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THE TOPOLOGY OF COMPACT GROUPS

SIDNEY A. MORRIS⇤

Abstract. This paper is a slightly expanded version of a plenary ad-
dresss at the 2002 Summer Topology Conference in Auckland, New
Zealand. The aim in this paper is not to survey the vast literature
on compact groups, or even the topological group structure of compact
groups which is described in considerable detail in the 1998 book “The
Structure of Compact Groups: A Primer for the Student – A Handbook
for the Expert” by Karl Heinrich Hofmann and this author. Rather,
the much more modest purpose in this article is to focus on point-set
topology and, in a gentle fashion, describe the topological structure of
compact groups, most of which can be extracted or derived from that
large book.

1. Fundamental Facts

Portions of the material presented here can be found in various papers
and books. The book ([3],[4]) by Karl Heinrich Hofmann and the author is
a comfortable reference. However, this is not meant to imply that all the
results in [3] were first proved by Hofmann and/or Morris, although often
the presentation and approach in the book are new.

Definition 1.1. Let G be a group with a topology ⌧ . Then G is said to
be a topological group if the maps G ! G given by g 7! g�1 and G⇥G ! G
given by (g1, g2) 7! g1.g2 are continuous.

Example 1.2. Let G be any group with the discrete topology. Then G is
a topological group. In particular, if G is any finite group with the discrete
topology then G is a compact topological group.

Terminology. The term compact group will be used as a shorthand for com-
pact Hausdor↵ topological group.
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Notation. If G is any topological group, then |G| will be used to denote the
underlying topological space of G.

Definition 1.3. A topological space X is said to be homogeneous if for
each ordered pair (x, y) of points from X, there exists a homeomorphism �
of X into itself such that �(x) = y.

Proposition 1.4. If G is any topological group, then the topological space
|G| is homogeneous.

Proof. Let (x, y) be any ordered pair of points from G. Then the mapping
g 7! yx�1g, for each g 2 G, is a homeomorphism of G onto itself which
maps x onto y. ⇤

Example 1.5. The compact unit interval [0, 1] is not the underlying space
for any topological group as it is not homogeneous. Indeed, for any positive
integer n, the closed unit ball in Rn is not the underlying space for any
topological group.

Definition 1.6. Let T denote the multiplicative group of complex numbers
of modulus 1, that is the unit circle in the complex plane, with the topology
it inherits from the plane. Then it is readily verified that T is a compact
group. (Of course T is S1.) The topological group T is called the circle
group.

The circle group is certainly the most important abelian compact group.

It is reasonable to ask if the unit sphere in each Rn is the underlying space
of a compact group.

Firstly we observe that the multiplicative group H of quaternions with
the usual euclidean topology is a topological group. And the subgroup
{q : q 2 H, |q| = 1} with the subspace topology is a compact group and
its underlying topological space is the sphere S3 and is called the 3-sphere
group. Theorem 6.95 of [3] contains the statement that
T and the 3-sphere group are the only topological groups whose underlying
spaces are spheres.
The proof is far less elementary than one might expect. It depends in partic-
ular on cohomology theory and the structure theory of compact connected
Lie groups.

In conclusion on this point we mention that the 3-sphere group is also
known as SU(2), but more on that later.
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At this stage we are still in the business of finding examples of compact
groups. Some general constructions are helpful. But before this, some ob-
servations on the separation properties of topological groups are desirable.

Notation. let us denote the identity element in a topological group by 1.

Proposition 1.7.
(i) Let G be a topological group. Then the conditions (a), (b), (c) and (d)

below are equivalent:
(a) G is a T0-space;
(b) {1} is a closed subset of G;
(c) G is a T1-space;
(d) G is a Hausdor↵ or T2-space.

(ii) Every topological group is a regular space. So every T0 topological group
is a T3-space.

(iii) Every topological group is a completely regular space. So every T0 topo-
logical group is a T31/2

-space.
(iv) There exist Hausdor↵ topological groups which are not normal spaces.

