
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 172, October 1972

VARIETIES OF LINEAR TOPOLOGICAL SPACES
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J. DIESTEL, SIDNEY A. MORRIS AND STEPHEN A. SAXON

ABSTRACT.   This paper initiates the formal study of those classes of locally

convex spaces which are closed under the taking of arbitrary subspaces, separated

quotients, cartesian products and isomorphic images.   Well-known examples in-

clude the class of all nuclear spaces and the class of all Schwartz spaces.

Introduction.   Varieties of groups, having roots in the work of G. Birkhoff and

B. H. Neumann in the 1930's have come under intensive investigation in the past

dozen or so years;   an extensive bibliography may be found in Hanna Neumann's

monograph [39].   More recently the notion of a variety of topological groups was

introduced by the second author of the present paper and in a sequence of papers

([6], [7], [29]—[38]) many basic results have been established indicating this area

as a potentially fruitful direction for research.

This paper initiates the study of varieties of locally convex Hausdorff real

topological vector spaces (LCS's).   Selected results from this paper were an-

nounced in [10].

A variety here means a class of LCS's closed under the formation of sub-

spaces (not necessarily closed), separated quotients, arbitrary products and iso-

morphic images.   While such interesting classes of LCS's as the nuclear spaces

of Grothendieck [13] constitute a variety, the class of all normed spaces does not

(due to the "arbitrary" nature of products).   (The varieties "generated by" classes

of normed spaces are, of course, of interest.)

The paper proceeds in five sections which we describe briefly below.

§1 forms the bulwark of the paper insofar as it contains the basic results

(Theorems 1.1 and 1.4) on the manner in which a variety is generated; examples

concerning the relationships of the varieties generated by certain classical

Banach spaces are given.   A peculiar consequence of the theorems on generating

varieties is that a variety generated by a class of Frechet spaces is closed with

respect to completions.
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§2 concerns varieties that are singly generated, that is, generated by a single

LCS.   Typical of the results characterizing singly generated varieties is the fol-

lowing:  A variety Ö  is singly generated if and only if Ö  is a subvariety of the

variety  (?(/.(D)) generated by  IAD),  for some set D.   Consequently, a subvariety

of a singly generated variety is singly generated.   It is also shown that the class

of all varieties is "too big" to be a set and that not all varieties are singly gener-

ated.   This is in marked contrast to the situation in the case of varieties of groups

(see [39]).   A universal generator of a variety C  is defined to be a member  E  of

Ö with the property that every  LCS in  ¡J  is a subspace of a power of E.   It is

shown that every singly generated variety has a universal generator.   Komura and

Komura [20] proved that the F rechet space of rapidly decreasing sequences is a

universal generator for the variety of nuclear spaces.   It is clear from our work

that a universal generator exists for the variety of Schwartz spaces (and hence

that one also exists for the nuclear variety).

§3 is concerned with the relative size of varieties.   We show that there is a

smallest, a next to smallest but 720 third smallest (nontrivial) variety.   It is also

shown that the variety generated by a normed linear space of infinite dimension

always contains a maximal proper subvariety.   We observe that the nuclear variety

is a relatively small one in that it is contained in the variety generated by any

infinite-dimensional Banach space.

§4 considers varieties generated by classical Banach spaces.   Using the re-

sults on generation of varieties, we deduce certain "stability" properties; for

example, the only Banach spaces in ('(E)  when E   is reflexive, quasi-reflexive,

separable, almost-reflexive or Hilbertian are of like type.   Comparisons of the

varieties generated by the classical spaces are made; for example, Banach showed

that, for  1 < p 4 H < °°!  ¡b  anQl  I    are of incomparable linear dimension: we ob-

serve that /     and  /    are strongly incomparable in the sense that  I    4 0(1  )•

§5 presents some miscellaneous results and open questions.

For convenience, we restrict our attention, throughout the entire paper, to

vector spaces over the real field.   Extensions to the complex field are clear.

Acknowledgements.   The authors thank M. S. Brooks, W. T. England, J. H.

Grant, W.B.Johnson, N. T. Peck, A. Todd and A. D. Wallace for their helpful com-

ments and encouragement.

1.   Definitions and basic results.

Definition.   A nonempty class  C  of LCS's is said to be a variety if it is closed

under the operations of taking subspaces, quotient spaces, (arbitrary) cartesian

products and isomorphic images.

The two extreme examples of a variety are the class of all LCS's and the

class of all zero-dimensional LCS's.   Less obvious examples are
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(a) the class of all Schwartz spaces [14, pp. 278, 279],

(b) the class Jl of all nuclear spaces [56, p. 103],

(c) the class of all s-nuclear spaces [25],

(d) the class of all LCS's having their weak topologies [14, Chapter 3, §§13

& 14].

A variety is not necessarily closed under the operations of taking strict induc-

tive limits or direct sums;  however, it is closed under tne operation of taking pro-

jective limits.    In fact, a nonempty class of LCS's closed under the operations of

taking subspaces, quotient spaces, finite products, projective limits and isomorphic

images is a variety.

Definition.   Let C be a class of LCS's and let 0(C) be the intersection of all

varieties containing C.   Then  ("((?) is said to be the variety generated by (_.

(Clearly this is indeed a variety.)   If C  consists of a single LCS E,  then  0(C) is

written as 0(E) and is said to be singly generated.

Notation.   Let (? be any class of LCS's.   Then (a) S(C),  (b) £>(£),  (c) C(C),

and (d)  P(c) denote, respectively, the class of all LCS's isomorphic to (a) sub-

spaces of LCS's in C,  (b) quotient spaces of LCS's in C,  (c) cartesian products

of families of LCS's in C,  and (d) products of finite families of LCS's in  c.

We shall see that if (?  is any class of LCS's and  E e 0(C),  then  E  can be

obtained from t   by a finite number of applications of Q, S  and  C.   This is not

obvious, but is a consequence of the following theorem which shows that, indeed,

three applications will always suffice.

Theorem 1.1.   Let £ be any class of LCS's.    Then  Ü(C) = QSC(C).

Proof.   Let  U be any class of LCS's.   The following statements are obvious:

(i)   SS(â) = S(â),

(ii)   CC(Q) = C(â),

(iii)   QQ(Q)=Q(ä).
The next three statements are not quite as obvious, but are easily verified:

(iv)   SC(3) 2 CS(Q),

(v) qc(Q) 2 cq(Q),

(vi)   SQ(Q) = QS(Q).

We now show that QSC(C)  is a variety by noting

(a) Q\QSC(e)} = QSC(C), by (iii).

(b) S\QSC(C)\ = QSSC((?), by (vi); = QSC(C),  by (i).

(c) CÍQ5C((°)! Ç QCSC(C), by (v); Ç QSCC(C),  by (iv); = QSC(C), by (ii).

The proof is complete.

Corollary 1.2.  // C is any class of LCS's, then l\(?) = SQC(C).
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We note that  ¡3(C) need not be equal to QCS(C),  CSQ(C) or CQS(C).   Whether

or not  ö((?) = SCQfC),   always, is unknown to us.   However, we do have Theorem

1.4 which, as we shall see in §4, is a powerful tool.

