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LIE THEORY AND THE STRUCTURE OF PRO-LIE
GROUPS AND PRO-LIE ALGEBRAS

KARL H. HOFMANN AND SIDNEY A. MORRIS

Abstract. This text presents basic results from a projected
monograph on “Lie Theory and the Structure of Pro-Lie
groups and Locally Compact Groups” which may be consid-
ered a sequel to our book “The Structure of Compact Groups”
[De Gruyter, Berlin, 1998]. In focus are the categories of pro-
jective limits of finite dimensional Lie groups and of projec-
tive limits of finite dimensional Lie algebras, their functorial
relationship, and their intrinsic Lie theory. Explicit informa-
tion on pro-Lie algebras, simply connected pro-Lie groups and
abelian pro-Lie groups is given.

Introduction

There are two prime reasons for the success of the structure and
representation theory of locally compact groups: the existence of
Haar integral on a locally compact group G and the successful res-
olution of Hilbert’s Fifth Problem with the proof that connected
locally compact groups can be approximated by finite dimensional
Lie groups. Lie groups themselves have a highly developed struc-
ture and representation theory.

Haar measure is the key to the representation theory of com-
pact and locally compact groups on Hilbert space, and the wide
field of harmonic analysis with ever so many ramifications (includ-
ing e.g. abstract probability theory on locally compact groups).
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A theorem of A. Weil ([24], pp. 140–146) shows that, conversely, a
complete topological group with a left- (or right-) invariant measure
is locally compact (see also [7], pp. 266–289). Thus the category
of locally compact groups is that which is exactly suited for real
analysis resting on the existence of an invariant integral. One can-
not expect to extend that aspect of locally compact groups easily
to larger classes. 1

However, from a category theoretical and from a Lie theoretical
point of view the class of a locally compact groups has defects which
go rather deep. Indeed while every locally compact group G has
a Lie algebra L(G) and an exponential function exp: L(G) → G,
the additive group of the Lie algebra is never itself locally compact
unless it is finite dimensional. Thus from the view point of Lie
theory, the category of locally compact groups appears to have two
major drawbacks:
—The topological abelian group underlying the Lie algebra L(G)
fails to be locally compact unless L(G) is finite dimensional. In
other words, the very Lie theory making the structure theory of
locally compact groups interesting leads us outside the class.
—The category of locally compact groups is not closed under the
forming of products, even of copies of R; it is not closed under pro-
jective limits of projective systems of finite dimensional Lie groups,
let alone under arbitrary limits. In other words, the category of
locally compact groups is badly incomplete.

Let us denote the category of all (Hausdorff) topological groups
and continuous group homomorphisms by TOPGR. It turns out
that the full subcategory proLIEGR of TOPGR consisting of all pro-
jective limits of finite dimensional Lie groups avoids both of these

1The referee contributes the following interesting comment for which the
authors are grateful: “Strictly speaking, Weil’s theorem . . . says that a complete
group with a σ-finite left- (or right-) invariant measure is locally compact. σ-
finiteness is essential and should be mentioned here, because in its absence there
are some bizarre examples, e.g. the countable power of the reals with the product
of Lebesgue measure.” Here the referee has pointed indeed into the direction of
future research on the measure theory of pro-Lie groups, which are at the core
of this investigation and whose definition we shall explain in Section 1 below.
Such a theory would be well under way in view of [4], pp. 50–55, 70ff. But that
is a different story, to be told elsewhere.
Referee’s Report, May 12, 2004.
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difficulties. This would perhaps not yet be a sufficient reason for
advocating this category if it were not for two facts:

—Firstly, while not every locally compact group is a projective
limit of Lie groups, every locally compact group has an open sub-
group which is a projective limit of Lie groups, so that, in particu-
lar, every connected locally compact group is a projective limit of
Lie groups. Lie theory itself does not carry far beyond the identity
component of a topological group anyhow.

—Secondly, the category proLIEGR is astonishingly well-behaved.
Not only is it a complete category, it is closed under passing to
closed subgroups and to those quotients which are complete, and it
has a demonstrably good Lie theory.