Since our business is compact groups, not general topological groups, we
shall not prove these standard results here. A.A. Markov [6] introduced
free topological groups to prove (iv) in the above Proposition.

Now we turn to operations which allow us to find more compact groups.

Example 1.8.
(i) Let G be a topological group and H a subgroup of G with the subspace

topology. Then H is a topological group. Further, if G is a compact
group and H is a closed subgroup, then H is a compact group; that is,
every closed subgroup of a compact group is a compact group.

(ii) Let N be a normal subgroup of a topological group G. Then the
quotient group G/N with the quotient topology is a topological group.
The topological group G/N is a Hausdor↵ topological group if and
only if N is a closed subgroup. Further, if G is a compact group and
N is a closed normal subgroup, then G/N is a compact group, that is,
every Hausdor↵ quotient group of a compact group is a compact group.

(iii) If {Gi, i 2 I}, is a family of topological groups for some index set I,
then the product group

Q
i2I Gi with the Tychono↵ product topology

is a topological group. Further if each Gi is a compact group, thenQ
i2I Gi is a compact group, that is, every product of compact groups

is a compact group.
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We are now able to produce a large family of infinite compact groups.

Example 1.9. If {Gi, i 2 I}, is any family of finite discrete topological
groups, for any index set I, then G =

Q
i2I Gi is a compact group. In fact,

G is a totally disconnected compact group.

The underlying space of a countably infinite product of non-trivial finite
topological groups is homeomorphic to the Cantor space, and more generally
an infinite product of non-trivial finite topological groups is homeomorphic
to a Cantor cube, that is an infinite product of 2-point discrete spaces.

The surprising result in this area is:

Theorem 1.10. The underlying topological space of every infinite totally
disconnected compact group is a Cantor cube.

This result is again not entirely trivial, though it can be obtained by ele-
mentary means as well as by an application of the Countable Layer Theorem
in the structure theory of compact groups. (See [5].)
The important thing to note about the above theorem is that it ends the
study of the topology of totally disconnected compact groups.

The topology of a totally disconnected compact group G is completely
determined by the cardinality of G. Further, the only possible cardinali-
ties of infinite totally disconnected compact groups are 2m, for some infinite
cardinal number m, and all such cardinalities do in fact occur.
This does not end the study of the topological group structure of totally
disconnected compact groups - as evidenced by recent books on profinite
groups. (See [10], [9])

2. Connectivity in Compact Groups

We shall see that Theorem 1.10 does more than describe the topology of
a special class of compact groups.

Definition 2.1. If G is any topological group, then the smallest connected
set containing 1 is said to be the identity component of G and is denoted by
G0.

It is readily verified that
for any topological group G, the identity component G0 is a closed normal
subgroup of G. Further, if G is a compact group, then G0 is a compact group
too.

The following proposition is almost obvious.



THE TOPOLOGY OF COMPACT GROUPS 549

Proposition 2.2. Let G be a topological group. Then the quotient group
G/G0 is a totally disconnected topological group. Further, if G is a compact
group, then G/G0 is a totally disconnected compact group.

Now we state a powerful result which significantly reduces the task of
describing the topology of a general compact group.

Theorem 2.3. ([3], 10.40) Let G be any compact group and H a closed
subgroup which contains G0. Then G contains a compact totally disconnected
subspace D such that (g, d) 7! gd : H ⇥ D ! G is a homeomorphism. In
particular, if G is any compact group then it is homeomorphic to the product
group G0 ⇥G/G0.

Theorem 1.10 and Theorem 2.3 together reduce the study of the topology
of compact groups to the study of the topology of connected compact groups.

So let us look at a rich source of examples of connected compact groups.