Let ÍE .: z £ I]  be any family of LCS's and i  be the collection of all nonempty

finite subsets of /  ordered by inclusion.   For each a £ J,  we let  77    denote simul-

taneously the natural projection mapping of the product space  E = II.   . E.  onto the

finite product E    - îl.      E. and also the natural projection mapping of E    onto  E

for each  r > a in j .   Using this notation we have the following

Lemma 1.3.   Let  M  be a closed subspace of E and M     be the closure of 77 (M)

in E   , for each a £<5.    For t > a,  the formula ja.(x + M A = n Ax) + M   , for x £ E ,

defines a mapping of E /M    into  E  /M     such that  (E   /M  , f  A is a projective

system whose projective limit  F  contains a dense subspace  F     isomorphic to

E/M.

Proof.   Since  77a(M ) CM^ for r > a,  j      is a well-defined mapping.   It is

easily observed that (E ^M   , f    ) is a projective system.   The projective limit F

is the subspace of II   , y E/M     formed by those vectors  (y)     <z which satisfy

f¿AyA = y_,  for a < t.   Therefore  E  contains the subspace  F.   composed of all

those vectors of the form  (nj.x) + M^A^ y,   where x  ranges in  E.

We now show that F. is dense in E. Let y = (y A^tf £ F he given together

with n elements a., • • ■ , a of J. Let r = (J "_. a, and x be an element of E

such that nix) + Mr = y,.   Then 77^ (x) + /M     = /    ÂyA = y„ ,  fot k - 1, • • • , 72.
' r      Jr cr^   ' cttj      ' crjtTJ t cry ' '

Thus we have found an element  zz = (rrAx) + M  )     j in  F     such that y — u vanishes

on the given coordinates a., • • • , a .   This implies  F.   is dense in  E.

Now we show that E/M  is isomorphic to  E«.   The formula h(x + M) =

(77 (x) + MA  -<z for x £ E,  clearly defines a linear mapping h of E/M  onto  F„.

For each  a £ ÍF,   let h   : E/M —» E JM     be the map given by h JyX + M) = n (x)

+ M   .   Clearly,  h     is continuous.   Hence in view of the Embedding Lemma [Kelley,

General topology, p. 116], it is sufficient to prove that the family  \h   : a £ A\ dis-

tinguishes points and the closed subsets.   Let x = x + M  be a point not belonging

to a closed subset  C  of  E/M.   We may assume that  C -\y + M: y £ C\,  where  C

is a closed subset of E  such that  C + M = C.    Then x 4 C.   Hence there is  a in

J and an open neighborhood  1/  of rr J,x) in  E     such that ?r~  [(j] O C = 0.   Then

for each y = y + MeC,   170 (77 (y) + 77 JM) = 0 since y + M C C.    Hence  17 n

(rrjy) + M^) = 0 or h (y) 4 q\.U], where q: E^ -^>E JM^ is the quotient map.   It

follows that h AC]  misses a neighborhood g[t7]  of h Ax).

Theorem 1.4.  // £  z's any class of LCS's, then  l\£) - SCQP(€).

Proof.   Lemma 1.3 shows that QC(C) C SSCQP(di).   This implies, by Corollary

1.2, that C!((?) Ç SSSCQP(C) = SCQP(C) and hence that l\C.) = SCQP(C).
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We point out that while Theorem 1.1 has analogues in the theories of

varieties of groups [39, p. 15] and varieties of topological groups [6], the

same is not true of Theorem 1.4.   For varieties of groups the statement cor-

responding to Theorem 1.4 is false and for varieties of topological groups the

situation is not clear.   (See [6].)

While a variety is not necessarily closed under the operation of taking com-

pletions we do have the following

Theorem 1.5.   If C z's any class of Frechet spaces and E is in ö((?), then

the completion  of F  z's z'?2  0(c).

Proof.  Since finite products and quotients of Frechet spaces are again

Frechet, we see, from Theorem 1.4, that  E  is a subspace of a product F  of

Frechet spaces.   Noting that F  is complete, we have that the closure of E  in   E

is complete and hence the desired result.

In §4 we will investigate the varieties generated by some of the well-

known Banach spaces.(') Of course some information can be immediately

obtained from the literature.   In particular, noting that

(i)   I    is isomorphic to a subspace of L     fot  1 < p < oo [2],

.(ii)   every separable Banach space is isomorphic to (a) a subspace of

C[0, l],  (b) a quotient of  /.,  and (c) a quotient of  L.   [2],

(iii)   /., C[0, l]  and  L   ,  for  1 < p < oo,  are separable Banach spaces,

(iv)   if  AC  is any uncountable compact metric space, then  C(K)  is isomor-

phic to  C[0, 1] ([28], [45]),

(v)   /.   is isomorphic to a subspace of lœ  [2],

(vi)   /œ   is isomorphic to  Lœ  [42],

we have

Theorem 1.6.   // Av  z's any uncountable compact metric space and   1 < p < oo,

then  l\lp) Ç ü(Lp) Ç l\ly) = l\C(K)) = ö(Lj) Ç o(/œ) = o(Lœ).

However, to see which of the above inclusions are proper requires a

detailed analysis.   This is done in §4 by using Theorem 1.4 as a basic tool

in an investigation of the varieties generated by classes of (a)  Hilbert spaces,

(b) reflexive Banach spaces, and (c) separable Banach spaces.   (Of course,

the variety generated by the class of all Banach spaces is simply the class of all

LCS's.

In the light of Banach's results [2, Chapitre XIl] and the later work of

Paley [40], Kadec [15] and Lindenstrauss and Pe/cyziiski [22] on compara-

it)   Unless specifically indicated otherwise, we take the interval  10, lj  as the

underlying space for  L   ,   1 < p < oo.
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bility of linear dimension for the spaces  /    and  L   ,  we will ask:  for what p  and

q  is (a)  I    in 0(/  ) and (b) L     in  U(L   )?   Again, this will be answered in §4

using Theorem 1.4.

2.   Singly generated varieties.   In this section we give characterizations of

those varieties which are singly generated, and develop the concept of a universal

generator.

Definition.   Let E  be an LCS and m  any infinite cardinal.   If every neighbor-

hood of zero in  E  contains a subspace of E of codimension strictly less than  m,

then  E   is a T(m)-space.(2)

Remarks 2.1.   Let  E  be an LCS of Hamel dimension tz,   for any given cardinal

72.   Then

(i)   E   is a  T(77z)-space for all m > n.

(ii)   If a continuous norm can be defined on  E  (in particular, if E is normable)

then  E  is a  T(7?z)-space if and only if m > n.

(iii)   E  is a  T(X0)-space if and only if  E  has its weak topology (see [52,

Theorem 1.4]).

Noting that products, subspaces and quotients (indeed, continuous linear

images) of  T(77z)-spaces are again  T(77z)-spaces, we have

Theorem 2.2.   // C  z's a class of T(m)-spaces for any fixed infinite cardinal

ttz,  then  0(C) contains only  T(m)-spaces.

Corollary 2.3.   // E.   z's an infinite-dimensional normed space and E?   is an

LCS of smaller Hamel dimension, then  E,  4 0(E?).

Proof.   Let  E.   have Hamel dimension  m.   From Remarks 2.1 we see that  E?

is a  T(77î)-space but  E.   is not.   Hence  E.  4 [3(E A).

Since there exist normed spaces of arbitrarily large dimension, we have

Corollary 2.4.   The class of all varieties is not a set.

