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If G is any Hausdorff topological group and /3G is its Stone-Cech compactification,
then \G\ $C \0G\ ^ 22 , where \G\ denotes the cardinality of G. It is known that
if G is a discrete group then |/?G| = 22 and if G is the additive group of
real numbers with the Euclidean topology, then |/3G| = 2'G'. In this paper the
cardinality and weight of 0G, for a locally compact group G, is calculated in
terms of the character and Lindelof degree of G. The results make it possible
to give a reasonably complete description of locally compact groups G for which
|/3G| = 2|G| or even |/3G| = \G\.

0. INTRODUCTION

Compact groups and locally compact groups have been studied over the last century
because of their importance and richness with the solution of Hilbert's fifth problem
that a locally Euclidean group is a Lie group taking half of that period and the efforts
of some of the greatest twentieth century mathematicians. The influential book [12]
describes the Pontryagin duality and structure of locally compact Abelian groups and
their centrality in harmonic analysis. The recent book [10] exposes the structure of
compact groups. The forthcoming book [11] includes the beautiful structural results of
Iwasawa for locally compact (not necessarily Abelian) groups. There are beautiful re-
sults on the topology of compact groups: see [10] and, in particular, those of Kuz'minov
[14] which states that each compact topological group is dyadic and Shapirovsky [15]
which implies that any compact group of weight K can be continuously mapped onto
the space [0,1}K. Structure theory proofs of Kuz'minov's Theorem and Shapirovsky's
Theorem appear in [3] and [4]. In [2] it is proved using significant structure theory,
that every locally compact group is homeomorphic to a product of R n , a compact con-
nected group, a product of discrete two-point groups and a discrete group, for some
nonnegative integer n .
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Weight and cardinality are, undoubtedly, among the most important cardinal func-
tions on a topological space; we study these characteristics for locally compact topolog-
ical groups and their Stone-Cech compactifications. Strong methods are needed here
even for simple topological groups. It is worth mentioning that the Stone-Cech com-
pactifications of topological groups were intensively studied after Comfort and Ross
proved in [6] that @G is a topological group for any pseudocompact group G.

We give a complete answer as to cardinality and weight of /3G for any locally
compact topological group G. For the reader's benefit, our proofs do not rely on the
weighty structure theorems for locally compact groups, but are presented using more
elementary results.

Our general result states that, for an arbitrary locally compact group G with

X(G) = K and 1{G) = 6, we have \(3G\ = 2K* and iu(/3G) = KS . We mentioned
already that \/3G\ = 2'GI if G is the additive group of the reals; an easy consequence of
our general theorem is that this equality holds for quite a few locally compact groups
G. Since every discrete group is locally compact, an evident possibility is the equality
|/3G | = 22 ; we show that it holds for metrisable locally compact groups of weight at
least c. Another result is that we can often have the equality |/3G| = \G\ for a locally
compact non-compact group G. It is a well-known fact that \fiX\ ^ 22 for any
Tychonoff space X. We show that the equality is possible even if X is the space of a
countably compact topological group.

1. NOTATION AND TERMINOLOGY

All topological spaces and groups are assumed to be Tychonoff. Given a space X,
we denote by r(X) its topology and by fiX its Stone-Cech compactification. For any
A C X, let T(A,X) = {U € T(X) : A C U}; if x € X we write T(X,X) instead of
T({X},X). The space M is the additive group of the reals with the natural topology,
I = [0,1] C R and B> = {0,1} is the two-point discrete space. All cardinals are
considered to carry the discrete topology if they are dealt with as topological spaces.