Example 2.4. The multiplicative group of all nonsingular n⇥n matrices
with complex number entries is called the general linear group over C and
is denoted by GL(n, C); the subgroup of matrices of determinant 1 is called
the special linear group over C and is denoted by SL(n, C). The unitary
group U(n) consists of those matrices A in GL(n, C) with A = (ajk) and
A�1 = (bjk), where bjk is the complex conjugate of akj , 1  j, k  n. The
orthogonal group O(n) is those matrices A in GL(n, C) with A = (ajk), where
A�1 = (cjk) for cjk = akj , 1  j, k  n. The special unitary group SU(n) =
SL(n, C)\U(n). The special orthogonal group SO(n) = SL(n, C)\ O(n).

The group GL(n, C) and its subgroups can be regarded as subsets of Cn2
and

so have induced topologies. It is easily verified that with these topologies
they are topological groups. Further U(n), SU(n), and SO(n) are metrizable
arcwise connected compact groups, for each n. The groups O(n) are compact
groups. The group O(3) has two components.
The matrix groups we have just described are much more than a rich source
of examples. To explain this we need some definitions.

Definition 2.5. Let G and H be topological groups. Then G and H
are said to be topologically isomorphic denoted by G ⇠= H if there is a map
f : G ! H which is both a homeomorphism and a group isomorphism. Such
a map is called a topological isomorphism.

We can readily verify that T ⇠= U(1) ⇠= SO(2).
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Definition 2.6. Let G be a topological group. Then G is said to have no
small subgroups or to be an NSS-group if there exists a neighbourhood of
the identity which contains no non-trivial subgroup of G.

For each positive integer n, the compact groups U(n), SU(n), O(n), SO(n),
each finite discrete group and T are NSS-groups.

Note that if B is a Banach space, then the underlying abelian group with
its topology is a topological group - and it is an NSS-group.

We now state a version of the Peter-Weyl Theorem.

Theorem 2.7. [Peter-Weyl] ([3], 2.29) Let G be any compact group.
Then G is topologically isomorphic to a (closed) subgroup of a product of
unitary groups.

In Corollary 6 of [1] it is proved that a metrizable subgroup of an infinite
product of topological groups is topologically isomorphic to a subgroup of a
countable subproduct of those groups. From this one obtains Corollary 2.8.

Corollary 2.8. Let G be any metrizable compact group. Then G is topo-
logically isomorphic to a (closed) subgroup of a countable product of unitary
groups.

Definition 2.9. For any cardinal number m, the product Tm is said to be
a torus group.

Of course every torus group is a compact group.

Definition 2.10. Let X be a topological space, B the set of all bases B
for the topology of X, and cardB the cardinality of the set B. Then the
weight of the space X is the minimum of the set {cardB : B 2 B}.

An extension of the above argument yields Corollary 2.11.

Corollary 2.11. Let G be any abelian compact group. Then G is topo-
logically isomorphic to a (closed) subgroup of a torus group Tm, where
m = w(G), the weight of the compact group G.

Definition 2.12. A compact group G is said to be a Lie group if it is
topologically isomorphic to a (closed) subgroup of U(n), for some positive
integer n.

Theorem 2.13. [Hilbert 5 for Compact Groups] A compact group G is a
Lie group if and only if it satisfies one (and hence both) of the equivalent
conditions:
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(i) G is an NSS-group;
(ii) The topological space |G| is locally euclidean (that is, a neighbourhood

of 1 in G is homeomorphic to a neighbourhood of 0 in Rn, for some
positive integer n).

Proof. By Corollary 2.40 of [3], G is a Lie group if and only if it has no
small subgroups. A compact Lie group is locally euclidean because it is a
linear Lie group (see [3], p. 134, Theorem 5.31, Proposition 5.33.) A locally
euclidean compact group is a compact Lie group by Theorem 9.57 of [3]. ⇤

Topologists will of course appreciate the topological characterization of
compact Lie groups contained in (ii) above.

The work of Montgomery, Zippin and Gleason (see [7]) in the 1950s char-
acterized noncompact Lie groups by conditions (i) and (ii) above.

Earlier we reduced the study of the topology of compact groups to the
study of the topology of connected compact groups. Next we reduce the
study to that of the topology of abelian connected compact groups and
what we will call semisimple groups.

