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The Structure of Abelian Pro-Lie Groups

Karl H. Hofmann and Sidney A. Morris

Abstract. A pro-Lie group is a projective limit of a projective system of finite dimensional
Lie groups. A prodiscrete group is a complete abelian topological group in which the open

normal subgroups form a basis of the filter of identity neighborhoods. It is shown here that

an abelian pro-Lie group is a product of (in general infinitely many) copies of the additive
topological group of reals and of an abelian pro-Lie group of a special type; this last
factor has a compact connected component, and a characteristic closed subgroup which is

a union of all compact subgroups; the factor group modulo this subgroup is pro-discrete
and free of nonsingleton compact subgroups. Accordingly, a connected abelian pro-Lie

group is a product of a family of copies of the reals and a compact connected abelian

group. A topological group is called compactly generated if it is algebraically generated by
a compact subset, and a group is called almost connected if the factor group modulo its
identity component is compact. It is further shown that a compactly generated abelian
pro-Lie group has a characteristic almost connected locally compact subgroup which is a
product of a finite number of copies of the reals and a compact abelian group such that

the factor group modulo this characteristic subgroup is a compactly generated prodiscrete
group without nontrivial compact subgroups.

1991 Mathematics Subject Classification: 22B, 22E.

Keywords: abelian topological group, projective limit, Lie group, exponential function,
locally compact group, vector subgroup.

Introduction

The category of locally compact abelian topological groups and continuous group
homomorphisms fails to have products and so is not a closed subcategory of the
category of all abelian topological groups and continuous group homomorphisms.
The smallest closed subcategory containing all locally compact abelian groups is
the category of abelian pro-Lie groups whose structure theory is the object of this
paper. For a topological abelian group G we let N (G) denote the collection of
all closed subgroups N such that G/N is a finite dimensional Lie group which,
being abelian, is isomorphic to the product of a finite dimensional vector group, a
finite dimensional torus and an arbitrary discrete abelian group. We shall write all
abelian groups additively. The group G is called a pro-Lie group if G is complete
and if every identity neighborhood contains a member of N (G). The set N (G)
is a filter basis and thus the quotient groups G/N form a projective system, and
G is its projective limit. The converse saying that a projective limit of an arbi-
trary projective system (see e.g. [8], Chapter 1 or [11]) of abelian Lie groups is
a pro-Lie group is a hard fact that was proved in [9] (for not necessarily abelian
groups). By contrast with the category of locally compact abelian groups, the
category ABproLIEGR of abelian pro-Lie groups is closed in the category of all
abelian topological groups and continuous group morphisms under the formation
of arbitrary limits and the passing to closed subgroups (see [9]). Each locally
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compact abelian group is a pro-Lie group and thus arbitrary products and of lo-
cally compact abelian groups and arbitrary closed subgroups of such products are
abelian pro-Lie groups. Therefore, the category ABproLIEGR is rather large. In
the first section below we shall record some individual examples so that the reader
can form a first impression of the type of topological abelian groups we face. This
addresses in particular those readers whose intuition is trained by studying locally
compact abelian groups which are the daily bread of classical harmonic analysis
and whose structure is known and is described for instance in [6], Chapters 7 and
8.

One of the most prominent examples of abelian pro-Lie groups is the addi-
tive topological group of the dual vector space of an arbitrary real vector space,
where the dual E′ = HomR(E, R) of a real vector space is given the topology of
pointwise convergence; this topology is also called the weak-∗-topology. It makes
the dual into a complete topological vector space which is called a weakly com-
plete topological vector space. Therefore its additive topological group is called a
weakly complete vector group, and whenever it occurs as a subgroup of a topolog-
ical group, it is called a weakly complete vector subgroup. Weakly complete vector
groups have a perfect duality theory as was discussed in [6]. The character group
and the vector spaces dual of a topological vector space are naturally isomorphic.
The compact open topology on the dual of a weakly complete vector space is the
finest locally convex topology on the vector space dual. Since the character group
of a weakly complete vector group is a vector space and thus is a direct sum of
copies of R, every weakly complete vector group is isomorphic to a vector group of
the form RJ for some set J . Thus a weakly complete vector group is locally com-
pact if and only if it is finite dimensional. The transfinite topological dimension
of RJ as discussed in [7] is cardJ . Therefore
the topological dimension of a weakly complete vector group agrees with the linear
dimension of its dual.

Pontryagin duality establishes a dual equivalence between the categories of
compact abelian groups and the category of (discrete) abelian groups. Therefore
an abelian pro-Lie group is a direct product of a weakly complete vector group
and compact abelian group if and only if its dual is a direct sum of a real vector
space given its finest locally convex topology, and some discrete abelian group.

The main result of this paper is that every abelian pro-Lie group G is isomor-
phic as a topological group to the direct product W × H of a weakly complete
vector subgroup W of G and an abelian pro-Lie group H whose identity com-
ponent H0 is compact and is the intersection of open subgroups. In particular,
a connected abelian pro-Lie group is the direct product of a vector group and a
compact connected group. For connected pro-Lie groups it turns out that one is
reduced to the theory of weakly complete vector spaces on the one hand and to
the more familiar locally compact situation on the other hand. From this result
we derive that a necessary and sufficient condition for a connected abelian pro-Lie
group to be locally compact is that is algebraically generated by a compact set.

These results say for instance that, while the category ABproLIEGR contains
all products of locally compact abelian groups, the connected objects in it are just
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products of connected locally compact abelian groups. Thus, while ABproLIEGR
is large, it is just large enough on the level of connected groups.

The main result entails at once that every abelian pro-Lie group is homotopy
equivalent to an abelian pro-Lie group whose identity component is compact. In
particular, every connected abelian pro-Lie group is homotopy equivalent to a
compact abelian group and thus has the homotopy and cohomology of a compact
abelian group which can be completely calculated from its character group (see
for instance [6], pages 418 and 430).

1. Examples of Abelian Pro-Lie Groups

We shall often refer to a theorem which is proved in [8] 3.35, or in [9], Corollary
4.9:

Theorem CL. (The Closed Subgroup Theorem) Every closed subgroup of a
pro-Lie group is a pro-Lie group.

This is a result which we keep in mind as well when we look at the elementary
examples.

We begin by offering some orientation on the class of abelian pro-Lie groups
by presenting a list of examples. Let us firstly recall (see for instance [17]) the
following basic types of locally compact nondiscrete fields:
(a) The field R of real numbers.
(b) The field Qp of p-adic rationals for some prime p.
(c) The field GF(p)[[X]] of Laurent series in one variable with the exponent val-

uation over the field with p elements.
All other nondiscrete locally compact fields are finite extensions of these; in cases
(a) and (b) the characteristic is 0 and in case (c) it is finite. Of course, every field
F with the discrete topology is a locally compact field.

Let Z(p∞) =
( ⋃∞

n=1
1
n ·Z

)
/Z denote the Prüfer group of all elements of p-power

order in T = R/Z. We consider on the groups Z of integers, Q of rationals, and
the Prüfer group Z(p∞) only their discrete topologies.

Example 1.1. Let J be an arbitrary infinite set. The following examples are
abelian pro-Lie groups.
(i) All locally compact abelian groups.
(ii) All products of locally compact abelian groups, specifically:
(iii) the groups RJ ;
(iv) the groups (Qp)J ;
(v) the groups QJ ;
(vi) the groups ZJ ;
(vii) the groups Z(p∞)J . ut

An infinite product of noncompact locally compact groups is not locally com-
pact, so none of the groups in (iii)–(vi) is locally compact, but if J is countable,
they are Polish (that is, completely metrizable and second countable). A countable
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product of discrete infinite countable sets in the product topology is homeomorphic
to the space R \Q of the irrational numbers in the topology induced by R (see [2],
Chap. IX, §6, Exercise 7). So QN, ZN, and Z(p∞)N are abelian prodiscrete groups
on the Polish space of irrational numbers. Elementary examples such as pro-Lie
group topologies on the space of irrationals in its natural topology illustrate once
more the fact that the category of abelian pro-Lie groups is considerably larger
than that of locally compact groups. The groups in (iii), (iv) and (v) are divisible
and torsion free, and the groups in (vii) are divisible and have a dense torsion
group.

There is a less obvious but very instructive example which we present sepa-
rately. If J is any set and j ∈ J , then δj : J → R is defined by

δj(x) =
{ 1 if x = j,

0 otherwise.

For any subset S ⊆ RJ let 〈S〉 denote the subgroup algebraically generated by S
as is usual.