Another consequence of Corollary 2.3 is

Corollary 2.5.   The variety of all LCS's is not singly generated.

Note that the analogues for groups of Corollaries 2.4 and 2.5 are false [39].

Notation.   For each infinite cardinal  ttz,   let (5     denote the class of all  T(m)-
777

spaces.   (In view of Theorem 2.2,  0     is a variety, and by Remarks 2.1,  0^     is the

variety of all LCS's having their weak topology.)

Lemma 2.6.   Let m  be any infinite cardinal and E any LCS in 0   .    Then

(2)   In this definition we may replace "subspace" by "closed subspace" since each

neighborhood of zero contains one that is closed.
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(a) E £ SC(Q), where  U is the class of all LCS's in 0(E) of Hamel dimen-

sion strictly less than m.

(b) E £ SC(C), where  C is the class of all normed linear spaces in Ö   .

Proof.   Let il/.: i £l\ be a base of closed balanced convex neighborhoods of

zero in  E.   Since E   is a  T(77z)-space, each  17.  contains a closed subspace  E.  of

E of codimension < m.    Put F. = E/E.,   for each i.   Using the fact that  E is

Hausdorff, one may verify in a routine manner that the natural mapping of E  into

n... F.  is an isomorphism of E  onto its image.   Thus (a) of our statement is

valid, since each E.  is in  L (E)  and has Hamel dimension less than  ttz.

To prove (b), put  G.  equal to the normed linear space  E       and proceed
2 u î

similarly.(3)

It is 7202" true that every variety is generated by its normed spaces (e.g., con-

sider the variety 71 of nuclear spaces).   However, Lemma 2.6 shows that every

TO

777

Theorem 2.7.  A variety  ¡3  is singly generated if and only if Ö Ç U     for some

infinite  m.
»

Proof.   If (    is singly generated then D = 0(E)  for some LCS  E  of Hamel

dimension 72,   say.   If ??2  is any infinite cardinal strictly greater than 72,   then  E

is a T(?72)-space, and by Theorem 2.2, (3 C ¡3   .

Conversely, suppose  ¡3 C Ü     for some ttz.   Denote by u  the class of all

LCS's in ¡J  of Hamel dimension  < ttz.    Let  F   be a fixed T?2-dimensional real vec-

tor space (without topology).   Let "B be the set of all LCS's  G  such that the vec-

tor space  G,  considered without topology, is a subset of F.   (Note that ÍB  is

indeed a set.)   Let E  be that LCS which is the product of the members of the set

Q Cx9>.   Thus  E £ 0 and S(\E\) D Ö,   since  S(SEI) clearly contains all members

of unS and isomorphic images thereof.   Also, by Lemma 2.6 (a),   L> = SC((l).

Therefore,

Ö = SC(d) Ç SCS(\E\) Ç SSC(\E\) = SC(\E}) Ç ¡3(E) Ç ö,

which implies that ¡3= SC(\E\) = ¡3(E)  is singly generated.

Corollary 2.8.  A subvariety of a singly generated variety is singly generated.

u

Theorem 2.9.   Let m  be any infinite cardinal such that m       = m,  e.g.,   m may

be any infinite cardinal of the form  r     .     Let  D  be a set of cardinality  m, and

let n  be the smallest cardinal greater than m.   Then  ("    = (j(l AD)).

Proof.   First note that the Banach space  IAD) has Hamel dimension  m  and

hence is in ¡3   ; that is,  l\l AD)) C ¡3  .   From Lemma 2.6 (b), we have that
72' '1—77

(3)    For the definition of  En    see [56, p. 97J."i
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Ö   = (3(C),  where  C is the class of all normed spaces of Hamel dimension  < m.

Now if E  is a member of C,  then the density character (4) of E  is also  < ttz,   and

similarly for the completion  E  of E,  since tt7       = m.   Thus it is well known that

E  is isomorphic to a quotient of  /.(D),  so that  E,  and therefore E,   is a member of

l3(ly(D)), and l\lx(D)) 2 0(C) = ö„.

The larger the cardinal ttz,  the larger the variety 0   ,  and thus

Theorem 2.10.  A variety is singly generated if and only if it is a subvariety of

(j(lAD)), for some set D.

Let D.   be an arbitrary infinite set and let D,  be a set of the same cardinality

as the power set of D..   Pe/lczyriski [44] showed that the Banach space  lœ(D .)

contains a subspace isomorphic to IAD A).   Hence 13(1 y(D A) = o(/œ(D .)) = Ö  ,

where n  is the smallest cardinal greater than the cardinal of D..   In particular,

since every infinite-dimensional Banach space has dimension > c,  u(lœ) is the

smallest one of the u     varieties which contains an infinite-dimensional Banach
772

space.

Definition.   If a variety  0 contains an LCS  E with the property that every LCS

in  0  is isomorphic to a subspace of a product of copies of E,  then  E  is said to

be a universal generator tot (3.

From Theorem 2.7 and the last line of its proof, we clearly have

Theorem 2.11.  Every singly generated variety has a universal generator.

Since every separable LCS is isomorphic to a subspace of a product of separa-

ble Banach spaces, and since QP(IA = Q(l.) = C,  where  C here denotes the class

of all separable Banach spaces, it follows that D(/.) contains all separable LCS's.

Moreover, every separable Banach space is isomorphic to a subspace of C([0, l]),

itself separable.   Therefore we have

5C(C([0, 1])) = SSC(C([0, I]))

2 SCS(C([0, 1])) 2 SC(& = SCQP(ly) = ö(/j)

which shows that  C([0, l]) is a universal generator for L(/.) (cf. [23]).

Statement 9, §2 of [59] implies that every Schwartz space is isomorphic to a

subspace of a product of separable Banach spaces.   Thus we have the theorem of

A. Todd (Ph.D. dissertation, University of Florida; in preparation):

Theorem (Todd).   0(/,) contains the variety of Schwartz spaces.

Using Corollary 2.8 and Theorem 2.11 we obtain

Theorem 2.12.   The variety of Schwartz spaces, and hence also the variety of

nuclear spaces, has a universal generator.

(4)   The density character of  E  is the smallest cardinal of the dense subsets of E.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1972] VARIETIES OF LINEAR TOPOLOGICAL SPACES 215

A deep result of Komura and Kömura [20] is that  (s) is a universal generator

for the variety of nuclear spaces, where  (s)  is the Frechet space of rapidly de-

creasing sequences.   To our knowledge, no one has found a correspondingly ser-

viceable and concrete universal generator for Schwartz spaces.

3.   Relative size of varieties.   Using Banach's [2] assertion (proved, e.g. in

[3]) that every infinite-dimensional Banach space has an infinite-dimensional closed

subspace with a Schauder basis, and the fact [20] that (s)  is a universal generator

for the variety Jl of nuclear spaces, the third author [53] proved that if B  is any

infinite-dimensional Banach space then  H C SC(B).   (For the case  B = I  , 1 < p <

00,  this result is due to Grothendieck [13]; cf. [56, p. 101].)   Consequently we have

Theorem 3.1.   The variety generated by any infinite-dimensional Banach space

7 • / 7
contains the variety of nuclear spaces.

r     i
The proof as given in [53J also yields

Theorem 3.2.   The variety generated by any infinite-dimensional sequentially-

complete barrelled space with a normalized Schauder basis contains the nuclear

variety.