Definition 2.14. Let g, h be elements of a group G. Then g�1h�1gh 2 G
is said to be a commutator and the smallest subgroup of G containing all
commutators is called the commutator subgroup and denoted by G0.

Theorem 2.15. ([3], Theorem 9.2 & Proposition 9.4) If G is any con-
nected compact group, then G0 is connected and (i) every element of G0 is a
commutator, (ii) G0 is a compact group, and (iii) G00 = G0.

The result (i) is remarkable. The results (ii) and (iii) are not valid without
connectivity. (See [3] Exercise E6.6 & the example following Proposition
9.4].

Definition 2.16. A connected compact group G is said to be semisimple
if G0 = G.

Corollary 2.17. If G is any connected compact group, then G0 is semisim-
ple.

The Borel-Scheerer-Hofmann Theorem ([3], 9.39) says that a connected com-
pact group G is the semidirect product of its commutator subgroup by a
connected abelian compact subgroup of G. This implies, our next Theorem,
the Topological Decomposition Theorem ([3], Corollary 10.39).

Theorem 2.18. Let G be any connected compact group. Then G is home-
omorphic to the product G0 ⇥G/G0.
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Corollary 2.19. If G is any compact group then G is homeomorphic to
G/G0 ⇥ (G0)0 ⇥G0/(G0)0, where G/G0 is homeomorphic to a Cantor cube.

In Theorem 1.10 above, we have already completely described the topol-
ogy of the totally disconnected compact group G/G0. Observing that for
any connected compact group G, the quotient group G/G0 is abelian and
connected, we will next look more carefully at the topological structure of
abelian connected compact groups. Later we will examine the structure of
semisimple groups.

3. Compact abelian groups

As is well-known, there is a wonderful duality theory for abelian compact
groups, indeed for locally compact abelian groups, known as Pontryagin-
van Kampen duality. We will quickly outline the duality for abelian compact
groups and indicate its relevance to us.

Definition 3.1. If A is any abelian group, then the group Hom(A, T) ✓ TA

of all group homomorphisms of A into the circle group T (no continuity
involved!) given the induced topology from the Tychono↵ product TA is
called the dual group or character group of the abelian group A and is
written bA. Its elements are called characters.

As the dual group is clearly a closed subset of TA, we obtain:

Proposition 3.2. The dual group of any abelian group is an abelian com-
pact group.

Definition 3.3. If G is any abelian compact group, then the abelian group
(without topology) Hom(G, T) of all continuous homomorphisms of G into
T is called the dual group or character group of the abelian compact group
G and is written bG.

So if G is an abelian compact group, then its dual group, bG, is an abelian
group and the dual group of that dual group, bbG, is again an abelian compact
group.

Further there is a natural evaluation map from G into its second dual,
namely ⌘ : G ! bbG, where for each g 2 G, ⌘(g) = ⌘g : bG ! T and for each
� 2 bG, ⌘g(�) = �(g) 2 T.

Theorem 3.4. ([3], Theorems 2.32, 7.63) If G is any abelian compact

group then the evaluation map ⌘ : G ! bbG is a topological group isomorphism.
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The Pontryagin-van Kampen Duality Theorem above implies that no in-
formation about G is lost in going to the dual group. But the dual group is
just an abelian group without topology. From this we deduce the fact that
every piece of information about G can be expressed in terms of algebraic
information about its dual group. Let us give a a few examples:

Proposition 3.5. ([3], Theorem 7.76, Theorem A4.16, Corollary 8.5) Let
G be an abelian compact group.

(i) the weight w(G) equals the cardinality of its dual group;
(ii) G is metrizable if and only if its dual group is countable;
(iii) G is connected if and only if its dual group is torsion-free (that is it

has no nontrivial finite subgroups);
(iv) G is torsion-free if and only if its dual group is divisible;
(v) G is totally disconnected if and only its dual group is a torsion group

(that is each element has finite order).