For an arbitrary set J and an abelian group A we use the notation A(J) to
denote the subgroup of the power AJ consisting of all J-tuples (aj)j∈J for which
aj = 0 with at most finitely many exceptions. We note that a weakly complete
topological vector space of topological dimension 2ℵ0 is isomorphic to RR as a
topological vector space. For any topological abelian group G the topological space
Hom(R, G) of continuous group homomorphisms X: R → G endowed with the
compact open topology becomes a topological vector space, denoted L(G), when
given the pointwise addition and the scalar multiplication defined by (r·X)(s) =
X(sr). (See for instance [6], p. 334 ff.)

Proposition 1.2. The free abelian group Z(N) has a nondiscrete topology making
it into a prodiscrete abelian group F in such a fashion that the following conditions
are satisfied:
(i) There is an injection j:F → W mapping F isomorphically (algebraically and

topologically) onto a closed subgroup of the weakly complete vector group W
of topological dimension 2ℵ0 such that W/F is an incomplete group whose
completion is a compact connected and locally connected group, and that the
R–linear span spanR(F) is dense in W .

(ii) The subset B
def= {δn : n ∈ N} satisfies F = 〈B〉 and j(B) is unbounded in W .

(iii) If K ⊆ F is any compact subset, then there is a finite subset M ⊆ N such
that k ∈ M ⊆ Z(N) implies that the support supp(k) = {m ∈ N : k(n) 6= 0}
is contained in M . In particular, every compact subset of F is contained in a
finite rank subgroup of F .

Proof. (i) This example is based on an example Poguntke and the authors
described in [10]. Let G be the character group of the discrete group ZN. Then G
is a compact, connected and locally connected but not arcwise connected group.
Let Ga denote the arc component of the identity element in G. It was proved in [10]
that the corestriction of the exponential function exp′G:L(G) → Ga was a quotient
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map. Let W = L(G) ∼= Hom(ZN, R) ∼= R2ℵ0 and F = ker expG ⊆ L(G) = W . The
exponential function of (locally) compact abelian groups is extensively discussed
in [6], p. 344ff; in [6], p. 355, the kernel of the exponential function is denoted
by K(G). Now F as a closed subgroup of a pro-Lie group is a pro-Lie group by
the Closed Subgroup Theorem for Pro-Lie Groups CL. It is totally disconnected
(see [6], p. 355, Theorem 7.66(ii)), and so by Lemma [8] 3.31, or by [9], 4.6, F
is a prodiscrete group. By [6], p. 332, Proposition 7.35(v)(d), the linear span
spanR(F) = spanR(K)(G) is dense in L(G) = W . Since Ga does not contain
any copy of a cofinite dimensional closed vector subspace of L(G), the function
exp′G:L(G) → Ga cannot induce a local isomorphism and thus its kernel F = K(G)
is not discrete.

Furthermore, from [6], p. 355, Theorem 7.66(ii) we observe that

F ∼= Hom(ZN, Z),

algebraically, and from [4], p. 53 Corollary 15 and p. 60, Corollary 24, we get that
Φ: Z(N) → Hom(ZN, Z), Φ

(
(pm)m∈N

)(
(zm)m∈N

)
=

∑
m∈N pmzm is an isomorphism

of abelian groups and that, accordingly, F is a free group algebraically generated
by Φ(B).

(ii) We now prove that Φ(B) ⊆ Hom(ZN, Z) ⊆ Hom(ZN, R) = W is un-
bounded. Note that Φ(δn): ZN → Z is simply the evaluation evn: ZN → Z,
evn(f) = f(n). Since ZN is considered with the discrete topology, the topol-
ogy on W ∼= Hom(ZN, Z) is that of pointwise convergence, that is, the topol-
ogy induced from ZZN

. Let s: N → Z be an arbitrary element of ZN. Then
prs: Hom(ZN, Z) → Z is given by prs(ϕ) = ϕ(s) and thus prs

(
Φ(B)

)
= {evn(s) :

n ∈ N} = {s(n) : n ∈ N} = im s. Therefore the projection of B into the s-
component of Hom(ZN, Z) ⊆ Hom(ZN, R) ∼= W is bounded if and only if s is
bounded. Since there are unbounded elements s ∈ ZN, the set j(B) is unbounded
in W .

(iii) Let K ⊆ Z(N) be a compact subset and suppose that it fails to satisfy the
claim. Then there is a sequence of elements kn ∈ K such that Mn = max supp kn

is a strictly increasing sequence. Now we define a function s: N → Z recursively
as follows: Set s(1) = 0 and s(m) = 0 for m /∈ {Mn : n ∈ N}. Assume that s(m)
has been defined for 1 ≤ m ≤ Mn in such a way that σm =

∑Mm

j=1 km(j)s(j) ≥ m.
Now solve the inequality

n + 1 ≤ σn+1
def=

Mn∑
j=1

kn+1(j)s(j) + kn+1(Mn+1)s(Mn+1)

for s(Mn+1). The s-projection prs

(
Φ(K)

)
= {

∑
n∈N k(n)s(n) : k ∈ K} ⊇ {σn =∑

m∈N kn(m)s(m) : m ∈ J} contains arbitrarily large elements σn ≥ n and thus
cannot be bounded, in contradiction to the compactness of K. ut

We realize that (ii) is implied by (iii); we have preferred to give separate proofs
for better elucidation of this remarkable example.
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The group F cannot be metrizable, because as a complete abelian group its
underlying space would be a Baire space and thus as a countable topological group
would have to be discrete. It is therefore noteworthy that there are pro-Lie groups
whose underlying space is not a Baire space. As a countable group, it is the
countable union of compact sets. A topological space said to be σ-compact, if it
is a countable union of compact subspaces. Thus F is trivially σ-compact.

We observe in conclusion of our brief discussion of examples of abelian pro-
Lie groups that we have seen pro-discrete abelian groups on the space R \ Q of
irrationals and on a countable nondiscrete space.

2. Weil’s Lemma

In the domain of of locally compact groups, Weil’s Lemma says
Let g be an element of a locally compact group and 〈g〉 the subgroup generated

by it. Then one (and only one) of the two following cases occurs
(i) n 7→ gn : Z → 〈g〉 is an isomorphism of topological groups.
(ii) 〈g〉 is compact.
(See for instance [6], p. 342, Proposition 7.43.)

Theorem 2.1. (Weil’s Lemma for pro-Lie groups) Let E be either R or Z and
X:E → G a morphism of topological groups into a pro-Lie group G. Then one
and only one of the two following cases occurs
(i) r 7→ X(r) : E → X(E) is an isomorphism of topological groups.
(ii) X(E) is compact.

Proof. The closed subgroup A
def= X(E) is an abelian pro-Lie group by the Closed

Subgroup Theorem for Pro-Lie Groups CL. Thus we may assume that G is abelian
and the image of X is dense. Now let N ∈ N (G) and pN :G → G/N the quotient
map. Then G/N is an abelian Lie group for a morphism pN ◦X:E → G/N with
dense image. By Weil’s Lemma for locally compact groups, either pN ◦ X is an
isomorphism of topological groups or else G/N is compact. If M ⊇ N in N (G) and
and pN ◦X is an isomorphism, then pM ◦X and the bonding map G/M → G/N
are isomorphisms as well. Thus there are two mutually exclusive cases:
(A) (∀N ∈ N (G)) pN ◦X is an isomorphism of topological groups and all bonding

maps G/M → G/N are isomorphisms.
(B) There is a cofinal subset Nc(G) ⊆ N (G) such that G/N is compact.

In Case (A), the limit G ∼= limN∈N (G) G/N is isomorphic to E.
In Case (B) let N ∈ N (G) and let ↑N = {P ∈ N (G) : P ⊆ N}. Then for all

P ∈ N (G) the quotient G/P is compact. By the Cofinality Lemma [8] 1.21(ii) we
know G ∼= limP∈↑N G/P . Since all G/P are compact for P ∈ ↑N , the group G is
compact in this case, and the Theorem is proved. ut

Definition 2.2. (i) Let G be a topological group. Then comp(L)(G) denotes the
set of all X ∈ L(G) such that expG R·X is compact. A one-parameter subgroup
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X ∈ comp(L)(G) is called a relatively compact one-parameter subgroup. Further-
more, comp(G) denotes the set {x ∈ G : 〈x〉 is compact}. An element x ∈ comp(G)
is called a relatively compact element of G.

(ii) A topological abelian group G is said to be elementwise compact if G =
comp(G). It is said to be compactfree if comp(G) = {0}. ut

In any topological abelian group G, the set comp(G) of relatively compact
elements is a subgroup, since g, h ∈ comp(G) implies that gh is contained in the
compact subgroup 〈g〉〈h〉.

A discrete abelian group is elementwise compact if and only if it is a torsion
group; it is compactfree if and only if it is torsionfree. If f :G → H is a morphism
of abelian pro-Lie groups, then f

(
comp(G)

)
⊆ comp

(
f(G)

)
⊆ comp(H); accord-

ingly f
(
comp(G)

)
⊆ comp(H). The quotient morphism f : Z → Z/2Z shows that

in general f
(
comp(G)

)
6= comp(H) even for quotient morphisms.