(A normalized Schauder basis is one which is both bounded and bounded away

from zero; see [18].)

Example 3.3.   Let E  be the vector space which is the intersection of the

spaces  /,+, ,  ,  and give  E  the metric topology induced by the totality of the

7, + . ,  -norms  (n = 1, 2, • • • ).   Then E  is a Fréchet space with a normalized basis,

so that Jl C (3(E),  by Theorem 3.2.   Theorem 3.1 is not applicable since, by [51],

E  contains no infinite-dimensional Banach space.

Further comments on normalized bases are made in §5.

Theorem 3.4.  Any variety generated by an infinite-dimensional normed linear

space has a maximal proper subvariety.

Proof.   Let N  be an infinite-dimensional normed linear space, and let  C be a

set of LCS's in  ¡j(/V) such that a subvariety of U(/V) is proper if and only if it is

generated by an element in C (cf. proof of Lemma 2.6 and Theorem 2.7).   Clearly,

C is nonempty.   For Ej  and  E2 in  C,  define  Ej < E2  if ö(Ej)cCYE-).

Let 0 be any ascending chain in C.   We show that N 4 ¡3(S): if N e ¡3(o),

then  N £ SQP($) by Theorem 4.1 (proved independently) so that N £ SQ{EX x • • • x E  1

where  E,, • • • , E    £ b,  and we may assume that  E. < E    fot i = 1, • • • n.    But
1 ' '        72 ' ' 2—72 '

then  N £ Ö(E, x • • • x E   ) = ¡3(E   ),   which contradicts the fact that  Ö(E  ) is a
1 72 77    ' 72

proper subvariety of I (N).   Therefore,  N 4 ¡3(o),   so that ¡3(S) = ¡3(F) for some

F £ C.   Clearly F  is an upper bound for S.   By Zorn's lemma there is a maximal

element M  in e,  and hence ¡3(/M) is a maximal proper subvariety of Ö(N).
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Notation.   Let tu  denote the Frechet space of all real sequences with the

usual product topology.    Let <p denote the strong dual of co: <p is an   N.-dimen-

sional vector space with the strongest locally convex topology.   We note that u>

has its weak topology and is reflexive.

For each infinite cardinal ttz,   let ip     denote an TTZ-dimensional vector space

given the strongest locally convex topology;  in particular, tp^,    = <p.   We point out

that every strict (LF)-space contains a complemented copy of <p [54].

Theorem 3.5.   Let n  be any infinite cardinal and let m  be the smallest cardi-

nal greater than n.   Then

(i)   ip    is a universal generator for V(<p );
77 u 72

(ii)   V(<P  ) has a (unique) maximum proper subvariety, namely   (J(ip ), and

(iii) IV") n 0   = Oí.)-
mm n

Proof.   By Theorem 1.4,  lVn) = SCQP(<Pn).   Note that every LCS in  P(<f>n) is

isomorphic to ip  ,  so that 0(<£> ) = SCQ(¡p ).   Also each quotient of ¡p    is isomorphic

to   <p,   tot some  k < n  and hence is in  S(<p ).   Thus  ¡3(<p ) - SCQ(ip ) = SCS(<p ) =

SC(ip ),  which shows that <p    is a universal generator.

Let 0 be a subvariety of 0(¥>  ) and let  E  be any of its members.   Since <p

is a universal generator,  E  is isomorphic to a subspace of a product II.,. F.,

where each  F . = ¡p   .   Let E. be the projection of E  on  F., for each i e I.   Then
z      ^772 2 tr-   i ¡,

E. with the induced topology is isomorphic to  <P,   ,  for some k.<m.    Clearly, if

each  k. < m, then  E e SC(f> ) = ö(v ).   If k. = m  fot some z,  then there is a con-
7 ' 72 77 2 '

tinuous linear mapping of F  onto <p   .   Since every linear mapping onto  <p     is

open,  E  has a quotient isomorphic to  <p     and hence  0(E) = lj(<P   ).   Thus there

are only two possibilities: Ö = ö(<p  ) or Î3 Ç ü(tp ).

Finally, to see that  ( (¡p  ) O O    = ö(. ),  we only have to observe that u>    4
1  ' ^772 772 ^n J ^772

Ö    and  ^   e IX* ) n 0   .
777 'n S^777 772

Theorem 3.6.   (i)    The variety of all LCS's with their weak topology has  R,

the reals, as a universal generator and hence is the smallest (nontrivial) variety.

(ii)    u(<p) is the (unique) second smallest variety, in the sense that every

variety properly containing  0(A?) contains  \3(<p).

(iii)    There is no third smallest variety.

Proof.   It is well known that an LCS has its weak topology if and only if it is

isomorphic to a subspace of a product of copies of R  (see [19],  or Theorem 1.4 of

[52]), and one easily observes that SCQP(R) = SC(R): (i) is easily verified by

noting that if  0 is any nontrivial variety, then it contains an LCS  E  with a   1-

dimensional subspace, necessarily isomorphic to  R,  so that  C(R) C ('(E) C ('.

Now suppose that D is a variety strictly larger than  Ö(A<).   This means that

0 contains an LCS E  which does not have its weak topology.   But by Theorem
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1.4 of [52],  E  does not have its weak topology if and only if the product space

E    contains a subspace isomorphic to <p fot each indexing set /  with cardinality

> c.    It therefore follows that  Ö 2 ¡3(E) 2 ö(v).

To prove (iii) we find two varieties properly containing  0(<z?) whose intersec-

tion is  ¡3(iz>).   Let   K.   be the smallest cardinal greater than    N_.   Since  i\(f>) con-

tains only  T( X,)-spaces, <z>^    4 ((f),  and thus  ¡3(¥>Ki) properly contains  U(v').

From the proof of Theorem 3.5(ii) it is clear that if E  is in  ¡3(<*?),  then either E

has its weak topology or some quotient of E  is isomorphic to <p.   If we let   E  be an

X „-dimensional normed linear space, then  E 4 (j(e) since  E does not have its

weak topology and <p is not metrizable; but  E  is in  ¡3x.-   Thus  i^XH-,   also properly

contains  ¡3(*»).   But by Theorem 3.5,  ¡3xi Cx ö(^  ) = Hj(tp), and the proof is complete.

Corollary 3.8.  Atz LCS E  has its weak topology if and only if  <p 4 ¡3(E).

We note the curiosity that the mutually dual spaces a> and ¡p ate universal

generators for the first and second varieties, respectively.

4.   Varieties generated by classes of Banach spaces.   In the present section

we concern ourselves with varieties generated by classes of Banach spaces.   Two

problems are dealt with:  first, we consider properties of a class 9> of Banach

spaces which are inherited to a greater or lesser extent by members of u(iB);  sec-

ond, we investigate the varieties generated by many of the classical Banach

spaces.

The consideration of general inheritance properties is based to a large extent

on Theorem 1.4 and one of its consequences, Theorem 4.1.   It seems likely that the

techniques used here connot be easily extended to varieties generated by classes

of Frechet spaces or more general classes.

Our treatment of the varieties generated by special (usually the classical)

Banach spaces is, of course, based upon the extensive literature concerning these

spaces.   Invariably, the conclusion that one space is 720Í in the variety generated

by another is a consequence of Thoerem 4.1 and some distinctive relationship be-

tween the spaces.