Note: (i) a compact group is 0-dimensional (that is has a basis of clopen
subsets) if and only if it is totally disconnected; (ii) the weight of a compact
group equals its local weight.
It is not yet obvious that duality adds to knowledge of the structure of
abelian compact groups. But we can also use duality to prove that an abelian
compact group is connected if and only if it is divisible. (See [3], Corollary
8.5.) So any compact topology on the additive group of real numbers or the
multiplicative group of complex numbers of modulus 1 which makes it into
a topological group must be connected.

Duality also gives us some interesting abelian compact groups such as
bQ, where Q is the additive group of rational numbers. And bQ is clearly a
torsion-free abelian connected compact group. Indeed an abelian connected
compact group is torsion-free if and only if it is topologically isomorphic to
bQ

m
, for some cardinal number m. And using duality, we can prove:

Proposition 3.6. ([3], Proposition 8.21) If G is an abelian connected
compact group of weight w(G) and m = w(G) + @0, then there exists a
continuous homomorphism of bQ

m
onto G.

Recall that a topological space is said to be dyadic if it is a continuous
image of the Cantor cube 2m, for some cardinal number m. Note that every
compact metric space is dyadic, and so in particular bQ is dyadic. This
Proposition together with Theorem 1.10, yields:
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Theorem 3.7. If G is an abelian compact group, then |G| is a dyadic
space.

Another result which can be proved using duality is the following:

Theorem 3.8. ([3], Proposition 8,21 and Theorem 7.76) Let G be an
abelian connected compact group. If w(G) > @0, then G has [0, 1]w(G) as a
subspace.

In due course we will see that the “abelian” restriction in Theorems 3.7 and
3.8 are unnecessary.
Using Theorems 3.8, 1.10 & 2.3 and Corollary 2.11 we obtain:

Corollary 3.9. If G is an infinite abelian compact group, then
(i) G has the Cantor cube 2w(G) as a subspace;
(ii) the cardinality of G is 2w(G).

We digress to mention that there are duality theories for nonabelian com-
pact groups too, such as Krein-Tannaka duality. But to the best of our
knowledge such dualities have not advanced knowledge of the structure of
compact groups at all.
On the other hand it is well-known that Lie algebras are a powerful tool
in understanding Lie groups, and [3] successfully uses an extension of this
approach to expose the structure of general compact groups.

Some time ago we saw that every metrizable abelian connected compact
group is topologically isomorphic to a subgroup of a torus group. One might
ask is such a group in fact topologically isomorphic to a torus group?

We immediately see that it is not, since we now know that bQ is a metriz-
able abelian connected compact group which is torsion-free, while a torus
group is not torsion-free. However, we have the following:

Proposition 3.10. If G is a metrizable abelian arcwise connected compact
group, then G is topologically isomorphic to a torus group.

What happens in the nonmetrizable case? The so-called Torus Propo-
sition says that every arcwise connected abelian compact group is a torus
group. In 1974 Shelah proved the following surprising result.

Theorem 3.11. ([3], Theorem 8.48)
(i) Assume that the axioms of ZFC, Zermelo–Fraenkel Set Theory with

the Axiom of Choice, and the Diamond Principle ⇧ are valid. Then
every compact arcwise connected abelian group is a torus group.
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(ii) Assume the axioms of ZFC, Martin’s Axiom, and @1 < 2@0. Then given
any uncountable cardinal @ there exists a compact arcwise connected
abelian group G of weight w(G) = @ which is not a torus group.

(iii) If ZFC is consistent, then ZFC+Torus Proposition and ZFC+¬Torus
Proposition are consistent; that is, the Torus Proposition is undecidable
in ZFC.

Let us digress again – this time to Banach spaces and a moment’s criti-
cism of the way introductory topology courses are sometimes taught. It is
standard to begin teaching topology with examples of what are in fact met-
ric spaces and indeed often Banach spaces. Many examples of interesting
topological spaces are given. But sometimes exactly the same example is
given over and over again. If what we are teaching is topology and produc-
ing examples of topological spaces, the following beautiful result should be
remembered.