Theorem 2.3. Let G be an abelian pro-Lie group. Then
(i) comp(G) is a closed subgroup of G and therefore is also a pro-Lie group.
(ii) comp(G) ∼= limN∈N (G) comp(G/N).
(iii) For N ∈ N (G), let CN ⊆ G be the closed subgroup of G containing comp(G)

for which CN/ comp(G) = comp(G/N). Then comp(G) =
⋂

N∈N (G) CN .
(iv) The factor group G/ comp(G) is compactfree.

Proof. (i) Since G ∼= limN∈N (G) G/N ⊆
∏

N∈N (G) G/N we may assume that G

is a closed subgroup of a product P =
∏

j∈J Lj of abelian Lie groups Lj . Any
abelian Lie group is of the form L = Rp × Tq ×D for a discrete group D (see for
instance [6], p. 349, Corollary 7.58(iii)). Then comp(L) = {0} × Tq × torD for
the torsion subgroup tor D of D. Hence comp(L) is closed. Thus prj(comp(G)) ⊆
prj

(
comp(G)

)
⊆ comp(Lj) as comp(Lj) is closed. Now let g = (gj)j∈J ∈ G ⊆ P .

Then gj ∈ comp(Lj) and thus 〈gj〉 is compact and g ∈ K
def=

∏
j∈J 〈gj〉. As a

product of compact groups, K is compact and thus 〈g〉 ⊆ K is compact and so
g ∈ comp(G). Hence comp(G) is closed and thus is a pro-Lie group by the Closed
Subgroup Theorem for Pro-Lie Groups CL.

(ii) The assignment G 7→ comp(G) defines a functor from the category of
abelian pro-Lie groups to itself. If G is an elementwise compact abelian pro-Lie
group and H is any abelian pro-Lie group, then any morphism of topological groups
f :G → H factors through comp(H), that is, is of the form f = inclcomp(H),H ◦f ′
with a unique morphism f ′:H → comp(H). That is, comp is a right adjoint
to the inclusion functor of the full subcategory of elementwise compact groups
in the category ABproLIEGR of abelian pro-Lie groups. See for instance [6], p.
718, Proposition A3.36. Therefore it preserves limits (see for instance [6], p. 723,
Theorem A3.52). Since comp preserves limits, it preserves, in particular, projective
limits.

(iii) follows from the Closed Subgroup Theorem for Projective Limits [8] 1.34(v)
or [9], 2.2(iv). [Here is the proof: Since the family of {CN : N ∈ N} is filtered,
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the system of natural quotient maps gN 7→ gM : KN/N → KM/M for N ⊆ M

in N is a projective system and the projective limit L
def= limN∈N CN/N is well

defined. We have a natural map δ: comp(G) → L, δ(h) = (hN)N∈N . Just as was
in the proof of Theorem 2.2(i) in [9] for the family {HN : N ∈ N}, we can define
an inverse σ:L → comp(G), σ

(
(gNN)N∈N

)
= limN∈N gN , since (gN )N∈N is a

Cauchy net. The fact that σ is a morphism of topological groups and inverts δ is
shown in a fashion that is completely analogous to that which we applied in [9],
2.2(i).]

(iv) Let g comp(G) be nonzero in G/ comp(G) that is, g /∈ comp(G). Then
by (ii) there is an N ∈ N (G) such that g /∈ CN . Then gN /∈ comp(G/N) and
then (gN) comp(G/N) is not relatively compact in (G/N)/ comp(G/N). Since
the quotient morphism G → G/N maps comp(G) into comp(G/N), there is
an induced quotient morphism F :G/ comp(G) → (G/N)/ comp(G/N) given by
F

(
g comp(G)

)
= (gN) comp(G/N). Since this element is not relatively com-

pact, the element g comp(G) cannot be relatively compact in G/ comp(G). Thus
G/ comp(G) is compactfree. ut

The Examples 1.1(iv) and (vii) are elementwise compact abelian pro-Lie groups
G (that is, they satisfy G = comp(G)), but they are not locally compact. The
Examples 1.1(ii) and (vi), and the Example in Proposition 1.2 are compactfree
abelian prodiscrete (pro-Lie) groups.

Definition 2.4. Let G be a topological group.
(i) G is said to be almost connected if G/G0 is compact.
(ii) G is said to be compactly generated if there is a compact subset K of G

such that G = 〈K〉.
(iii) G is said to be compactly topologically generated if there is a compact subset

K of G such that G = 〈K〉. ut

Lemma 2.5. Each quotient group of an almost connected topological group is
almost connected.

Proof. Let G be a topological group such that G/G0 is compact and let N be a
closed normal subgroup of G. Then G0N/N ⊆ (G/N)0, and G/G0N is compact
as a continuous image of G/G0. So (G/N)/(G/N)0 is a homomorphic image of
the compact group G/G0N and is, therefore, compact. ut

Proposition 2.6. Assume that G is an abelian pro-Lie group satisfying at least
one of the two conditions
(i) G is almost connected.
(ii) G is compactly topologically generated.

Then comp(G) is compact and therefore is the unique largest compact subgroup of
G.
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Proof. We may assume that G = comp(G) and must show that G is compact.
Then by Theorem 2.3(ii) we have G = limN∈N (()G) comp(G/N); it therefore suf-
fices to verify that comp(G/N) is compact for all N . Let N ∈ N (G). The Lie
group G/N is isomorphic to L = Rp×Tq×D for a discrete group D (see the proof
of 2.3(i)), and thus comp(L) = {0} × Tq × tor(D) for the torsion group tor(D) of
D. Thus we have to verify that tor(D) is finite.

In case (i), G/N ∼= L is an almost connected Lie group by Lemma 2.5 and thus
D is itself finite.

In case (ii), G/N ∼= L has a dense subgroup generated by a compact set, and
this is then true for the discrete factor D. Then D is finitely generated and thus is
isomorphic to the direct sum of a finite group and a finitely generated free group
(see for instance [6], p. 623, Theorem A1.11). Thus tor(D) is finite in this case as
well. ut

Lemma 2.7. Assume that G is an abelian pro-Lie group. Then L
(
comp(G)

)
=

comp(L)(G)
)
, and there is a closed vector subspace W such that

(X, Y ) 7→ X + Y :W × comp(L)(G)
)
→ W ⊕ comp(L)(G) = L(G)

is an isomorphism of weakly complete vector spaces.

Proof. By Definition 2.2, a one-parameter subgroup X: R → G is in comp(L)(G)
iff X(R) is compact iff X(R) ∈ comp(G). Thus comp(L)(G) = L

(
comp(G)

)
.

Since comp(G) is a closed subgroup of G by Theorem 2.3(i), L
(
comp(G)

)
is a

closed vector subspace of L(G). Then it has an algebraic and topological vector
space complement by [6], p. 325, Theorem 7.30(iv). ut

3. Vector group splitting theorems

Recall from Proposition 2.6 that comp(G) for an abelian pro-Lie group G is com-
pact if G is almost connected or compactly topologically generated.

Lemma 3.1. Let G be an abelian pro-Lie group, and assume that comp(G) is
compact. Then the following conclusions hold.
(i) There is a weakly complete vector group W and a compact abelian group C

which is a product of circle groups for which G may be considered as a closed
subgroup of W × C such that G ∩ ({0} × C) = comp(G).

(ii) G/ comp(G) is embedded as a closed subgroup into the weakly complete vector
group W .

Proof. (i) For each N ∈ N (G) we have an embedding iN :G → W (N) × C(N)
for a finite dimensional vector group W (N) and a finite dimensional torus C(N).
Hence
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G ∼= lim
N∈N (G)

G/N ⊆
∏

N∈N (G)

G/N

∏
N∈N(G)

iN

−−−−−−−→
∏

N∈N (G)

W (N)× C(N) = W × C

for a weakly complete vector group W =
∏

N∈N (G) W (N) and a compact group
C ∼=

∏
N∈N (G) C(N). Since i is an embedding we may write G ⊆ W × C and

assume that G is closed. Then comp(G) ⊆ comp(W × C) = {0} × C. But
conversely, every element in {0}×C being relatively compact, we have G∩ ({0}×
C) ⊆ compG.