A remark on notation:  if C   is a class of LCS's then   P  (C) denotes the class

of all LCS's isomorphic to a countable product of members of C.

Theorem 4.1.   Let C  be a class of LCS's and let  E £ ¡3(C).   Then

(i)   If E  is normable, then  E £ SQP(d) = QSP(C); and

(ii)   if E  is metrizable, then E £SPcQP(C).

Proof,   (i)   In light of Theorem 1.4 and the fact that SPQP(C) = SQPP(£) =

SQP(C),  we need only show that if the normed space  E  is a subspace of the prod-

uct F = II.     E.  of LCS's  E.  (i £ I),  then  E  is isomorphic to a subspace of the

product II.,    E.  for some finite subset a of /.
r 2 e cr     1
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Let  U be the unit ball of the normed space  E.   Then  U  contains a set of the

form  On E   where 0 is a basic open set in  E,  i.e.  0 is of the form

e=ne«
iel

with each 0.  a neighborhood of zero in  F.  and  (3. = E.  for all  i not in some finite
7 ■ 2 2 2

subset a of /.

We assert that the natural projection  77-^ of E  onto its image (under ttA in

E_= n.,„E.  is an isomorphism.
rr i 6ct     2 r

In fact,   77     is clearly linear and continuous.    If  x e E   but  x 4 U

then x 4 Ö  so nJjx) 4 0,  so that 77^ is one-one.   Finally, if y'   6(11,   0.) O

tta(E),  then there exists y e E  such that 77^(y) = y' ,  from which y e 0 follows

with the consequence that  vAU) is a neighborhood of zero in  n(E),  and  77    is

open.

(ii)   If  E  is metrizable, then its topology is given by a countable collection

of "unit balls" and a countable union of finite subsets of A  do the work of a in

the above proof.

Remarks.   (1)   Many of the classical Banach spaces are isomorphic to their

own square.   If E  is such a space then (a) a Frechet space  F  is in  0(E) if and

only if F  is in  SP Q(E).,  and (b) a Banach space  B  is in  0(E) if and only if it

is in SQ(E).

(2) It is also worth mentioning that the usual duality of subspaces and quo-

tients (see [14], [56]) is an effective weapon in determining the normed linear spaces

in a given variety; this is especially true for most of the classical Banach spaces

whose duals are well known.

(3) Finally, we mention that by the Open Mapping Theorem of Banach [2], we

have that a Banach space  F  is a quotient of a Banach space  F  if and only if E

is a continuous linear image of F.

Of course, this remark applies to the case where  E  and  F  are both Frechet

spaces or both strict (LF)-spaces;  however, we have yet to make any real use of

this comment in the latter case.

Theorem 4.2.   Let % be a class of reflexive Banach spaces.   Suppose  E e

D(9s).   Then the completion of E  is semireflexive.   Consequently, if E is infra-

barrelled, then the completion of E  is reflexive.

In particular, any Frechet space (more particularly, any Banach space) or

strict (LF)-space in  Ö(S) is reflexive.

Proof.   By Theorem 1.5,  ö($) is closed with respect to completions.   But (by

[14] or [56]),  CQPffî)   contains only semireflexive LCS's.   As any (quasi-) complete

subspace of a semireflexive LCS is semireflexive [56, p. 144],  we get the proof

of the first assertion.   The second assertion is an immediate consequence of the

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1972] VARIETIES OF LINEAR TOPOLOGICAL SPACES 219

fact ([14] or [56]) that an infrabarrelled, semireflexive LCS is reflexive.

The other assertions follow from the infrabarrelled, complete nature of the

classes of spaces cited.

Remark.   We have actually proved that any quasi-complete LCS in the variety

generated by a class of reflexive Banach spaces is semireflexive.

The corresponding statement in case of a class of reflexive Frechet spaces is

false.   In fact, an example of Grorhendieck and Köthe yields a Fréchet-Montel space

with  /.   as a quotient.

Corollary 4.3.   For  1 < p < 00,  neither c.   zzor L.   z's z'tz  ¡3(L  ).   Consequently,

ö(Li,)iö(L1)=[V1)=ö(C([0, 1])).

Theorem 4.4.   Let si be a class of Hilbert spaces and B   be a Banach space in

¡3(H).   Then B  is (isomorphic to) a Hilbert space.

Proof.   By Theorem 4.1,  B £ SQP(K).   Since  QP(K) contains only spaces iso-

morphic to Hilbert spaces, and every closed subspace of a Hilbert space is a Hilbert

space, we obtain the desired result.

Corollary 4.5.  For  1 < p (4 2) <°°,l    4 W 2) = Ö(L2).   Consequently,   L    4

ö(/2).

Theorem 4.6.  For  1 < p 4 q < °°,  L 4 ¡3(/  ).

Proof.  Since I    is isomorphic to its own square, any Banach space in  0(1 )

is a member of QS(l ).   Suppose p < q.    Then for any (closed) subspace S    of I  ,

and any continuous linear operator T: S    —> 7  ,  we have by Theorem  A2 of [5l]

that  T is compact.   Thus  T is never an onto operator.   It follows that /    4 QS(l )

and, therefore,  I.   4 (?(/ ).' '    P q

Suppose q < p. Then p' < q , where (l/p) + (1/p') = 1 = (l/q) + (l/q). If

I £ 0(7 ), then I £ SQ(l ), so by duality, I , £ QS(l ,) which is —as we have

just seen —impossible.  The proof is complete.

Remark.   Actually, Rosenthal has shown more than we have applied above;  in

fact, using the deep results of [3] and [43], he has shown that if p and v ate any

atomic measures and  1 < p < q < °o,   then every continuous linear operator from any

subspace of L  (p) to  L Av) is compact.

Of course, the varietal consequence of this fact is the following: For any atom-

ic measures  p and v and any pair p, q: 1 < p 4 q < °°,  L  (v) 4 0(L  (p))>

Theorem 4.7.   Let   1 < p 4 q < °°.    Then the following statements are equivalent:

(i)   L5 £ l\Lq);

(ii)   /   e Ö(L  ); and

(iii)   either q < p < 2  or   2 < p < q.
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Proof. Since for each p > 1, / is isomorphic to a subspace of L [2, p. 206],

(i) implies (ii).

For  1 < q < p < 2, L    is isomorphic to a subspace of L     [22].   Thus by duali-

ty, if  2 < p < q < oo,  then  L     is isomorphic to a quotient of L   .   In either case,

(i) follows from (iii).

Finally, taking note of the fact that each L is isomorphic to its own square,

we proceed as in Theorem 4.6 to apply Theorem A2 of [51] to yield non-(iii) imply-

ing non-(ii).

Corollary 4.8.   //  1 < p (4 2) < oo,  then 0(Z ) £ 0(L   )
P

Proof.   By Theorem 4.7,  /., e ö(Lp) while by Theorem 4.6,  /., ff/ 0(A).

Modifying the terminology of [21],  we call an LCS F almost reflexive when-

ever every bounded sequnce   in E  has a weak Cauchy subsequence.   Of course,

Eberlein's theorem (see [56]) yields the almost reflexivity of all reflexive Frechet

spaces.   The spaces  c     and C(0.) for fi  a compact, Hausdorff topological space

containing no perfect subsets provide nonreflexive examples of almost reflexive

Banach spaces (see [21] or [46] for discussions of almost reflexivity).