For spaces X and Y we denote by CP(X, Y) the subspace of the Tychonoff product
Yx which consists of all continuous maps from X to Y; we write CP(X) instead of
CP(X, R). Besides, C(X) (C*(X)) is the set of all real-valued continuous (bounded)
functions on the space X. If K is an infinite cardinal then A(K) is the one-point
compactification of the discrete space of cardinality K. We always consider that A(K)
= nU{a} where a $. K is the unique non-isolated point of A(K) . The expression X ~ Y
means that the spaces X and Y are homeomorphic. If Y is a set and P C Y then
XP : Y —> {0,1} is the characteristic function of the set P denned by XP{X) ~ 1 for
all x e P and XP(X) = 0 if x € Y\P. A set P C CP(X, Y) separates the points of X
if, for any distinct x,y G X, there is / € P such that f(x) # f(y).
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The Lindelof number (or degree) l(X) of a space X is the minimal cardinal K

such that every open cover of X has a subcover of cardinality < K. Given a set

A c X, a family B C T(A, X) is a base of A in X if, for any U € T(A, X), there

is V € B such that V c U. The minimal cardinality of all bases of A in X is

denoted by x(A,X)\ if x € X, we write ^(Zi-^O instead of x({^}, -^)- The cardinal

x(-X )̂ = supjxCxjX) : x € X} is called tAe character of the space X. A space X is

called zero-dimensional if it has a base which consists of clopen ( = closed and open)

subsets of X. The rest of our notation is standard and follows [7].

2. LOCALLY COMPACT GROUPS AND FREE UNIONS OF CANTOR CUBES

It turns out that analysis of weights and cardinalities of /3G for a locally compact
group G can be reduced to the situation when G is topologically a free union of copies
of the Cantor cube O* for some infinite cardinal K . Then a purely topological reasoning
makes it possible to obtain a complete computation of these cardinal functions.

To simplify our notation, we consider each cardinal v to be a discrete topological
space of cardinality v. In particular, the expression G ~ G' x v means that G is
homeomorphic to a space G x D where D is a discrete space of cardinality v.

PROPOSITION 2 . 1 . Any locally compact groupG has an open a -compact sub-
group G'; if G is not a-compact then, for any such G', the space of G is homeomorphic
to G' x 6 where S = l(G).

PROOF: Take any symmetric open neighbourhood U of the identity e of G such
that U is compact. It is a standard fact (see for example [12, Theorems 5.7 and
5.13]) that the set G' — \Un : n € N} is a clopen a -compact subgroup of G. It is
evident that G ~ G' x v where v is the number of cosets of G' If the group G is
not a -compact then v has to be infinite (even uncountable). Choose a point XH in
each coset H of the group G'; the set D = {XH • H € G/G'} is closed and discrete
and therefore u = \D\ ^ l(G) = S. On the other hand, each coset is homeomorphic
to G' so the group G is a union of z/-many Lindelof subspaces; as a consequence,
8 = l{G)^l(G')-v = u-v = v. D

PROPOSITION 2 . 2 . Given a non-metrisable locally compact group G, there
exists an open a-compact subgroup G' of the group G and a compact subgroup K of
the same group G such that K C G', \K\ = \G'\, the group G'/K is second countable
andX(K)=X(G).

PROOF: Apply Proposition 2.1 to find an open <r-compact subgroup G' of the
group G. It is straightforward that the group G' cannot be metrisable. There exists
a normal compact subgroup K of the group G' such that the-quotient group G'/K is
second countable [12, Theorem 8.7]. Observe that the quotient map ir : G' -¥ G'/K is
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open and perfect [12, Theorems 5.17 and 5.18] which implies x(K,G') = x{G'/K) = UJ.
Thus X(e,G') < X(e,K) • x(K,G') = X(K) • u = X{K), that is, X(K) = X(G'). It is
easy to see that the character of any open subgroup of G coincides with the character
of G, so x(K) = x(G') — x(G) • The group K cannot be discrete or even metrisable
because x(K) — x(G) > <*>• Every second countable space has cardinahty ^ c so
\G'\ = \K\ • \G'/K\ < \K| • c = \K\ because \K\ ^ c for any non-discrete compact group
[15]. This proves that \K\ = \G'\. D

THEOREM 2 . 3 . Let G be a non-compact locally compact group with X(G) — K

and l(G) = S. Then wifiG) = w(0(BK x 8)) and \pG\ = |/3(D« xS)\.