Proposition 3.12. If B is any infinite-dimensional separable Banach
space, then B is homeomorphic to R@0.

So all infinite-dimensional separable Banach spaces are homeomorphic.
My preferred approach to introducing topology is available on the web –

see [8].
The situation for abelian connected compact groups is about as far as one

can get from the Banach space result just mentioned.

Theorem 3.13. ([3]8.58) If G is an abelian connected compact group,
let [|G|, T] be the group of all homotopy classes of maps f : |G|! T. Then
G is topologically isomorphic to bA where A = [|G|, T].

This has the following remarkable corollary.

Corollary 3.14. ([3], Proposition 8.61) If abelian connected compact groups
G1 and G2 are homeomorphic, then they are topologically isomorphic.

Finally on abelian compact groups, we note the following:

Proposition 3.15. ([3], Theorem 8.62) Let G be an abelian compact group,
then ⇡n(G) = 1, for n = 2, 3, . . . .

4. Semisimple compact groups

We have no time to discuss in detail the Lie algebra/exponential approach
to exposing the structure of general compact groups. However, we simply
touch upon it if only to have available the necessary notation.
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Definition 4.1. A one parameter subgroup of a topological group G is a
continuous homomorphism X : R ! G, that is an element X of Hom(R, G).
The topological space Hom(R, G) which is obtained by endowing Hom(R, G)
with the topology of uniform convergence on compact subsets of R will be
denoted by L(G) and called the Lie algebra of G. The exponential function
expG : L(G) ! G is defined by expG(X) = X(1), for X 2 L(G).

Theorem 4.2. ([3], Theorem 9.60) Let G be a compact group and Ga =
exp(L(G)). Then Ga is the arc component of G and it is a dense subgroup
of G0.

We state the Sandwich Theorem for Semisimple Connected Compact
Groups. This tells us that each semisimple connected compact group is
almost a product of simple simply connected Lie groups.
This is important here as
every compact group is homeomorphic to the product of a Cantor cube, a
connected abelian compact group and a semisimple connected compact group.

Theorem 4.3. ([3], Theorem 9.19 p. 450↵, notably Corollary 9.20) Let G
be a semisimple connected compact group. Then there is a family {Sj |j2J}
of simple simply connected compact Lie groups and there are surjective con-
tinuous homomorphisms q and f

Y

j2J

Sj
f�! G

q�!
Y

j2J

Sj/Z(Sj)

where each finite discrete abelian compact group Z(Sj) is the centre of Sj

and Y

j2J

Sj
qf�!

Y

j2J

Sj/Z(Sj)

is the product of the quotient morphisms Sj ! Sj/Z(Sj).

Simply connected is defined here in a manner suitable for topological
groups, not depending on arcwise connectedness.

Definition 4.4. ([3], Definition A2.6) A topological space X is called
simply connected if it is connected and has the following universal property:
For any covering map p : E ! B between topological spaces, any point
e0 2 E and any continuous function f : X ! B with p(e0) = f(x0) for
some x0 2 X there is a continuous map g : X ! E such that p � g = f and
g(x0) = e0.
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X
g����! E

idX

??y p

??y

X
f����! B

Theorem 4.5. ([3], Theorem 9.29)
(i) Every simply connected compact group is semisimple;
(ii) Every simply connected abelian compact group is singleton;
(iii) Every simply connected connected compact group is topologically iso-

morphic to a product of simply connected simple compact Lie groups.

Now (i)–(iv) of the final Theorem 4.6 follows Theorems 2.18, 3.7, 3.8 and
1.10 together with Theorem 9.49 of [3] while (v) is proved in [2].

Theorem 4.6. Let G be an infinite compact group. Then
(i) G has the Cantor cube 2w(G) as a subspace;
(ii) The cardinality of G is 2w(G);
(iii) |G| is a dyadic space;
(iv) If G is connected and w(G) > @0, then G has [0, 1]w(G) as a subspace;
(v) If G is connected and w(G) > @0, then G contains a homeomorphic

copy of every compact group K with w(K)  w(G).
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