(ii) By (i) above we may assume G ⊆ W × C for a weakly complete vector
group W and torus C and {0} × C is the maximal compact subgroup of W × C.
Hence comp(G) ⊆ {0} × C, and since C is compact comp(G) ⊆ {0} × C. Let
p:P → W be the projection of W × C onto W with kernel {0} × C. Then p is a
proper and hence closed morphism of topological groups; therefore p|G:G → p(G)
is a quotient morphism onto a closed subgroup of W . Since ker(p|G) = comp(G)
we have G/ comp(G) ∼= p(G) and the Lemma follows. ut

Lemma 3.2. Let G be an abelian pro-Lie group such that comp(G) = {1}. Then
expG:L(G) → G0 is an isomorphism of topological groups.

Proof. It is no loss of generality to assume that G = G0, and we shall do that
from now on. If X ∈ ker expG, that is X(1) = 0, then expG R.X = X(R) is a
homomorphic image of R/Z and is therefore compact. Hence X(R) ⊆ comp(G) =
{1} and thus X = 0. So expG is injective.

Let N ∈ N (G). Since G is connected, comp(G) is compact, and thus Lemma
3.1 applies. and we may and will now assume that G is a closed subgroup of a
weakly complete vector group V . We let i:G → V denote the inclusion map and
identify V with L(V ) and expV with idV . There is a commutative diagram

L(G)
L(i)−−−−→ V

expG

y yidV

G −−−−→
i

V.

By the Correspondence Theorem of Subalgebras and Subgroups of [8] 7.22(v),
which in the present case is easily verified directly, the morphism L(i) implements
an isomorphism of L(G) onto a closed vector subspace of V . This implies that the
corestriction exp′G:L(G) → expG L(G) is an isomorphism of topological groups,
and thus expG L(G) is a closed vector subspace of V via i. By [8], Corollary 4.22,
or by [9], Corollary 6.8(i), expL(G) is dense in G = G0. Since expG L(G) is closed,
we have G = expG L(G), and expG:L(G) → G is an isomorphism. ut

Lemma 3.3. (Vector Group Splitting Lemma for Connected Abelian Pro-Lie
Groups) Let G be a connected abelian pro-Lie group. Then there is a closed sub-
group V of G such that expG |L(V ):L(V ) → V is an isomorphism of topological
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groups and that

(X, g) 7→ (expG X) + g : L(V )× comp(G) → V ⊕ comp(G) = G

is an isomorphism of topological groups.
In particular, every connected abelian pro-Lie group is isomorphic to RJ × C

for some set J and some compact connected abelian group C. (Compare [12].)

Proof. By Theorem 2.3(i), comp(G) is a closed subgroup. Let q:G → H
def=

G/ comp(G) be the quotient morphism. By the Strict Exactness Theorem for L
of [8] 4.20, or by [9], Theorem 6.7, we have a commutative diagram of strict exact
sequences

0 → comp(L)(G) incl−−−−→ L(G)
L(q)−−−−→ L(H) → 0

expG | comp(L)(G)

y yexpG

yexpH

0 → comp(G) −−−−→
incl

G −−−−→
q

H → 0.

By Lemma 2.7, the morphism L(q) splits, that is, there is a morphism of weakly
complete vector spaces σ:L(H) → L(G) such that L(q) ◦ σ = idL(H). By 2.3(iv)
we have comp(H) = {1}. Now we use the fact that comp(G) is compact by
Proposition 2.6 to conclude that H is complete and thus is a pro-Lie group, see [8],
Theorem 4.28(iii), or [16], p. 206, Theorem 11.18 and p. 242, Lemma 13.13. Since
G is connected, H is connected. Then Lemma 3.2 implies that expH :L(H) → H
is an isomorphism. We define s:H → G by s = expG ◦σ ◦ exp−1

H . Then q ◦ s =
q ◦ expG ◦σ ◦ exp−1

H = expH ◦L(q)◦σ ◦ exp−1
H = expH ◦ exp−1

H = idH . Thus q splits.
Now let µ:V × comp(G) → G be defined by µ(v, g) = v + g and ν:G → V ×G by
ν(g) =

(
g − s

(
q(g)

)
, s

(
q(g)

))
. Then µ and ν are inverses of each other, and this

completes the proof of the Lemma. ut

Thus connected abelian pro-Lie groups are already reduced to weakly complete
vector groups (Example 1.1(iii)) and compact connected groups.

Definition 3.4. Let G be an abelian pro-Lie group. Let V be any closed subgroup
of G such that
(i) V is isomorphic to the additive topological group of a weakly complete vector

space,
(ii) (v, c) 7→ v + c : V × comp(G0) → G0 is an isomorphism of topological groups.

Then V is called a vector group complement. ut

A vector group complement is not unique, but all vector group complements
are isomorphic to G0/ comp(G0).

Remark 3.5. Let V be any vector space complement of an abelian pro-Lie group
and let us write G0 = V ×C with C = comp(G0). For any morphism of topological
groups f :V → C, the subgroup graph(f) = {

(
v, f(v)

)
: v ∈ V } is also a vector
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group complement. All vector group complements are obtained in this way. If f is
given, then α:G0 → G0, α(v, c) =

(
v, c+f(v)

)
is an automorphism of G0 mapping

V × {0} to graph(f).

Proof. The function α:G0 → G0, α(v, c) =
(
v, c + f(v)

)
is an automorphism of

topological groups mapping V × {0} onto graph(f).
If W ⊆ G0 = V × C is a vector group complement, then since W is a vector

group complement there is a projection prW :G0 → W with kernel {0} × C. Let
prC :G0 → C denote the projection with kernel V × {0}. Define f :V → C by
prC

(
prW (v, 0) − (v, 0)

)
. Then f is a morphism of topological groups; if w =

(v, c) ∈ W then w = prW (v, 0) and w − (v, 0) = (0, c) whence c = f(v). ut

We now work towards removing the hypothesis of connectivity from the Vector
Group Splitting Lemma 3.3.

A topological group G for which N (G) is a filter basis converging to the identity
is called a proto-Lie group. The group G̃ = limN∈N (G) G/N is a completion of G
and is a pro-Lie group (see [8] 3.26, or verify directly that g 7→ (gN)N∈N (G) : G →
G̃ is a dense embedding into a complete group).

Lemma 3.6. Let W be a weakly complete vector space and G a proto-Lie group.
Assume that f :W → G is a bijective morphism of abelian groups. Then f is an
isomorphism of topological groups.

Proof. Let G̃ denote the completion of G. Then G̃ is a connected abelian pro-Lie
group; by the Vector Space Splitting Lemma 3.3, it is therefore of the form V ⊕C
algebraically and topologically for a weakly complete vector subgroup V and a
compact subgroup C. Let prV : G̃ → V denote the projection onto V along C.
The function ϕ

def= prV ◦f :W → V is a dense morphism of weakly complete vector
groups and is therefore a quotient morphism of weakly complete vector spaces by
the Duality Theorem of Weakly Complete Vector Spaces (see [6], p. 325, Theorem
7.30, since epics are dual to monics, and the monics in the category of vector
spaces are injective and their duals are the quotient morphisms). Thus there are
closed vector subspaces V1 and V2 of W such that W = V1 ⊕ V2 algebraically
and topologically such that V2 = kerϕ and ϕ ◦ i:V1 → V , where i:V1 → W is the
inclusion, is an isomorphism of weakly complete vector spaces. Now the morphism
σ:V → G̃, σ = f ◦ i ◦ (ϕ ◦ i)−1 satisfies prV ◦σ(v) = prV ◦f ◦ i ◦ (ϕ ◦ i)−1 =
ϕ ◦ i ◦ (ϕ ◦ i)−1 = idV . This means that G̃ = σ(V )⊕C, σ(V ) = f(V1). In order to
simplify notation, after replacing V by σ(V ), if necessary, we may actually assume
that V = f(V1). Then D

def= f(V2) ⊆ C, and we have G = V × D for a dense
subgroup D of C. We recall that G is a proto-Lie group; then D ∼= G/V is a
connected proto-Lie group and a dense subgroup of a compact group.

Let N ∈ N (D); then D/N is a Lie group and a dense subgroup of C/N . A
Lie group is complete, and thus D/N is closed in C/N , that is, D/N = C/N

for all N ∈ N (D). Therefore D = C and thus G = G̃. Hence G is complete and
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f :W → V ×C is bijective. We can write W = W1×W2 such that f = f1×f2 where
f1 is an isomorphism from W1 onto V and f2:W2 → C is a bijective morphism
of topological abelian groups from a weakly complete vector group W2 onto a
compact group C. In particular, every point in C is on a one-parameter subgroup,
that is exp:L(C) → C is surjective.