PROOF: Consider first the case of a non-metrisable group G. Apply Proposition
2.2 to find an open a -compact subgroup G' of the group G and a compact subgroup
K of the group G' such that G'/K is second countable, \K\ = \G'\ and X(K) = x{G).
Fix a countable dense set 5 C G'/K; since the quotient map n : G' —> G'/K is open,
the set it~1(S) is dense in G'. It is clear that T ~ 1 ( 5 ) is a countable union of cosets of
K and therefore K x UJ maps continuously onto a dense subspace of G'.

The subgroup G' is open in G so G ^ G' x 6' for some 6' $J 5 (it is even possible
that 6' = 1); thus the space (KXUJ)X5~KX6 maps continuously onto a dense
subspace of G. This implies that f3(K x 6) maps continuously onto /3G; therefore
\PG\ ^ \P(K x S)\ and w(PG) ^ to(0(K x 6)).

We have w(K) = x(K) = K [«»» Theorem 3.12] and therefore D" maps continuously
onto the space K [14]; an immediate consequence is that D" xS maps continuously onto
K x 6 and thus /3(DK x d) maps continuously onto (3{K x 5). This gives us inequalities
\PG\ ^ \P{K x 6)\ < |/3(©K x S)\ and w(0G) < w(/3(K x 8)) ^ w(P(BK x 6)).

On the other hand, a theorem of Shapirovsky [15] says that the space K maps
continuously onto I". Therefore Kx6 maps continuously onto P x 6 and thus f3(K x S)

maps continuously onto the space /3(1K x 6) which gives us inequalities \@{K x S)\

^ 1/3(1" x S)\ ^ |/3(eK x 5)\ and w(P(K x 6)) > w(/3(I« x 6)) > w(P(BK x 6)).

If G is not a -compact then G ĉ  G' x 5 by Proposition 2.1; an immediate conse-
quence is that K xS is a closed subspace of G. If the group G is a -compact and there
are infiniteley many cosets of G' in G then again K xS = KXUJ is a closed subspace of
G. If the number of cosets of G' is finite then G' can not be compact because G is not
compact. The map n being perfect, the second countable group G'/K is not compact
and therefore there is an infinite closed discrete D C G' /K. It is evident that the space
n~1(D) is a closed subspace of G' homeomorphic to Kxw = Kx6. This shows that,
in all cases, K x 6 is a closed subspace of G so \0G\ ^ \0{K x6)\^ \P(BK x 6)\ and
wifiG) > w(0(K x 6)) > wtfiW* x 6)).

Now assume that G is metrisable and hence x(G) = u- If G is discrete then
\G\ = l(G) — 5 ^ u and hence G is homeomorphic to the space D1 x S. Since
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x{G) = 1, the result follows. If G is non-discrete, fix an open a -compact subgroup G'
of the group G. If G/G' is infinite, take any open neighbourhood U of the identity e
such that U C G' and K = U is compact. If G/G' is finite then the second countable
group G' is not compact so we have a neighbourhood U of the identity e such that
K = U is compact and the family {a-U : a e A} is discrete for some infinite A C G'
(recall that a family T of subsets of G' is called discrete if any point of G' has a
neighbourhood which intersects at most one element of T).

Observe that, if G is not a -compact then G ĉ  G' x 8 by Proposition 2.1. Since
K C G', this implies that ii" x 8 is a closed subspace of G. If the group G is a-compact
and G/G' is infinite then again K x 8 = K x u is a closed subspace of G because
G ~ G' x w. Finally, if G/G' is finite then, by our choice of U, there is an infinite
A C G' such that the family {a-U : a G A} is discrete. The family T — {a • U : a € A}
is also discrete and UT is homeomorphic to K XLJ = K x 5. Thus, in all cases, K x 8
can be considered a closed subspace of G.