Theorem 4.9.   Let S  be any class of almost reflexive Banach spaces and

suppose E e O(iB).   // E  is a Frechet space (more particularly, if E  is a Banach

space) or if E  is a strict (LF)-space, then E  is almost reflexive.

Proof.  A simple application of the diagonal procedure along with the well-

known duality between products and direct sums of LCS's yields that the countable

product of almost reflexive LCS's is almost reflexive.   As was noted in [21] any

quotient of an almost reflexive Banach space (again the example cited after Theo-

rem 4.2 shows  necessity of Banach spaces for the verity of the statement of the

present theorem) is again almost reflexive.   Clearly, any subspace of an almost

reflexive space is almost reflexive.   Thus in the case that  E  is a Frechet space

(in fact, if E  is just a metrizable LCS) in  0(S),  then Theorem 4.1 and the above

comments yield that  F  is almost reflexive.

If F  is a strict (LF)-space in  0(S),  then supposing   E  is the strict inductive

limit of the Frechet spaces  E     (ne N),  we have that each  E     isa subspace of

E, so each E    € 0(8).   From the preceding paragraph, each E    is almost reflexive.   But a

bounded subset B  of E  is by [56] contained in some  E       and is bounded therein.' "0

The rest of the proof is now clear.

Theorem 4.10.   Let %  be a class of almost reflexive Banach spaces.   Then

any Frechet space or strict (LF)-space which is weakly sequentially complete and

is in  0(iß) is reflexive.

Proof.   Eberlein's theorem applies to Frechet spaces and strict (LF)-spaces

to yield equivalence in such spaces of the notions of (relative) weak compactness
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and weak sequential compactness.   But clearly almost reflexivity plus weak sequen-

tial completeness of an LCS yields the weak sequential compactness of bounded

sets.   Thus, by the barrelled nature of Fréchet spaces and strict (LF)-spaces, al-

most reflexive such spaces are reflexive.   Applying Theorem 4.9 we get the asser-

tion of Theorem 4.10.

The best known nonreflexive, weakly sequentially complete Banach spaces

are the infinite-dimensional   L . (p)-spaces.    Consequently,

Corollary 4.11.   For any nontrivial measure p, we have  L,(p) 4 ¡3(c.); more

generally, for any dispersed (containing no perfect subsets) compact Hausdorff

topological space fi,  L x(p) 4 i\C(Q.)).

Corollary 4.12.   Let 0  be a dispersed compact Hausdorff topological space and

let Y be a nondispersed compact Hausdorff topological space.    Then   C'Y) 4

ö(C(0)).

Proof. If C(Y) eö(C(fi)), then by the results of [46], Lx £ ¡3(C(0)) which

contradicts Corollary 4.11.

Remark. An important example of C(Y) spaces for Y a nondispersed, compact

Hausdorff topological space is any Lœ(p)-space where p is a nontrivial localizable

measure (see [AA] or [46]).

Theorem 4.13. ¡3(c„) contains no infinite-dimensional weakly sequentially

complete Banach space; in particular, no infinite-dimensional reflexive Banach

space is in (j(cA.

Proof.  If E  is a weakly sequentially complete Banach space in  (3(c.),  then

E  is, by Theorem 4.9, reflexive.   As  c.   is isomorphic to its own square,  E £

QS(cA).    Let  T  be a continuous linear operator from a subspace S.   of c_   onto  E.

By the reflexivity of E,  T is weakly compact.   By [12, p. 171],  T is compact.

Thus  E  is finite-dimensional.

Thus we see that every infinite-dimensional Banach space in  ¡3(c„)  is almost

reflexive but nonreflexive.

Corollary 4.14.  For any   I < p < °°,   14 ¡3(cQ).

Theorem 4.15.   Let A  be a class of Fréchet spaces each of density character

< m (m some infinite cardinal).   Then any Fréchet space or strict (LF)-space in

0(A) also has density character < m.

Proof.   An easy check of P(5), QP(5), PcQP(5) and SPcQP&)  shows that

any metrizable space in  ¡3(3") has density character < ttz; moreover, any strict

(LF)-space defined by a sequence of Frechet spaces each of density character

< TT7  is itself of density character < ttt,  a fact easily verified.   The proof is there-

fore complete.
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Corollary 4.16.  Let f be a class of separable Frechet spaces and E e 0(3").

Then, if E  is a Frechet space or a strict (LF)-space,  E  is separable.

Corollary 4.17.   0(/j) £ D(IJ.

Proof.   We have already noted that  0(7.) Ç o(/œ); however,  lœ  is not separable

(see [14]) while  /.   is —thus Corollary 4.16 applies.

Corollary 4.18.   Let S  be any infinite set and P(S) be the power set of S.

Then  ü(ly(P(S))) = l\lœ(S)).

Proof.   As is well known, the density character of lœ(S) is  2m,  where ttz  is

the cardinality of S.   Thus  lœ(S) is a quotient of ly(P(S}),  and  lœ(S) el\ly(P(S))).

On the other hand,   Z,(5) has dual  lœ(S),  so [44, Proposition 3.3],  ¡W(S) con-

tains  lx(P(S)).   Thus,   ly(P(S)) eüOJS)) obtains.

Theorem 4.19.   Let  ÍB  be any class of Banach spaces each of which has a sep-

arable dual space; then every Banach space in 0(iB) has a separable dual space.

Proof.  Another—by now —routine application of Theorem 4.1.

In particular, we have from Theorem 4.19 an alternative derivation of

Corollary 4.20.   If  1 < p < oo,  then none of the spaces  /., L., C([0, 1]) is in

any of the varieties   ö(c„), 0(z\ ), (3(LA.
u p p

In the same fashion as before we have

Theorem 4.21.   Let 53  be a class of quasi-reflexive Banach spaces (see [8]

for definition and basic properties).   Then every Banach space in (3(53) is quasi-

reflexive.

Remark.   If B  is a quasi-reflexive Banach space then for each 72,  B        ,  the

(27z)th dual space of B,  is in  0(53).   How close does this phenomenon come to

characterizing quasi-reflexivity?

5.   Miscellaneous results and open questions.   The problem of embedding a

topological space in an LCS has been considered by several authors notably Markov

[24], Kakutani [17], Arens and Eells   [l] and Michael [27].   In particular, they

showed

(i)   Every Tychonoff (completely regular) space can be embedded in an LCS as

a closed subset and a Hamel basis.

(ii)   Every metric space can be embedded isometrically as a closed linearly

independent set in a normed linear space.

Definition.   Let X  be a topological space and  0 a variety.   Then an LCS in

0 is said to be a free locally convex space of 0 on  X,  denoted by  F(X, 0),  if

there is a continuous mapping v of X  into  F(X, 0)  such that, for every continuous
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mapping <p of X into any LCS E in (3, there exists a continuous linear transfor-

mation  0 of F(X, ¡3) into  E   such that $1/ = </>.

The usual Freyd adjoint functor theorem argument ([17], [29]) shows that: for

any topological space X  and variety Ö,  F(X, (3) exists and is unique.

However, we can say more.