But C, as a bijective image of a real vector space, is torsionfree and divisible.
Thus Ĉ is divisible and torsion free and so is a rational vector space, that is, a direct
sum of copies of Q, and therefore C is a power of copies of Q̂. If C = Q̂J for some
set J , then L(C) may be identified with L(Q̂)J as L preserves limits, and expC may
be identified with (expQ̂)J . But expQ̂: R ∼= L(Q̂) → Q̂ is not surjective, because
the nontrivial compact homomorphic images of R are isomorphic to R/Z ∼= T and

T 6∼= Q̂ since T̂ ∼= Z 6∼= Q ∼= ̂̂Q. Thus J = ∅ and C = {0}. This means that G = V
and f ∼= W → V is an isomorphism of topological groups. ut

Lemma 3.7. Assume that G is an abelian topological group with closed subgroups
G1 and H such that G1 is either
(a) a weakly complete vector subgroup, or
(b) a compact subgroup.
Assume further that G1 +H = G, that G1∩H = {0}, and that G/H is a proto-Lie
group. Then µ:G1 × H → G, µ(v, h) = v + h is an isomorphism of topological
groups.

Proof. Clearly µ is a bijective morphism of topological groups. We must show
that its inverse is continuous. The morphism β:G1 → G/H, β(v) = v + H is a
continuous bijection. In Case (a), by Lemma 3.6 β is open. In Case (b) it is a
homeomorphism since G1 is compact. That is, β−1:G/G0 → G0 is continuous in
both cases. Let q:G → G/G0 be the quotient map. Then α

def= β ◦ q:G → G0

is a morphism of topological groups, and µ−1(g) =
(
α(g), g − α(g)

)
is likewise a

morphism of topological groups. ut

If G is a pro-Lie group and H a closed normal subgroup, then G/H is a proto-
Lie group (see [8] Theorem 4.1, or [9], Proposition 6.1), but G/H may fail to be
complete (see [10]).

Proposition 3.8. Assume that G is an abelian proto-Lie group and that G1 is a
closed connected subgroup which is a finite dimensional Lie group. Then there is
a closed subgroup H such that the morphism

(v, h) 7→ v + h : G1 ×H → G

is an isomorphism of topological groups.

Proof. We claim that it is no loss of generality to assume that G is a pro-Lie group.
Indeed, let G̃ be the completion of G. Since the subgroup G1 is a finite dimensional
Lie group, it is locally compact. Locally compact subgroups are complete. (see for
instance [6], p. 777, Corollary A4.24.). Thus G1 is also a closed subgroup of the
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pro-Lie group G̃. If we can show that there is a closed subgroup H̃ of G̃ such that
(v, h̃) 7→ v + h̃ : G1× H̃ → G̃ is an isomorphism of topological groups, then setting
H

def= G∩ H̃ we get a subgroup of G such that (v, h) 7→ g + h : G1 ×H → G is an
isomorphism of topological groups. This proves our claim; from here on we shall
assume that G is a pro-Lie group.

The subgroup G1, being a finite dimensional Lie group, has no small subgroups.
Hence there is a zero neighborhood U such that {0} is the only subgroup contained
in G1 ∩U . Now let N ∈ N (G) be contained in U . Then N ∩G1 ⊆ U ∩G1 = {0}.
Recall that G/N is a Lie group and (G1+N)/N is isomorphic to G1/(G1∩N) ∼= G1

by the Closed Subgroup Theorem for Projective Limits (see proof of Theorem
2.3(iii)). So (G1 + N)/N is isomorphic to Rp ⊕ Tq for suitable integers and is a
closed subgroup of G/N which is isomorphic to Rm ⊕ Tn ⊕D for integers m and
n and a discrete subgroup D. It is therefore a direct summand algebraically and
topologically, that is, there is a closed subgroup H of G containing N such that
H/N is a complementary summand for (G1 + N)/N . Thus G1 + H = G and
G1 ∩H ⊆ G1 ∩N = {0}. Then if C

def= comp(G1) = {0}, it follows from Lemma
3.7(a), that (v, h) 7→ v +h : G1×H → G is an isomorphism of topological groups.
Therefore, in the general case, G/C ∼= G1/C × (H + C)/C and thus there is a
vector subgroup V of G such that G ∼= V × (C + H); it remains to be observed
that C + H ∼= C ×H. But that is Lemma 3.7(b). ut

Next we need a lemma on weakly complete vector spaces.

Lemma 3.9. Let W be a weakly complete vector space and F a filterbasis of closed
affine subspaces, that is, subsets of the form gj + Vj for a closed vector subspace
Vj. Then

⋂
F 6= ∅.

Proof. The set {Vj : j ∈ J} is a filter basis. Indeed let i, j ∈ J , then there is a
k ∈ J such that gk + Vk ⊆ (gi + Vi)∩ (gj + Vj), since F is a filter basis. Therefore
gi + Vi = gk + Vi and gj + Vj = gk + Vj . Now gk + Vk ⊆ (gk + Vi)∩ (gk + Vj), and
hence Vk ⊆ Vi ∩ Vj . Let V =

⋂
j∈J Vj . Then W/V is a weakly complete vector

space and F/V = {(gj +V )+Vj/V : j ∈ J} is a filter basis of closed affine subsets.
It clearly suffices to show that F/V has a nonempty intersection. Thus we assume
from here on that V = {0}, that is the filter basis V def= {Vj : j ∈ J} has the
intersection {0}. But then limV = 0 in W by [8], Lemma 6.69. This implies that
F is a Cauchy filter: Let U be an identity neighborhood; then there is a j ∈ J
such that Vj ⊆ U . Then (gj + Vj) − (gj + Vj) = Vj ⊆ U . Since W is a complete
topological vector space, every Cauchy filter basis converges. Let g = limF . Since
all gj + Vj are closed, we have g ∈ gj + Vj for all j ∈ J and this completes the
proof of the Lemma. ut

In terms of a terminology that has been used for situations like this we can say
that

weakly complete topological vector spaces are linearly compact.
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(See for instance H. Leptin, Linear kompakte Moduln und Ringe I und II, Math.
Z. 62 (1953), 79–90, respectively, Math. Z. 66 (1955), 241–267.)

Theorem 3.10. Assume that G is a topological abelian group with a closed a
weakly complete vector subgroup G1. Then G ∼= G1 ×G/G1.

Proof. Let S be the set of all closed subgroups S of G satisfying the following
conditions:
(i) S ∩G1 is a vector group.
(ii) (∀g ∈ G) S ∩ (g + G1) 6= ∅.

We claim that (S,⊇) is an inductive poset. For a proof of the claim let T be
a chain in S and set T

def=
⋂
T . We have to show that T satisfies (i) and (ii).

(i) We note T ∩ G1 =
⋂

S∈T S ∩ G1, and all S ∩ G1 are closed vector groups;
hence their intersection is a closed vector group.

(ii) Let g ∈ G; we must show that T ∩ (g + G1) 6= ∅.
Now for each S ∈ T we find an sS ∈ S ∩ (g +G1) by (ii). Then g +G1 = sG +G1.
We claim that

(∗) S ∩ (g + G1) = sS + (S ∩G1).

Indeed if s ∈ S∩ (g+G1), then s ∈ g+G1 = sS +G1 and thus s−sS ∈ S∩G1 and
thus s ∈ sS + (S ∩G1). Conversely, if s ∈ S ∩G1, then sS + s ∈ S ∩ (sS + G1) =
S ∩ (g + G1).

By (i) we know that S ∩G1 is a (closed) vector subgroup VS of G1. Thus from
(∗) we obtain

(∗∗) ∅ 6= (S − g) ∩G1 = sS − g + VS ,

where sG−g ∈ G1. Now the family {sS −g +VS : S ∈ T } is a filter basis of closed
affine subspaces of the vector group G1. By Lemma 3.9, there is a

t ∈
⋂

S∈T
(sS − g + VS) ∈ G1,

and thus t + g ∈
⋂

S∈T (sS + VS) =
⋂

S∈T S ∩ (g + G1) = T ∩ (g + G1).
This completes the proof that (S,⊇) is inductive. Using Zorn’s Lemma, let

H be a minimal member of S. We claim that H ∩ G1 = {0}. Suppose that the
claim were false. Then H1

def= H ∩G1 is a nonzero weakly complete vector group.
Let N be a vector subgroup of H1, such that H1/N is a finite dimensional vector
group (for instance, one isomorphic to R). Now G/N as a quotient of a pro-Lie
group, is a proto-Lie group by [8], Theorem 4.1, or by [9], Proposition 6.1. Then
by Proposition 3.8, there is a closed subgroup S of H containing N such that
(H1/N) + (S/N) = H/N , and (H1/N) ∩ (S/N) = {N}. Thus H1 ∩ S = N is
a vector subgroup and G1 + S = G1 + H = G and so the subgroup S of H/N
satisfies (i) and (ii) above. The minimality of H then entails S = H and thus
N = H1 ∩ S = H1 and that is a contradiction to the choice of N . This proves
our claim that there is a closed subgroup H of G such that G = G1 + H and
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G1 ∩H = {0}. Thus the function

(v, h) 7→ v + h : G1 ×H → G

is an isomorphism of topological groups by Lemma 3.7. ut

Another way of expressing the preceding theorem in a category theoretical
fashion is this:
Weakly complete vector groups are injectives in the category of abelian pro-Lie
groups.