Since G' is separable the space K x ui maps continuously onto a dense subspace
of G'. The subgroup G' is open in G so G ct G' x 8' for some 6' ^ 6; thus the
space (K xw)x8~Kx8 maps continuously onto a dense subspace of G. This
implies that /3(K x 8) maps continuously onto /3G; therefore \/3G\ ^ |/3(-K" x S)\ and
w(/3G) ^ w(P(K x 5)). We have tu(.K') = w and therefore D1" maps continuously
onto the space K\ an immediate consequence is that D" x 6 maps continuously onto
K x 5 and thus /3(D" x <5) maps continuously onto {5(K x 5). This gives us inequalities
|/3G| ^ \0(K xS)\^ \0{W x S)\ and w(/3G) < w(P(K x 6)) ^ iu(/3(Dw x 6)).

The metrisable compact space K = U cannot have isolated points because the
group G is non-discrete. Applying an easier version of the theorem of Shapirovsky [15]
we conclude that the space K maps continuously onto Iw. Therefore K x 6 maps con-
tinuously onto I" x 8 and thus fi(K x S) maps continuously onto the space ^(I" x 6)

which gives us inequalities \0(K x S)\ ^ 1/3(1" x 5)\ ^ \0(W x S)\ and w(0(K x 5))

^ w(/?(Ew x 6)) > w(/3(W x 5)). We already saw that K x 8 is a closed sub-
space of the group G so we have |/3G| ^ \fi(K x 8)\ ^ 1/3(0" x £)| and w(PG)

x 6)) > w(P{W x8)). D

Recall that, given a space X, a set A C G*(X) is uniformly dense in G*(X)

if, for any / € G*(X) and any e > 0, there is g G A such that | / (x) - g(x)\ < e

for all x e X . We shall also need the usual sup-metric on C*{X) defined by d(f,g)

— supj | / ( x ) - p ( x ) | : x 6 X \ for any f,g e C*(X). It is easy to see that A is uniformly

dense in C*(X) if and only if A is a dense set of the metric space (C*(X),d).

DEFINITION 2.4: Given a space X, let ud (X) = min {\A\ : A C C*{X) and A is

uniformly dense in C*(X)}.
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The following two simple facts are well-known as a folklore but we give their proofs
here for the sake of completeness.

PROPOSITION 2 . 5 . If X is any compact space X, then w(X) = ud (X).

PROOF: If A is uniformly dense in C*{X) — C(X) then it is also dense in CP(X);
therefore w(X) = d(Cp(X)) ^ \A\ ([1, Theorem 1.1.5]) and hence w(X) < ud(X).
On the other hand, there exists a dense A C CP(X) with \A\ = w(X). If R(A)
is the rational algebra generated by A then \A\ = \R(A)\ and R{A) is uniformly
dense in C(X) by the Stone-Weierstrass theorem [7, Theorem 3.2.21]. This shows that
ud (X) < w(X) so the equality ud (X) = w(X) is established. D

PROPOSITION 2 . 6 . For any Tychonoff space X, we have ud (X) = w(pX).

PROOF: Each / G C*{X) has a continuous extension u(f) : @X -> R. Denote by
n the restriction map from C((5X) to C*(X). It is clear that n(u(f)) = f for any
/ G C*(X). Apply Proposition 2.5 to find a set A C C(/3X) which is uniformly dense in
C(@X) and \A\ = w{PX). Given any / G C*(X) and e > 0, there is g G A such that
\u(f)(x) - g{x)\ < e for all x e 0X. This implies \v(g){x) - f(x)\ = \g(x) - f{x)\ < e
for all x G X. This shows that TT(A) is uniformly dense in C*(X) and therefore
ud(X)^\A\=w{{3X).