It is therefore indeed surprising that this class of groups has
been little investigated in a systematic fashion. The first to rec-
ognize that a Lie algebra can be attached to a locally compact
group was Lashof [20] (1957). In a widely circulating set of Lec-
ture Notes [9] (1966), one of the present authors offered a general
Lie theory somewhat in the spirit of Chapter 2 below and applied
it to compact groups for which a more full-fledged application is
given in [11] (1998). Boseck, Czichowski and Rudolph wrote the
first book on the topic of a Lie theory of locally compact groups [1]
(1981) with applications to analysis on locally compact groups in
mind. The idea of making one-parameter subgroups of a topological
group the raw material of a Lie theory of topological groups is ad-
vocated Wojtyński [26, 27] (see his bibliography in these sources).
In individual studies such as [5,12,14,15,17], the Lie theory of lo-
cally compact groups and of pro-Lie groups was considered. The
foundations of a Lie theory of locally compact groups, of pro-Lie
groups, or even of topological groups in general is no longer in need
of being emphasized—it is displayed even in textbooks as well [22].
Infinite dimensional Lie group theory is topical and will soon be
represented by a new monograph by Glöckner and Neeb [6] based
on calculus on manifolds modelled on locally convex vector spaces.
The emphasis in our effort, however, is twofold: firstly, we focus on
the category of pro-Lie groups which contains everything that can
be said on the structure of locally compact groups via Lie theory,
and beyond, and, secondly, we systematically and seriously exploit
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the Lie theory for a structure theory of pro-Lie and locally com-
pact groups. A good start was made in [11] for the purpose of a
structure theory of compact groups.

At the Summer Conference on Topology in New York in 2001
we announced a program of presenting a comprehensive Lie and
structure theory of locally compact groups by reducing such a the-
ory to Lie groups on the one hand and compact groups on the
other [10]. And indeed such an investigation is made in [13] where
it is submitted that a general structure theory of locally compact
groups should be based on a good understanding of the category
proLIEGR. An exploitation of the Lie theory of pro-Lie groups for
a structure theory of locally compact groups involves, in particular,
a serious investigation of the structure theory of pro-Lie algebras,
that is, topological Lie algebras which are projective limits of their
finite dimensional quotient algebras.

This article presents a crisp overview of some of the central re-
sults whose proofs will be detailed and whose background and ap-
plications will be discussed in [13].

1. Core results on pro-Lie groups

For a description of some basic results on the theory of projective
limits of Lie groups some technical background information appears
inevitable.

Definition 1.1. A projective system D of topological groups is a
family of topological groups (Cj)j∈J indexed by a directed set J and
a family of morphisms {fjk : Ck → Cj | (j, k) ∈ J × J, j ≤ k}, such
that fjj is always the identity morphism and i ≤ j ≤ k in J implies
fik = fij ◦ fjk . Then the projective limit of the system limj∈J Cj is
the subgroup of

∏
j∈J Cj consisting of all J-tuples (xj)j∈J for which

the equation xj = fjk(xk) holds for all j, k ∈ J such that j ≤ k.

Every cartesian product of topological groups may be considered
as a projective limit. Indeed, if (Gα)α∈A is an arbitrary family
of topological groups indexed by an infinite set A, one obtains a
projective system by considering J to be the set of finite subsets of
A directed by inclusion, by setting Cj =

∏
a∈j Ga for j ∈ J , and

by letting fjk : Cj → Ck for j ≤ k in J be the projection onto the
partial product. The projective limit of this system is isomorphic
to

∏
a∈A Ga.
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There are a few sample facts one should recall about the basis
properties of projective limits (see e.g. [2], [5], [18], or [13] 1.27 and
1.33):

Let G = limj∈J Gj be a projective limit of a projective system

P = {fjk : Gk → Gj | (j, k) ∈ J × J, j ≤ k}
of topological groups with limit morphisms fj : G → Gj , and let
Uj denote the filter of identity neighborhoods of Gj , U the filter of
identity neighborhoods of G, and N the set {ker fj | j ∈ J}. Then
U has a basis of identity neighborhoods {f−1

k (U) | k ∈ J, U ∈ Uk}
and N is a filter basis of closed normal subgroups converging to 1.
If all bonding maps fjk : Gj → Gk are quotient morphisms and all
limit maps fj are surjective, then the limit maps fj : G → Gj are
quotient morphisms. The limit G is complete if all Gj are complete.