Recall from the Vector Group Splitting Lemma 3.3 and Definition 3.4 that
every abelian pro-Lie group has a vector group complement. A topological abelian
group in which the filter basis of open subgroups converges to the identity is called
protodiscrete.

Theorem 3.11. (Vector Group Splitting Theorem for Abelian Pro-Lie Groups)
Let G be an abelian pro-Lie group and V a vector group complement. Then there
is a closed subgroup H such that
(i) (v, h) 7→ v + h : V ×H → G is an isomorphism of topological groups,
(ii) H0 is compact and equals compG0 and comp(H) = comp(G); in particular,

comp(G) ⊆ H.
(iii) H/H0

∼= G/G0, and this group is prodiscrete.
(iv) G/ comp(G) ∼= V×S for some protodiscrete abelian group without nontrivial

compact subgroups.
(v) G has a characteristic closed subgroup G1 = G0 comp(G) which is iso-

morphic to V × comp(H) such that G/G1 is prodiscrete without nontrivial
compact subgroups.

(vi) The exponential function expG of G = V ⊕H decomposes as

expG = expV ⊕ expH where expV :L(V ) → V is an isomorphism

of weakly complete vector groups and expH = expcomp(G0):L
(
comp(G0)

)
→

comp(G0) is the exponential function of the unique largest compact con-
nected subgroup; here L

(
comp(G0)

)
= comp(L)(G) is the set of relatively

compact one-parameter groups of G.
(vii) The arc component Ga of G is V ⊕ Ha = V ⊕ comp(G0)a = im L(G).

Moreover, if h is a closed vector subspace of L(G) such that exp h = Ga,
then h = L(G).

Proof. (i) By Theorem 3.10, H exists such that (i) is satisfied.
(ii) Let us write G = V ×H. Then G0 = V ×H0. Since V ×{0} is a vector group

complement, G = (V ×{0})⊕ comp(G0) algebraically and topologically. Then the
projection of G0 onto H0 along V maps the compact subgroup comp(G0) onto
H0. Thus H0 is compact. So {0} ×H0 ⊆ comp(G0), and since G0 = V ×H0, the
factor group comp(G0)/({0} ×H0) is isomorphic to a subgroup of V . Since V as
a vector group has no nontrivial compact subgroup, comp(G) = {0}×H0 follows.

If G = V ×H then comp(G) = comp(V )× comp(H) = {0} × comp(H).
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(iii) Retaining the convention G = V × H after (i), we have G0 = V × H0.
Then

G/G0 =
V ×H

V ×H0

∼=
(
(V ×H)/(V × {0})

)/(
(V ×H0)/(V × {0})

) ∼= H/H0.

By the Closed Subgroup Theorem for pro-Lie groups CL, H is a pro-Lie group.
Since H0 is compact, H/H0 is complete by [8], Theorem 4.28(iii), or by [16], p.
206, Theorem 11.18 and p. 242, Lemma 13.13. Thus by Lemma [8] 3.31, or by [9],
4.6, H/H0 is a prodiscrete group.

(iv) Again we write G = V × H and have comp(G) = {0} × comp(H).
Thus G/ comp(G) = V×H

{0}×comp(H)
∼= V × H/ comp(H). By Theorem 2.3(iv),

H/ comp(H) is compactfree.
By (iii) above, H/H0 is prodiscrete. As a quotient of the prodiscrete group

H/H0, the quotient H/ comp(H) ∼= (H/H0)/(comp(H)/H0) is a protodiscrete
group by [8], Proposition 3.30(b), or by [9], 6.1.

(v) comp(G) is a closed characteristic subgroup and by (iv) the factor group
G/ comp(G) decomposes into a direct product V × S in which V × {0} is the
connected component and thus is characteristic. The kernel G1 of the composition
of the quotient morphism G → G/ comp(G) and the projection G/ comp(G) → S
is a closed characteristic subgroup equal to G0 comp(G) and G/G1

∼= S. Applying
(i) to G1 we get G1

∼= V × comp(G).
(vi) follows immediately from (i) and Definition 5.4(i) in view of the fact that

for any topological vector space V the exponential function expV :L(V ) → V ,
expG X = X(1), is an isomorphism of topological vector spaces as all one param-
eter subgroups are of the form X = r 7→ r·v for a unique vector v = vX . See also
Lemma 5.15.

(vii) Since G = V ⊕H is a direct product decomposition we have Ga = Va⊕Ha.
But V , as the additive topological group of a topological vector space is arcwise
connected, and Ha = (H0)a = comp(G0)a. By [6], p. 389, Theorem 8.30(ii),
we have comp(G0)a = L

(
comp(G0)

)
= L(H). Thus from (vi) we get Ga =

expG L(G).
Now let h be a closed subalgebra of L(G). If h 6= L(G), then expG h 6= E(G) =

Ga by Corollary 4.21(i). ut

For locally compact abelian groups 3.11(i) yields a core result of their structure
theory; it is presented practically in every source book on locally compact abelian
groups (see for instance [6], p. 348, Theorem 7.57). The present proof is new even
for locally compact abelian groups.

The examples in 1.1(iv),(v), (vi), and (vii) illustrate certain limitations of this
main result. The examples in 1.1(iv) and (vii) show how prodiscrete elementwise
compact groups may look; neither has a compact open subgroup and therefore
both fail to be locally compact. The examples in (iv) are torsion free and divisible,
then examples in (vii) have a dense proper torsion subgroup and are divisible. The
examples in 1.1(v) and (vi) are compactfree; those in (v) are divisible, those in
(vi) have no nondegenerate divisible subgroups. Thus unlike in the locally compact
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case, we cannot expect that inside the factor H, the subgroup comp(H) is open
nor that the factor group G/G0 has an open compact subgroup.

It is easy to mix these examples. There are compact abelian groups in which
the component does not split (see [6], p. 373, Example 8.11).

Theorem 3.11 completely elucidates the structure of the identity component
G0, it largely clarifies the structure of G1 (although comp(G) is best understood
in the locally compact case), and it reduces the more subtle problems on G to
the compactfree prodiscrete factor group G/G1. One should recall the Example
in Proposition 1.2 which typically might occur as a prodiscrete factor group.

Corollary 3.12. Let G be an abelian pro-Lie group and V a vector group com-
plement. Then the following statements are equivalent:
(i) G/G0 is locally compact.
(ii) G/V is locally compact.
(iii) comp(G/V ) is locally compact and open in G/V .
(iv) There is a locally compact subgroup H of G containing comp(G) as an open

subgroup such that such that (v, h) 7→ v + h : V ×H → G is an isomorphism
of topological groups.

Proof. (i)⇐⇒(ii): We have G/G0
∼= (G/V )/(G0/V ) and G0/V is compact by

Lemma 3.3. The quotient of a locally compact group is locally compact, and the
extension of a locally compact group by a locally compact group is locally compact.

(iv)=⇒(iii): Since comp(G) = comp(H) this is clear.
(iii)=⇒(ii): Trivial.
(ii)=⇒(iv): The locally compact abelian group G/V has a compact identity

component (G/V )0 = comp(G/V )0 and thus has a compact open subgroup C.
Let K be the full inverse image of C in G. Then K is an almost connected open
subgroup of G to which the Vector Group Splitting Theorem applies. Thus K is
the direct product of V and the unique maximal compact subgroup comp(K) of
K. Then

(
G/ comp(K)

)
0

= K/ comp(K) ∼= V , this is an open divisible subgroup
of G/ comp(K). But then G/ comp(K) is the direct sum of

(
K/ comp(K)

)
0

and a
discrete group H/ comp(K) with a closed subgroup H of G containing comp(K)
as an open subgroup. In particular, comp(K) ⊆ comp(H) and comp(H) is open
in H. From (

G/ comp(K)
) ∼= (

K/ comp(K)
)
×

(
H/ comp(K)

)
and

K ∼= V × comp(K) we derive
G ∼= V ×H.