Now take any set A C C*(X) which is uniformly dense in C*{X) and |̂ 4|
= ud(X). The set B = u{A) = {u{f) : f E A} is uniformly dense in C(@X). Indeed,
take any / G C(fiX) and e > 0. There exists g £A such that \g(x) - TT(/)(X)| < e/2
for all x € X. Since n(f)(x) = f(x) for any x £ X, we have \g(x) - f(x)\ < e/2
for all x € A". If g' = u(g) then the function h = \g' — f\ is continuous on /9X and
/i(X) C [0, e/2). Since X is dense in 0X we have h(@X) C [0, (e/2)] C [0, e) which
shows that \g'(y) — f(y)\ < £ for all y € fiX. Thus the set B is uniformly dense in
C(0X) and therefore w(fiX) ^ \B\ = ud(X). D

THEOREM 2 . 7 . For any infinite cardinal K and 5, we have w (/3(DK x 6)) = KS .

PROOF: By Proposition 2.6, it suffices to prove that ud (©* x S) — KS . Since

W(BK) = ud (DK) = K (Proposition 2.5), we can find a set F = {fy : 7 < «} C C(D>~)
such that F is uniformly dense in C(D"). The set Ps{F) of all possible functions
from S to F has cardinality KS . Given any <p € Ps(F), let g,p(x,P) = <p{0){x) for
any (x,y9) G D" x <J. Then pv : D" x 5 -> R for each <p e P,s(F) and the set
G = {gv : <p S -P^-F)} is uniformly dense in C*(DK x 6).

Indeed, take any / G C*(IDK x <S) and any e > 0; for each /3 < (5, the function
/ I (D>* x {/?}) is continuous o n D " x {/3} which is a copy of D*. Therefore there is
gp&F such that \gp(x) - /(x,/3)| < e for all x G B*. Now, if </?(/3) = 5^ then gv & G
and |<7v(x,/3) — /(x,/3)| < e for all x G ID" and P < 6; this proves that G is uniformly
dense in <7*(flJ>" x <5). Consequently, we have ud (ID" x S) ^ |G| ^ KS .
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To show that ud (D* x S) ^ KS observe that V>K x 5 is normal so ud (DK x 5)
^ nd(Y) for any closed Y C O* x 6. The one-point compactification A(K) of the
discrete space K, embeds in D" so let us take Y — A(K) X 6. We shall prove that
ud(Y) > KS; take any function ip : 6 -> n and consider the set Pv — {(<p(/3),/3) :
f3 < 6} C J4(K) x 5. It is evident that P^, is a clopen subset of Y so hv = XPV is
a continuous function on Y. Since (p i-» ft^, is a bijection, the set G = {h^, : y> is a
function from J to /t} has cardinality KS and d(g,g') — 1 for any distinct g,g' G G.

Finally, assume that A C C(Y) is uniformly dense in C*(Y) and \A\ < K6 .
For each g £ G fix a function p9 € 4̂ such that d(pg,g) < 1/3. Since |G| = KS

and |>1| < K*5, there exist distinct g,g' € G such that p9 = pgi. Then 1 = d(g,g')
^ d{g,pg) + d(pg,g') < 1/3 + 1/3 = 2/3 < 1 which is a contradiction. Thus it is
impossible that \A\ < K5 SO ud (DK x 6) > ud (Y) ^ KS and our proof is complete. D

The following easy fact is also a folklore of Cp -theory.

FACT 2.8. If X is a zero-dimensional space then CP(X, D) is dense in H>x.

P R O O F : Given disjoint finite sets K, L C X, let O(K, L) = {/ e D x : f{K) C {0}
and f(L) C {1}}; it is evident that the family B = {O(K,L) : K,L are disjoint finite
subsets of X} is a base of the space Bx. For an arbitrary U = O(K, L) 6 B we can
find a disjoint family {Wx : x € K U L} of clopen subsets of X such that x € H x̂

for each x £ K U L. If W = U{WX : x e L} then W is a clopen subset of X so
Xiv € CP(X, D) n G-(1T, L) which proves that CP{X, D) is dense in D x . D

FACT 2.9. If if is a zero-dimensional compact space and A C CP(K, ID>) separates the
points of X then the ring R(A) generated by the set A coincides with CP(K, D).