Theorem 5.1.   For any Tychonoff space  X and (nontrivial) variety  ¡3,

(i)   the canonical mapping  v  is a homeomorphism of X onto v(X)  (so we will

identify X with v(X)),

(ii)  X z's a Hamel basis for F(X, ¡3), and

(iii)   X  is a closed subset of F'X, ¡3).

Proof.   Since  X is a Tychonoff space it can be embedded in a product  R    of

copies of R.   As  R    £ (3,  there exists a continuous linear transformation $ of

F(X, ¡3) into  R    such that <£>V  acts identically on  X.   This clearly implies that v

is a homeomorphism of X onto iv(X).   (We identify X   with iv(X) in the sequel.)

Let x,,•••, x    be in  X  and a,, • • • , a    in  R   such that the element of
I ' 72 1 ' ' 72

F(X, [3), CL.x, + • • • + a  x    =0.   Let   \e,,•••, e   i be a Hamel basis for R".   Since''11 72    72 1 '77

X  is Tychonoff, there exists a continuous mapping </> of X  into  Rn  such that

d>(x.) = e.,  i - 1, • • • , n.   As  R" £ ¡3,  there exists a continuous linear transforma-

tion <t> of F(X, (3) into  R"  such that 3>|X = <p.    Thus $(ajXj + ••• + a x ) = a.yl +

• ■ • + a e .  Since a.x, + • • • + a. x   = 0, we have a,e, + •••+ a  e   -- 0 which im-
7772 11 7277' 11 7272

plies a , = a.   = • • • = a   =0.   Hence X is a Hamel basis for F(X, ¡3).

Let ß(X) be the Stone-Cech compactification of X.   Then  F(ß(X), Ö)  exists

and, by the above remarks, has  ß(X)  as a basis.   Let cp be the natural mapping

of X  into  ß(X).   Then there exists a continuous linear transformation  $  of

F(X, Ö) into F(ß(X), Ö)  such that <D|X = <p.    Clearly,  $" \ß(X)) = X  and since

ß(X) is a closed subset of F(ß(X), (3) we have that X   is closed in  F(X, ¡3).

Unfortunately we have, as yet, found no "use" for free locally convex spaces.

However, we point out that free groups are important in the study of varieties of

groups, and free topological groups, at least, provide a source of interesting exam-

ples ([36], [24]).   We conclude our comments on free locally convex spaces by

stating a few facts which can be proved in the same way as those for free topolog-

ical groups.

1. If X  is any LCS is a variety  [3,  then  X  is a quotient of F(X, ¡3).

2. If X  is any nondiscrete Tychonoff space then  F(X, ¡3) is not metriazble.

3. There exist nonhomeomorphic spaces  X and  Y   such that F(X, 15) is

isomorphic to  F(Y, Ö).

4. If <f>     is in a variety (3,  then  ip     is  F(X, Ö) for a discrete space  X.

Noting [39] that every variety of groups is generated by its finitely generated

groups, it is natural to ask if every variety of LCS's is generated by its finite-
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dimensional members.   Of course, this is not true.   A more likely analogue is that

every variety of LCS's is generated by its compactly generated members.   (An LCS

is said to be compactly generated if it has a compact spanning set.)   However, this

too is false.    To see this, suppose the variety O  of all LCS's is generated by the

class C of all compactly-generated LCS's.   (Incidently,   (3(C) is not singly-

generated.)   Let D be a set of cardinality  2C.   Then by Theorem 4.1,  Iy(D) e

SQP(ß) = S(C).   Noting that any discrete subgroup of a compactly-generated LCS is

countable while the unit vectors in  /.(D) generate an uncountable discrete sub-

group of  l,(D) (cf. [38]),   we have a contradiction.

Related to the opening remarks of §3  we comment that

(a) Using the terminology and results of [49] one can show [55] that no infinite-

dimensional Schwartz space has a normalized  e-Schauder basis;  in particular, no

barrelled Schwartz space has a normalized Schauder basis.

(b) Let  E  be a Frechet space with Schauder basis  \x .!.   The basis is said to

be normal if for some sequence  \a .] of positive scalars,  ja.x.i is a normalized

basis for E.   The basis is abnormal if it is not normal [18].   In [55] the following

are shown to be equivalent:

(i)   some subbasis of \x \ has all its subbases abnormal;

(ii)   some subbasis of \x.} spans a nuclear space;

(iii)   some subbasis of \x.] spans a Schwartz space;

(iv)   some subbasis of  \x.}  spans a Montel space.

(In (ii)—(iv) we are considering the closed linear span of infinite subbases.)

(c) In [5] it is shown that every nonnormable infinite-dimensional Frechet

space F  contains an infinite-dimensional nuclear space  F.;  indeed, one sees

that if  F does not have its weak topology and does not contain an infinite-dimen-

sional Banach space, then the nuclear subspace Fn  may be chosen so as not to

have its weak topology.   Thus we have

If F  is a Frechet space, then either it has its weak-topology (and  ((E) =

ö(Av)) or 0(F).H jl 4 ö(Av).   Indeed, in the latter case,  (3(F) O Tí ? (V),  since each

LCS in  C)(<p) either has its weak topology or contains  ip and tp is nonmetrizable

(cf. Theorem 3.1).

This prompts us to ask

Question 1.  What are the subvarieties of Tí?

We have already mentioned Ü(R),  (3(<p), (3(s) and the s-nuclear spaces.   The

works [ll] and [48] are relevant.   As a corollary to Theorem 3.2 of [18] and our

Theorem 3.2, we have

// E  z's a complete barrelled space with a symmetric Schauder basis, then

(i)   l\E) = Ofo) = D(Av),

(ii) 0(F) - l\<p), or

(iii)  0(E) 2 Ti.
We have proved the existence of a universal generator for the Schwartz spaces.
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But we ask

Question 2.   Does there exist a serviceable universal generator for the Schwartz

spaces?   (What is it?)

We have noted that ¡3(7.) contains all the Schwartz spaces, so we ask

Question 3.    For what Banach spaces  B  is it true that (3(B) contains all the

Schwartz spaces?   In particular, does 0(7  ),   1 < p < °°,  or ¡3(c) contain all the

Schwartz spaces?

Related to the above question is

Question 4.   Are the only Banach spaces in  0(7 ) Cx 0(1 ),   1 < p 4 q < °°,  the

finite-dimensional ones?

Question 5.  If 1 < p 4 q < °°, fot what r does lf £ ¡3([7  , I  !)?

As was noted in §1, if ¡3 is a variety generated by a class of Fréchet spaces,

then  Ö  is closed under the formation of completions;  notice that ¡3(^>) is likewise

closed under completions but is not generated by Fréchet spaces.   Therefore we

ask

Question 6.   Is there an internal characterization of varieties closed under the

formation of completions?

In the same spirit is

Question 7.   Is there an internal characterization of varieties closed under the

formation of direct sums, inductive limits or tensor products (or other operations

of interest)?

If  1 < p < oo  and p  is a nonatomic measure, then  /. £ U(L  (p));  also as

L   (p, I A,  the space of Bochner pth power integrable  7  -valued functions, is iso-

morphic to  L  (p) (see [22]),   we have  L  (p, IA €. ( (L  (p)).   This motivates

Question 8.    Let  1 < p < °°  and p be any nonatomic measure.   Is it true that

if E  is a Banach space in ¡3(L   (p)) then  L  (p, E) £ ¡3(L Ap))?