As we have comp(G) = comp(H), the implication (ii)=⇒(iv) is proved. ut

The structure theory results we discussed permit us to derive results on the
duality of abelian pro-Lie groups. For any topological abelian group G we let
Ĝ = Hom(G, T) denote its dual with the compact open topology. (See e.g. [6],

Chapter 7.) There is a natural morphism of abelian groups ηG:G → ̂̂
G given
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by ηG(g)(χ) = χ(g) which may or may not be continuous; information regarding
this issue is to be found for instance in [6], pp. 298ff., notably in Theorem 7.7

on p. 300. We shall call a topological abelian group reflexive if ηG:G → ̂̂
G is

an isomorphism of topological groups; G is also said to have duality (see [6], p.
305). In [1] Banaszczyk exhibited an example of a prodiscrete abelian group G
which is not reflexive even though ηG is bijective. Let q: R → T = R/Z denote the
quotient morphism. By [6], p. 297, Proposition 7.5(iii), for every topological vector
space E the morphism Hom(E, q):E′ def= HomR(E, R) → Hom(E, T ) = Ê, where
HomR(E, R) denotes the vector space of all continuous linear functionals endowed
with the compact open topology, is an isomorphism of topological groups. If E is
a topological vector space with its finite locally convex topology, then the compact
open topology on E′ ∼= Ê is the weak ∗-topology and Ê is a weakly complete vector
group: see [6], p.324, Lemma 7.28. If V is a weakly complete vector group, then
the compact open topology on V ′ ∼= V̂ agrees with the finest locally convex vector
space topology on the vector space V ′: See [6], pp. 325–327, Theorem 7.30(ii).
Both E and V are reflexive: See [6], pp. 325, 326, Theorem 7.30(i, ii).

Let A and B be topological abelian groups. Then Â×B is naturally isomorphic
to Â × B̂, and if A and B are reflexive, then A × B is reflexive. (Cf. [6], p. 306,
Proposition 7.10.)

Corollary 3.13. Assume that G is an abelian pro-Lie group. Let V be a vector
group complement and H a closed subgroup according to Theorem 3.11 such that
(v, h) 7→ v + h : V × H → G is an isomorphism of topological groups. Then
Ĝ ∼= V̂ × Ĥ, where V̂ is a real vector space with its finest locally convex topology,
and G has duality iff G/V ∼= H has duality. This is the case if G/V is locally
compact (Corollary 3.12).
In particular, a connected abelian pro-Lie group G has duality, and its character
group is a direct product of a real vector group with its finest locally convex topology
and a torsion free discrete group.

Proof. In view of the preceding reminders and the duality theory of compact
connected abelian groups (see [6], Chapter 8, notably p. 369, Corollary 8.5) we
conclude the corollary immediately from the main Theorem 3.11. ut

Accordingly, the connected abelian pro-Lie groups are exactly the character groups
of direct sums of real vector groups and torsion free abelian groups, where we
endow the vector group component with its finest locally convex vector space
topology and the torsion free component with its discrete topology.

Corollary 3.13 reduces the issue of reflexivity of abelian pro-Lie groups to groups
whose connected component is compact. Much remains to be done in this regard.
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4. Special topological-algebraic properties

The Vector Group Splitting Theorem tells us that each abelian pro-Lie group G
is built up in a lucid fashion from a weakly complete vector group and a more
special abelian pro-Lie group H which in turn is an extension of the characteristic
closed subgroup comp(G) = comp(H) by a prodiscrete compactfree factor group
H/ comp(H) ∼= G/

(
G0 comp(G)

)
. The Examples 1.1(iv) and (vii) (and the groups

easily manufactured from these by passing to products, subgroups and quotients
indicate that we are not to expect very explicit information on comp(G) without
further hypotheses, and a similar statement holds for pro-discrete compactfree
groups (see 1.1(v), (vi)).

A topological space is called a Polish space if it is completely metrizable and
second countable. Recall that it is said to be σ-compact, if it is a countable union
of compact subspaces. It is said to be separable if it has a dense countable subset.

Countable products of Polish spaces are Polish. For instance, any product∏
n∈N Ln of a countable sequence of second countable Lie groups is a Polish pro-

Lie group; this applies in particular to RN or ZN.
A mixture of topological and algebraic properties of topological groups is ex-

emplified by the concepts introduced in 2.4, to which we return presently.

Remark 4.1. (i) Every almost connected locally compact group is compactly
generated.

(ii) Every compactly generated topological group is σ-compact.
(iii) A topological group whose underlying space is a Baire space and which is

σ-compact is a locally compact topological group.
(iv) A σ-compact Polish group is locally compact.
(v) A compactly generated Baire group is locally compact.

Proof. (i) Let K be a compact neighborhood of the identity. Then 〈K〉 is an
open subgroup which has finite index in G. Let F be any finite set which meets
each coset modulo 〈K〉. Then K ∪ F is a compact generating set of G.

(ii) If K is a compact generating set of G, then C
def= KK−1 is a compact

generating set satisfying C−1 = C; then G = 〈C〉 =
⋃∞

n=1 Cn.
(iii) A Baire space cannot be the union of a countable set of nowhere dense

closed subsets. A topological group containing a compact set with nonempty
interior is locally compact.

(iv) By the Baire Category Theorem (see [2], Chapter 9, §5, no 3, Théorème
1), every Polish space is a Baire space.

(v) is clear from the preceding. ut

The following remarks are straightforward from the definitions, from Proposi-
tion 2.6, and Theorem 3.11.
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Remark 4.2. Let G ∼= V × H be an abelian pro-Lie group for a vector group
complement V , and let H be as in Theorem 3.11. Then following statements are
equivalent:
(i) G is Polish iff both V and H are Polish.
(ii) G is σ-compact iff V , comp(G) and H/ comp(H) are σ-compact.
(iii) G is compactly generated iff V and H/ comp(H) are compactly generated and

comp(G) is compact.
(iv) G is separable iff V and H are separable. ut

These simple remarks lend some urgency to a more detailed understanding of
the situation of weakly complete vector spaces; we shall turn to this topic in the
next section.

Remark 4.3. For a discrete abelian group, the following statements are equiva-
lent:
(i) G is finitely generated free.
(ii) G is isomorphic to a closed additive subgroup of Rn for some natural number

n.
(iii) G is isomorphic to a closed additive subgroup of RJ for some set J .
(iv) G is isomorphic to a closed additive subgroup of a weakly complete vector

space.

Proof. For the equivalence of (i) and (ii) see for instance [6], p. 625 Theorem
A1.12(i). Trivially (ii) =⇒(iii) =⇒(iv).

Assume (iv), that is, that G is a closed discrete subgroup of a weakly complete
vector group W . Since G is discrete, there is an identity neighborhood U1 of W
such that W ∩U1 = {0}. Let U be an open identity neighborhood of W such that
U + U + U + U ⊆ U1. Since limN (W ) = 0 there is a V ∈ N (W ) such that V ⊆ U
and thus U + V ⊆ U + U . By replacing U by U + V where necessary we assume
that U + V = U and U + U ⊆ U1. If u ∈ (G − U) ∩ U then u = g − u′ for some
0 6= g ∈ G and u′ ∈ U ; thus g = u + u′ ∈ G ∩ U + U ⊆ G ∩ U1 = {0}. Thus V is
the complement of (G \ {0}) − U in G + V . Thus G ∼= (G + V )/V is a discrete
hence closed subgroup of the finite dimensional vector space W/V . ut

This result provides an alternative proof of the fact that the prodiscrete free
abelian group F of infinite rank in 4.2 cannot be discrete.

The weak topology of a locally convex vector space is that which is induced
by the weak-* topology induced by its injection into its double dual. By the
duality of vector spaces and weakly complete vector spaces, the weak topology
and the weak-* topology agree. In [14] the second author showed that a locally
convex topological vector space is complete in its weak topology if an only if every
discrete subgroup is finitely generated.

Proposition 4.4. Let G be an abelian compactfree pro-Lie group.
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(i) If N (G) has basis M of subgroups such that G/M is compactly generated, then
there are sets I, J , and K such that G is isomorphic to a closed subgroup of
a product RI × ZJ and hence also of a weakly complete vector space RK .

(ii) If G is compactly generated, then (i) applies.
(iii) The group G is compactly generated and Polish iff it is isomorphic to Rm×Zn

iff it is locally compact.

Proof. (i) We assume that for N ∈M we have G/N = VN ⊕ FN ⊕ torG/N were
VN is a finite dimensional vector group, FN is finitely generated free and torG/N
is the finite torsion group of G/N . It follows that G may be identified with a
closed subgroup of P =

∏
N∈M G/N = V × F × C where V ∼=

∏
N∈M VN is a

weakly complete vector group, F ∼=
∏

N∈M FN and C ∼=
∏

N∈M torG/N . Then
comp(P ) = {0} × {0} × C and G ∩ comp(P ) = {0} since G is compactfree. The
projection P → V × F is a proper, hence closed morphism, with kernel comp(P ),
mapping G onto a closed subgroup of F which is isomorphic to G/

(
G∩comp(P )

) ∼=
G. Since V is a product of copies of R and F is a product of copies of Z, assertion
(i) is proved.

(ii) If G is compactly generated N ∈ N (G) then N is a closed subgroup such
that G/N is compactly generated, hence is of the form specified in the proof of
(i).