P R O O F : It is evident that R(A) also separates the points of K. Besides, given
anY /> 9 € -R(^) i t n e functions 1 — / , max{/, g} = f + g + f-g, and min{/, g} = f • g
also belong to R(A). This makes it possible to apply [1, Lemma IV.3.2] to conclude
that R(A) = CP(K,B). U

LEMMA 2 . 1 0 . For any infinite cardinals K and 6, the space ( A ( K ) ) W X 5 maps

continuously onto a dense subspace of DK .

PROOF: Given any /3 < 6, let np : (A(K)) -¥ A(K) be the natural projection onto

the /3-th factor. For any £ < K, let f^= X{$} D e t n e characteristic function of the set

{£} in the space A(K). Let u denote the function which is identically zero on A(K)S .

Then Ap = {/$ o np : £ < K} U {U} is a subspace of Cp ( (A(K)) , Dj homeomorphic to

A(K) . Indeed, take any family U C r(CP((A(K))S, O)) with Ap CUU. There is U 6 U

such that u € U\ the set £/ being open in CP((A(K)) , DJ there is a finite P C (A(n))

such that {/ € CP((A{K))S,D) : / ( P ) = {0}} C £/. The set Q = •Kp{P) C A(K) is
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finite; if £ € K\Q then /€(Q) = {0} and therefore {fi onp)(P) = {0}. This shows that
the set Ap\U C {/̂  o np : £ e Q} is finite. It turns out that any neighbourhood of the
point u contains all but finitely many points of the space Ap. Since \Ap \ = K, we have
Ap ^ A(K) for each /3 < 5.

Our next step is to verify that the set A = U{Ap : ft < 6} separates the points
of the space (A(K)) . If i ,y € (A(K)) are distinct points then x' = ftp(x) and
y' — Tp(y) are distinct for some /3 < <5. Therefore one of the points x',y', say x', is
distinct from a, that is, x' — £ for some £ < n and hence /^ separates x' and y'.
Consequently, the function /c o np separates the points x and y.

Fix a homeomorphism hp : A(K) -»• Ap for each /3 < 8. Given any point z
= (x,/3) e A(K)XS let h(z) = hp(x) € -A. It is immediate that the map h : A(K)XS —t A
is continuous and onto. Let P(A) = {/i • . . . / „ : n € N, /j € yl for all z ^ n} and
5(A) = {pi + . . . + gm : m € N, gt G P(A) for all i ^ m}. It is clear that S{A) is a

ring in Cp( (>!(«;)) ,Dj which contains A; it is immediate that any ring that contains
A has to contain S(A) so S(A) = R(A).

Next we show that R(A) = S(A) can be represented as a countable union of

continuous images of finite powers of A. Indeed, given TO € N and n\,... ,nm £ N,

the space P ( n i , . . . , nm) = Ani x ... x An™ is a finite power of A. For each i £ N ,

define a map p* : A* -» C P M > 1 ( K ) ) , D j as follows: p i ( / ) = / for all / € A = yl1 and

P » ( / i , • • • , fn) = A • • • • • / „ for each (/i, . . . , / „ ) e A" for all n > 1.

Next we define a map y> = y'n1,...,nm : P ( n i , . . . , n m ) -* Cpnyl(K)) ,DJ as fol-

lows: for each / = ( / \ . . . , f m ) 6 P ( m , . . . , nm), where /* = ( /*, . . . , /*.) e A* for

each natural number i ^ TO, let <p(f) = pni (f1) + ... + pnm(fm) € CP((A(K))S,O) .

The map y?ni,... ,„„, is continuous for any (ni , . . . , n m ) . If we denote by Q{n\,... , nm)

the image of the set P{n\,... , nm) under the map tpnii... ,nm then we obtain the equal-

ity R(A) = u{Q(ni, . . . , nm) : m 6 N and n i , . . . , nro € N}.