The Lindenstrauss-Pe/czyriski [22] paper introduces the i_  -spaces which

characterize geometrically the complemented subspaces of  L   (p) for   1 < p < oo.

Of course the uncomplemented subspaces are harder to handle.

Question 9.  What geometric properties characterize the Banach spaces in

l\Lp(p)),  1<7><oc?

Rosenthal's proof [50] that every operator from a subspace of 7 .to  I  ,   1 <

q < p < ao,  is compact is dependent upon the nature of I    spaces;  it does not

(immediately) generalize to Orlicz sequence spaces.   It seems possible, however,

that the result (Theorem A.6) still holds for reflexive Orlicz spaces with the proper

relationship between them.

Question 10.  What can be said of the varieties generated by Orlicz spaces

(with generating functions satisfying the usual growth conditions)?

Question 11.   Let 7,7    be distinct Orlicz sequence spaces.   Are they (neces-

sarily) of incomparable linear dimension?

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



226 J. DIESTEL, S. A. MORRIS AND S. A. SAXON [October

Of course a classical result of Banach [2] states that the different / spaces

(1 < p < oo) are of incomparable linear dimension.

Question 12. Let /F denote the class of all separable reflexive Frechet spaces

and 53  the class of all Banach spaces in ,T.   Does there exist

(a) E e? such that 5 Ç 0(E);

(b) F e 53  such that J Ç (3(E);

(c) E e? such that 53 C0(F);

(d) E e53  such that ÍB CÖ(E)?

Szlenk [58] showed that there does not exist E £ 53 such that every B £ 53 is

isomorphic to a subspace (or a quotient) of E.   A negative answer to (d) would

result if one could show the nonexistence of E £ 53  such that every  B £ 53  is the

continuous image of some closed subspace of E.

Using the universality of C[0, 1]  for the class of separable Banach spaces

and the incomparability of /    for  I < p < oo,  it follows that there exists precisely

a continuum of nonisomorphic members of 53,  say  \X.: i e R\.   Then keeping the

notation of [9],   P,  (fi,(X.) is a reflexive Banach space which has density charac-

ter c,  and clearly contains every member of i)  isomorphically.   Thus by passing

to a "slightly higher" density character we can get a reflexive Banach space which

by Szlenk's result and the continuum hypothesis is of minimal density character to

be universal for the separable reflexive Banach spaces.

In another direction, C(—oo, oo) has been shown by Mazur and Orlicz [26] to be

universal for the class of all separable Frechet spaces; here C(—oo, oo) denotes the

linear space of all continuous real-valued functions of a real variable with topology

that of uniform convergence on compact sets¿ Consequently, there exists precisely

a continuum of nonisomorphic members of .f, denoted by \Y.: i e R\. Consider

Y = U-eR Y;. V is a separable [47] reflexive [14] LCS which clearly contains every

member of 53. (The result of [47] applies as a consequence of the Anderson-Kadec

theorem [4].)

We know that every LCS of density character <  K0  is in  0(C[0, l]).

Question 13.   Given an infinite cardinal ttz, does there exist a compact Haus-

dorff topological space  Av      such that the density character of C(A<   ) is ttz  and

every Banach space (or LCS) of density character < 772  is in  0(C(Av   ))?

Question 14.   Let  Av  be a dispersed compact Hausdorff space.   Does every

(separable) subspace of C(Av) possess the strict Dunford-Pettis property of [12]?

If so, then 0(C(Av)) contains no infinite-dimensional reflexive Banach spaces.

(Apply  the results of [12] and [46].)

We digress momentarily to varieties of topological groups.   In [6] it was shown

that the variety of all topological groups is not generated by the class C  of lo-

cally compact groups.   This was done by showing that certain linear topological

spaces, regarded as topological groups, are not in the variety of topological groups
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V(C) generated by C. We point out here that V(C.) contains no infinite-dimensional

Banach spaces (regarded as topological groups). This is easily seen using Theorem

4 of [6] and the following generalization of Theorem 4.1:

If the Banach space B  (regarded as a topological group) is a subgroup of a

product U.  . A . of topological groups A .,  then 73   is isomorphic to a subgroup of a

product II.,    A .,  where a is a finite subset of /.
r 2 €cr      2' '

Further comments on this are made in [38].

Returning to topological vector spaces, we note that up to now we have only

considered varieties of locally convex spaces.   A recent result of Peck [41] in-

dicates that varieties of general topological vector spaces have a rich structure and

often contain many locally convex subvarieties.   This prompts the question: What

can be said about varieties of (Hausdorff) topological vector spaces?

Of course many of our results on locally convex varieties carry over to the non-

locally convex case, in particular, those relating to generation of varieties and

singly generated varieties do (see Theorems 1.1, 1.2, 1.4, 2.8 and 2.11).

We will need the following result which extends Theorem 4.1:

Let C be a class of (Hausdorff) topological vector spaces.   If E  isa locally

bounded topological vector space in  ¡3((?),  then  E £ QSP(C).   (Recall that a topo-

logical vector space is called locally bounded if it has a bounded neighborhood of

zero.)

Of particular interest in our present discussion is consideration of some of the

classical nonlocally convex topological vector spaces: /    and L     fot 0 < p < 1.

In analogy with the case  p - 1, 2, 00 but in contradistinction to other p > 1,  we

have

Theorem 5.2.   For 0 < p < 1, ¡3(7p) = [3(L  ).

Proof.   As in the case p > 1,  7    can be isomorphically embedded in  L   ,   so

¡3(7  ) 2 ¡3(E).   On the other hand, as shown in [57],  L     is a quotient of I  ,  so

l\Lp)çl\lp).

Theorem 5.3.  If 0 < p < q < 1,  then  (3(7  ) £ 0(7p).

Proof.   That 0(7  ) Ç 0(7 )  is clear from [57].   Recall that if E  is a locally

bounded topological vector space and  U is a bounded circled neighborhood of 0 in

E,  then   2(7 C 1/ + 17 C kU fot some k > 2.   The greatest lower bound of the k's  for

which the above is true is denoted by  k     and called the modulus of concavity of 17.

The modulus of concavity of  E  is denoted by K(E) and is defined to be  int\k A as

U ranges over all bounded circled neighborhoods of E.  (j\(E) > 2.)

Observe that if F £ S(E) or Q(E), then K(F) < K(E).

Consider the possibility  L„ £ Ö(L   ) where  0 < p < q < 1.   Then, as  L     is iso-
P q q

morphic to its own square and is locally bounded,   L    £ SQ(L   ).   This would imply
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that K(L  ) < K(L   )  which is false since K(Lp) = 21/p > 2l/q = K(L?) (using

Rolewicz [50]).   Thus using Theorem 5.1,  0(7  ) £ £3(/  ).

Another important example of a nonlocally convex topological vector space is

the space S  of all real-valued Lebesgue measurable functions on the interval

[0, l]  with topology (a complete, metric linear topology) that of convergence in

measure.   As is noted in [57], S  has  L     as a subspace for  1 < p < 2;  of course

S has no locally convex quotient spaces.   We ask

Question 15.   For what p  is  L     in 0(5)?

Addendum.  Much progress has been made on answering the questions posed

in §5.  For an account of this progress, we refer the reader to the paper by the

first two authors entitled Some remarks on varieties of locally convex linear topo-

logical spaces, which should appear in the near future.
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