÞ and assume KZðZÞ ¼ f1g; we must show G ¼ AðgÞ. Let
g ¼ jl h where j is a reductive ideal and h is a finite-dimensional ideal according to
Theorem 2.10. Since fLðNÞ jN A NðGÞg converges to 0 in g by [4], Corollary 6.7(ii)
or [9], 4.21(ii), there is an N A NðGÞ such that LðNÞJ j. Since j is a product of
simple Lie algebras and copies of R by the Structure Theorem of Reductive Pro-Lie
algebras 7.27 in [9], we have j ¼ LðNÞl f with a finite-dimensional semisimple ideal
f and so we have g ¼ LðNÞl fl h. It is therefore no loss of generality if we assume
henceforth that there is an N A NðGÞ such that LðNÞ ¼ j. Then G=N is a Lie group
and thus

G ¼ NAðgÞð1Þ

by [4] Corollary 6.8(iii) or by Corollary 4.22(iii) of [9].
The analytic subgroup AðgÞ is the product of the normal analytic subgroups AðjÞ

and AðhÞ which commute elementwise. By [4], 6.8(i) or by [9], 4.22(i), N0 ¼ AðjÞ.
Then AðhÞJZðN0;GÞ and thus G ¼ N0ZðN0;GÞ and ZðN0ÞJZðGÞ. Further, N0
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is reductive by Theorem 10.48 of [9], and therefore satisfies N0 ¼ KZðN0ÞAðj;N0Þ
and is centrally supplemented in its own right. Since KZðN0ÞJKZðGÞ ¼ f1g, we
have

N0 ¼ AðjÞJAðjÞAðhÞ ¼ AðgÞ:ð2Þ

Then (1) implies

G ¼ NAðhÞ:ð3Þ

Now LðG=N0Þ ¼ LðGÞ=LðN0Þ ¼ LðGÞ=LðNÞ ¼ g=jG h by Corollary 6.7(i) of [4] or
Corollary 4.21(i) of [9]. Therefore G=N0 is finite-dimensional by Definition (see
[9], 9.43). Then G=N0 is locally compact metric by [9], Theorem 9.44, and we may
assume that N=N0 is compact totally disconnected. Let j : gG=NG=N ¼ GðhÞ ! G be a
morphism such that im j ¼ AðhÞ. Then Z ¼def

j�1ðNÞ is a discrete central subgroup Z

of gG=NG=N and is therefore finitely generated. Thus Theorem 5.32(iv) of [9] applies to

A ¼def
jðZÞ and shows that AG compðAÞ � Zn for some nonnegative integer. How-

ever, AJZðGÞ whence compðAÞJKZðGÞ ¼ f1g. Thus A is free discrete and there-
fore agrees with jðZÞ ¼ N XAðhÞ. Then the map i : AðhÞ=A ! G=N, iðaAÞ ¼ aN is
a bijective morphism by (3). Let c be the corestriction of j to its image. Then the
composition

gG=NG=N �!c AðhÞ �!quot
AðhÞ=A �!i G=N

is a surjective morphism between locally isomorphic Lie groups and is, therefore,
open and implements itself a local isomorphism. This implies that c is open and
H ¼def

AðhÞ is a Lie group and G ¼ NH, N XH ¼ A. Thus N=AGG=H is con-
nected and is locally isomorphic to N and is, therefore a connected pro-Lie group.
By (2) N0 ¼ hexpN ji and by [4] Corollary 6.8(iii) or by Corollary 4.22(iii) of [9],
him expN=Ai ¼ N0A. Therefore N0A=N0 is a connected space which is completely
regular as a Hausdor¤ topological group. Its cardinality is therefore 1 or at least 2@0 .
Since A is countable, it follows that N XH ¼ AJN0. By Theorem 9.44 of [9],
AN0=N0 ¼ jðZÞN0=N0 is dense in N=N0 and therefore N ¼ N0, that is N ¼ AðjÞ.
Now (1) shows that G ¼ AðgÞ which is what we had to show. r

From [2], Theorem 8.20(i) it follows that every compact abelian group K contains a
compact totally disconnected subgroup D such that K ¼ KaD (see also [2], Theorem
9.41). Therefore, in the circumstances of Theorem 4.1, we find a compact zero-
dimensional central subgroup D of G such that G ¼ DAðgÞ ¼ DhexpG gi. We can
therefore write

Corollary 4.2. Let G be a pro-Lie group with a finite-dimensional nilcore. Then there

is a compact totally disconnected central subgroup D of G and an open surjective

morphism
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m : D � ~GG ! G; mðd; xÞ ¼ dpGðxÞ

with a prodiscrete kernel.

Proof. We recall that we have a universal morphism pG : ~GG ! G whose image is
exactly AðgÞ ¼ him expGi. The existence of the surjective morphism m then follows
from the preceding remarks in view of Theorem 4.1. The Open Mapping Theorem
9.60 of [9] finally shows that m is open. r

Since every connected locally compact group is a pro-Lie group by Yamabe’s Theo-
rem, and since the nilcore of a locally compact group is always finite dimensional,
Corollary 4.2 implies at once the following consequence:

Corollary 4.3. Let G be a connected locally compact group. Then there is a compact

totally disconnected central subgroup D of G and an open surjective morphism

m : D � ~GG ! G; mðd; xÞ ¼ dpGðxÞ

with a prodiscrete kernel. r

We should recall that ~GG, while being a simply connected pro-Lie group, is in general
not locally compact. This is illustrated by any infinite dimensional compact con-
nected abelian group G, for which ~GG is the additive group of the pro-Lie algebra
LðGÞGRJ , card J ¼ dim G. (See [2], Chapter 8, notably 8.20.)

Some Comments on Connectedness

We observe that, classically, the Iwasawa Local Splitting Theorem 3.5 required the
hypothesis of connectivity. The presentation of the local splitting theory in the frame-
work of pro-Lie group theory, culminating in Theorem 3.2 does not require this
hypothesis, as long as we are dealing with pro-Lie groups. This is plausible because
the conclusion is a local one. The global version concludes the existence of an open

morphism N � gG=NG=N ! G, and not a surjective one. We should recall that by the
definition of the universal group ~HH of a pro-Lie group H (see [9], Theorem 6.6¤.) it
is always a connected, indeed simply connected group regardless of whether H is
connected or not. We distinguish ‘‘universal group’’ of H from ‘‘universal covering
group’’ of H. Indeed if the underlying space of H has a universal covering space, then
the two concepts agree (see Theorem 8.21 of [9]). In particular, if H is a Lie group
(such as in the case for G=N whenever N A NðGÞ), then ~HH is the universal covering
group of H0.

In the case of a locally compact group G, by the results of Yamabe, there is always an
open subgroup G of G which is a pro-Lie group. Then the pro-Lie group result ap-
plies to G and produces arbitrarily small normal subgroups N of G such that G and
N �G=N are locally isomorphic. But since G and G trivially are locally isomorphic,
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one can still say that a locally compact group, quite generally, is locally isomorphic
to the product of an arbitrarily small compact subgroup (not necessarily normal!)
and some Lie group.

In [3] this was argued directly from the ‘‘connected’’ version of Iwasawa’s Local
Splitting Theorem for Locally Compact Groups; but that required some technical ad
hoc arguments.
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