Thus we have shown that there is a sequence {An< : i 6 N} of finite powers of 4̂
and a sequence {gi : i G N} of continuous maps such that gi : yln> —> R(A) for all i € N
and R(A) = u{9i(An{) : i e N } .

Recall that the space A(K) X S maps continuously onto A; note that we have

(A(K) x 6)m ~ (A(K.))m x 5 and therefore (^4(«;))m x 6 maps continuously onto Am for

each TO € N. Since (A(K))W can be mapped onto each (A(K,))m for each natural number

TO, the space (A(K))U X 5 maps continuously onto (A(K))"1 X 5 and hence it also maps

continuously onto Am. Besides, it follows from [A(K))U X S ~ ( ( A ( K ) ) W X 5) XW that

( ^ ( K ) ) " x S maps continuously onto R — @{Ani : i € N} and /? maps continuously

onto i?(^4). Finally, observe that R(A) coincides with CP((A(K)) ,DJ by Fact 2.9; as
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a consequence, (A(K))U X 6 maps continuously onto CP((A(K)) , D) which is dense in

D(^(K)) by Fact 2.8. Since ©(A(*)) is homeomorphic to DK , the proof of our lemma
is complete. D

THEOREM 2 . 1 1 . For any infinite cardinals K and 6, we have |/3(OK x <5)| = 2K*.

P R O O F : Since \X\ ^ 2t"(x> for an arbitrary regular space X [9, Theorem 3.1], for

X = DK x 5, we have |/3(DK x 6)\ ^ 2WW ^ 2K' by Theorem 2.7 so we must prove

only that |/3(DK x <5)| ^ 2 K * .

Since w((A(K))Uj = K, the compact space X = (A(K))U embeds in EDK and

therefore K x 6 is a, closed subspace of DK x S. Since the space DK x 6 is normal, the

closure of the set K x 5 in the space /3(OK x 5) is homeomorphic to (3(K x S); thus

|/3(OK x 5)\ ^ |/3(-RT x S)\. The space ifx<5 maps continuously onto a dense subspace of

DK by Lemma 2.10. Therefore the space /3(K x 6) maps continuously onto DK and,

in particular, \P(K x S)\ > \BKS\ = 2K*. As a consequence, ^ ( D " x S)\ ^ |/9(A" x 5)\

>2«S. D

COROLLARY 2 . 1 2 . Let K and <5 be infinite cardinals. If G is a locally com-

pact non-compact group with x(G) = K and l(G) = S then |/3G| = 2K and w(/3G)
= KS.

PROOF: Apply Theorems 2.3, 2.7 and 2.11. D

COROLLARY 2 . 1 3 . Let n and S be infinite cardinals such that KS = n. If

G is a locally compact group with x(G) = K and l(G) = S then |/3G| = |G| and
w{PG) = w{G).

PROOF: Since the case of a compact G is trivial, we can assume that G is not

compact. Obviously, the cardinal n is uncountable so Proposition 2.2 is applicable to

find an open a -compact subgroup G' of the group G such that there is a compact

subgroup K c G' with x(K) = K and hence \K\ = 2K [5, Theorem 3.9]. Thus \G\

^ \K\ = 2K and \G\ ^ \@G\ = 2K* = 2R. This shows that |G| = \0G\ = 2K. Besides,

w(l3G) = K5 = K by Corollary 2.12 and w{G) > w{K) = x(K) = K SO W(PG)

= W(G) = K. •
COROLLARY 2 . 1 4 . Suppose that G is a locally compact metrisable group with

l(G) ^ c . Then \pG\ = 2 2 ' G | .

P R O O F : Take an open a -compact subgroup G' C G. Being metrisable, the

group G' is second countable so \G'\ ^ c. The group G is not cr-compact because <5

= l(G) > u so Propositon 2.1 can be applied to conclude that G ~G' xS and hence the

group G is a union of J-many copies of G'. Consequently, 5 ^ | G | = <5-|G'|^(S-c = <5.