(iii) If G is Polish and compactly generated, then it is locally compact by
4.1(i),(iv) and thus, being compactfree, is isomorphic to Rm × Zn. ut

Corollary 4.5. Any compactly generated, compactfree prodiscrete group is iso-
morphic to a closed subgroup of a group ZJ . If it is not of finite rank, then is not
isomorphic to a subgroup of ZN. ut

This situation is illustrated by the Example in Proposition 1.2.
In the proof of Proposition 2.6 it was only needed that the Lie group quotients

of the abelian Lie group G in question were compactly generated. This together
with Proposition 4.4 yields at once:

Corollary 4.6. If G is an abelian pro-Lie group whose Lie group quotients are
compactly generated, then comp(G) is compact and G/ comp(G) is embeddable
in a weakly complete vector group. This applies, in particular, to all compactly
generated abelian pro-Lie groups. ut

5. Weakly complete vector spaces

We begin with an observation showing that the idea of compactly topologically
generated pro-Lie groups may not be very restrictive.

Remark 5.1. A weakly complete vector group is compactly topologically gener-
ated. A group of the form ZJ for any set J is compactly topologically generated.
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Proof. For the purposes of the proof we may and will assume that W = RJ

for some set J . For any subset I of J we identify RI naturally with a subgroup
of RJ . The dual E

def= Ŵ may and will be identified with R(J), the set of all
f : J → R with finite support, in such a fashion that f ∈ E and g ∈ W gives us
〈f, g〉 =

∑
j∈J f(j)g(j).

Let K = {δj ∈ RJ : j ∈ J} ∪ {0}. Let V be a cofinite dimensional vector
subspace of W . Then V ⊥ is a finite dimensional vector subspaces of the dual
E

def= Ŵ . Let Fin(J) denote the set of finite subsets of J . Since E =
⋃

I∈Fin(J) R(I)

and since V ⊥ is finite dimensional, there is an I ∈ Fin(J) such that V ⊥ ⊆ R(I)

and thus V ⊆
(
R(I)

)⊥ = RJ\I . Hence K \ V = {δi : i ∈ I} is finite. Therefore K

is compact. On the other hand, W = R(J) = 〈[0, 1]·K〉 and [0, 1]·K is a compact
subset of R(J). Hence W is compactly topologically generated.

Since δj ∈ ZJ ⊆ RJ , the assertion on ZJ follows analogously, as ZJ = Z(J) =
〈K〉. ut

Lemma 5.2. For a weakly complete topological vector space W , the following
statements are equivalent:
(A) W is σ-compact.
(B) W is locally compact.
(C) W is finite dimensional.
(D) W is compactly generated.

Proof. The equivalence of (B) and (C) is common knowledge. Locally compact
connected groups are compactly generated by 4.1(i) and so (B) implies (D); and
(D) implies (A) by 4.1(ii).

In order to prove that (A) implies (B), let W be a weakly complete σ-compact
vector space. Its dual is a vector space E and W is finite dimensional iff E is finite
dimensional. Suppose that E is infinite dimensional. Selecting from a basis an
infinite countable subset we get a subspace F with a countable basis. Then W/F⊥

is isomorphic to the dual of F ∼= R(N) and therefore W/F⊥ is a homomorphic image
of W which is isomorphic to RN and therefore is a Polish topological vector space.
Since it is also σ-compact as a homomorphic image of a σ-compact group, it is
locally compact by 5.2. But then it is finite dimensional, a contradiction. ut

Let W be a weakly complete vector space. The dual E of W is a real vector
space; let J be a basis of E. Every linear functional of E is given by a function
J → R and thus, by the Duality Theorem [8] 6.7, W ∼= RJ . The cardinal card J
is called the topological dimension of W . (See [7].)

Lemma 5.3. For a weakly complete topological vector space W , the following
statements are equivalent:
(i) W ∼= RJ with card J ≤ ℵ0.
(ii) W is locally compact or is isomorphic to RN.
(iii) W is finite dimensional or is isomorphic to RN.
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(iv) W is second countable.
(v) W is first countable.
(vi) W is Polish.

Proof. By the remarks preceding the lemma, for each cardinal ℵ, there is, up
to isomorphism of topological vector spaces and of topological groups one and
only one weakly complete vector space, namely, Rℵ. Conditions (i), (ii), (iii) are
ostensibly all equivalent to saying that ℵ is countable. The weight w(W ), that
is the smallest cardinal representing the cardinality of a basis for the topology of
W ∼= Rℵ is ℵ0 if ℵ is countable, and is ℵ if ℵ is infinite (see e.g. [6], pp. 763,
764, Exercise EA4.3), so (iv) is likewise equivalent to (ii), and implies (v). If
the weakly complete vector space W is first countable, then the filter basis I(W )
of cofinite dimensional closed vector subspaces has a countable basis, and thus
W ∼= limV ∈I(W ) W/V is a closed vector subspace of

∏
V ∈I(W ) W/V ∼= RN and

thus (vi) implies (iv). If (iv) is satisfied then the complete topological vector space
W is metrizable (see e.g. [6], p. 772, Theorem A4.16) and thus (vi) follows; trivially
(vi) implies (iv). ut

Lemma 5.4. For a weakly complete topological vector space W , the following
statements are equivalent:
(a) W is separable.
(b) W contains a dense vector subspace of countable linear dimensions over R.
(c) W is isomorphic as a topological vector space to RJ with card J ≤ 2ℵ0 .

They are implied by the equivalent statements of Lemma 5.3.

Proof. A second countable space is always separable: It suffices to pick a point
in every set of a countable basis for the topology: this yields a countable dense
set. What remains therefore is to see the equivalence of (a), (b), and (c). We may
safely assume that W is infinite dimensional, since the finite dimensional case is
clear.

(a)=⇒(b): Let C be a countable dense subset of RJ . Then the real linear span
of C is dense vector subspace of RJ whose linear dimension is countable.

(b)=⇒(c): Assume that ι: R(N) → RJ is a linear map between vector spaces
such that and im(ι) = RJ . We give R(N) the finest locally convex topology. The
vector space dual of R(N) may be identified with RN, and that of RJ with R(J). The
morphism ι is both an epic (and a monic) in the category of (Hausdorff) topological
vector spaces. Its adjoint morphism ι′: R(J) → RN is a monic (and epic) and is
therefore an injection (with dense image). Thus card(J) ≤ dimR RN = 2ℵ0 .

(c)=⇒(a): Let W = RJ with card(J) = 2ℵ0 . We shall show that W is separable;
since RI with card(I) ≤ card(J) is a homomorphic image of RJ , this will imply the
implication. The topological vector space dual of RJ may be identified with R(J)

and then there is a linear bijection β: R(J) → RN. If we give R(J) the finest locally
convex topology and RN the product topology, then β is an epic (and a monic) in
the category of topological vector spaces and thus its adjoint β′: R(N) → RJ has a
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dense image (and is injective). Even in the finest locally convex topology, Q(N) is
dense in R(N), and Q(N) is countable. Hence RJ is separable as asserted. ut

For the following theorem we recall the definition of the characteristic closed
subgroup G1 = G0 comp(G) ∼= V × comp(G) of an abelian pro-Lie group in The-
orem 3.11(v) for a vector group complement V (see Definition 3.4(ii)).

Theorem 5.5. (The Compact Generation Theorem for Abelian Pro-Lie Groups)
(i) For a compactly generated abelian pro-Lie group G the characteristic closed
subgroup comp(G) is compact and the characteristic closed subgroup G1 is locally
compact.

(ii) In particular, every vector group complement V is isomorphic to a euclidean
group Rm.

(iii) The factor group G/G1 is a compactly generated prodiscrete group without
compact subgroups. If G/G1 is Polish, then G is locally compact and

G ∼= Rm × comp(G)× Zn.

Proof. By Theorem 3.11, G ∼= V × H such that H0 is compact. The factors V
and H are compactly generated as homomorphic images of G. By Lemma 5.2,
V ∼= Rn for some nonnegative integer n. By Proposition 2.6, comp(H) is compact
and by 3.11, comp(G) = comp(H) and H0 ⊆ comp(H). Thus G1

∼= V × comp(G)
is locally compact. Also, H/ comp(H) is totally disconnected, and by Theorem
4.28(iii), or by [16], p. 206, Theorem 11.18 and p. 242, Lemma 13.13, this quotient
is a pro-Lie group and hence is pro-discrete by [8], Proposition 4.23 or by [9],
Proposition 4.5. If the factor group G/G1 is Polish, then it is finitely generated
free by 4.4(iii), and the remainder follows. ut

It is not known whether an abelian prodiscrete compactfree group is finitely
generated free.
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