Therefore \G\ = S While \0G\ - 2"° = 2^ - 22 'G | by Corollary 2.12. D
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THEOREM 2 . 1 5 . Under the Continuum Hypothesis, for a metrisable locally com-

pact group G, we have \0G\ = 22 if and only if either G is discrete or it is not

separable.

PROOF: For any discrete space D we have |/3£>| = 22 so, if the group G is

discrete then |/?G| = 22 . If G is not separable then l(G) = w(G) > Wi = c so

Corollary 2.14 is applicable to conclude that again |/?G| = 22

Now, if G is a separable (and hence second countable) non-discrete locally compact

metrisable group then \G\ = c and l(G) = x(G) = w so |/?G| = 2C = 2^ by Corollary

2.12. D

COROLLARY 2 . 1 6 . Let G be any locally compact non-discrete a-compact
group. Then \/3G\ ^ 2^.

PROOF: If G is metrisable then l(G) — w{G) = x(G) = w so \G\ = c. Corollary
2.12 implies that |/3G| = 2"" = 2C = 2lGL If G is not metrisable then K = x(G) > w;
by Proposition 2.2 we can find a compact subgroup of the group G such that G/K is
second countable and x(K) — x(G) > w • Since if is a non-discrete compact group, we
have |A"| = 2K [5, Theorem 3.9] and therefore \G\ = 2K • c ^ 2K. On the other hand,
\/3G\ = 2K" by Corollary 2.12. Since *" ^ 2* , we have \pG\ < 22" ^ 2^. D

EXAMPLE 2.17. Any countably infinite discrete group G is cr-compact and locally

compact while we have \/3G\ = 22 . This shows that being non-discrete is essential in

Corollary 2.16.

EXAMPLE 2.18. Theorem 2.15 is not true in ZFC for all metrisable locally compact

groups. To see this, take any discrete group D of cardinality u>i and let G = M. x D.

Since x(G) = w and l(G) = wi, we have \G\ = c and \0G\ = 22"1 by Corollary 2.12

so, depending on what 2"1 is, we can have \f)G\ = 22'G| or |/3G| = 2^.

LEMMA 2 . 1 9 . If K is a compact space and and we have a set A C K with
\A\ ^ c then there is a countably compact set A' c K such that Ac A' and \A'\ ^ c.

PROOF: This is a standard fact proved by transfinite induction of wi steps which
consist in adding an accumulation point for every countable subset of the set we have
at the current step (see [7, Example 3.10.19]). D

EXAMPLE 2.20. If we do not require local compactness of G, then we can have |/3G|

— 22 for a countably compact group G.

PROOF: Let H — ID2'; the group H has a dense subspace 5 with \S\ = c [13].
Take a countably compact subspace To D S with \T0\ = c which exists by Lemma 2.19.
Let Go be the group generated by the set To in H. Assume that a < a>i and we have
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countably compact sets Tp, fi < a and groups Gp, ft < a such that \Tp\ = \Gp\ = c

and Tp cGp C Tpi whenever /3 < /3' < a.

The set G'a = L){Gp : /3 < a} has cardinality ^ c so there is a countably compact

set Ta C H such that \TQ\ = c and G'a C Ta (Lemma 2.19). Letting Ga to be the

subgroup of H generated by Ta we complete our transfinite construction which gives us

families {Ta : a < u>i} and {Ga : a < u)X}. It is evident that G — U{Ga : a < wi} is a

dense subgroup of H; the group G is countably compact because G = U{Ta : a < wi}

so every countable subset of G is contained in some countably compact Ta.

It is clear that \G\ — c; besides, f3G = H because for any pseudocompact dense

subspace Z of any product II of second countable compact spaces we have fiZ = II

(see [1, Lemma 1.2.6]). Finally, we have \/3G\ = \H\ = 22' = 2 2 ' G | . D
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