Definition 1.2. For a topological group G let N (G) denote the
set of all closed normal subgroups N such that the quotient group
G/N is a finite dimensional real Lie group. Then G ∈ N (G), and
G is said to be a proto-Lie group if

(1) every identity neighborhood of G contains a member of
N (G).

If, furthermore, the following condition (2) is satisfied it is called
a pro-Lie group:

(2) G is a complete topological group, that is, every Cauchy
filter converges.

One can show (see [13], Chapter 3, Definition 3.25 and the discus-
sion leading to it) that if condition (1) is satisfied, then N (G) is
a filter basis, so that (1) is equivalent to saying that N (G) is a
filterbasis converging to the identity.

The full subcategory of the category TOPGR of topological groups
and continuous homomorphisms consisting of all pro-Lie groups and
continuous homomorphisms between them is called proLIEGR.

Every product of a family of finite dimensional Lie groups∏
j∈J Gj is a pro-Lie group. In particular, RJ is a pro-Lie group for

any set J which is locally compact if and only if the set J is finite.
The subgroup

{
(gj)j∈J ∈

∏

j∈J

Gj : {j ∈ J : gj 6= 1} is finite
}



546 KARL H. HOFMANN AND SIDNEY A. MORRIS

is a proto-Lie group which is not a pro-Lie group if J is infinite
and the Gj are nonsingleton. Every proto-Lie group has a com-
pletion which is a pro-Lie group. A topological group G is called
almost connected if the factor group G/G0 modulo the connected
component G0 of the identity is compact. In the middle of the last
century it was proved that every almost connected locally compact
group is a pro-Lie group [28, 29].

Every pro-Lie group G gives rise to a projective system

{pNM : G/M → G/N : M ⊇ N in N (G)}
whose projective limit it is (up to isomorphism). The converse is a
difficult issue, but it is true.

Theorem 1.3. Every projective limit of Lie groups is a pro-Lie
group. Every closed subgroup of a pro-Lie group is a pro-Lie group.
Every quotient group of a pro-Lie group is a proto-Lie group and
has a completion which is a pro-Lie group.

Proof. [13], 3.34, 3.35, 4.1; [14]. ut

It is important to have a firm grasp of the concept of a pro-Lie
group, and the information available at this point allows to formu-
late the

Scholium. A topological group G is a pro-Lie group if and only
if it satisfies one, hence all of the following equivalent conditions

(1) G is complete and each identity neighborhood contains a
normal subgroup such that G/N is a Lie group.

(2) G is the projective limit of Lie groups (see 1.1).
(3) G is algebraically and topologically isomorphic to a closed

subgroup of a product of Lie groups.

In a topological Lie algebra g the filterbasis of closed ideals j satis-
fying dim g/j < ∞ is denoted by I(g).

Definition 1.4. A topological Lie algebra g is called a pro-Lie al-
gebra (short for profinite dimensional Lie algebra) if I(g) converges
to 0 and if g is a complete topological vector space.

Under these circumstances, g ∼= limj∈I(g) g/j, and the underlying
vector space is a weakly complete topological vector space, that is,
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it is the dual of a real vector space with the weak star topology. For
a systematic treatment of the duality of vector spaces and weakly
complete topological vector spaces we refer to [11], pp. 319ff. The
category of pro-Lie algebras and continuous vector space morphisms
is denoted proLIEALG.

Theorem 1.5. (i) The category proLIEGR of pro-Lie groups is
closed in TOPGR under the formation of all limits and is therefore
complete. It is the smallest full subcategory of TOPGR that contains
all finite dimensional Lie groups and is closed under the formation
of all limits.

(ii) The category proLIEALG of pro-Lie algebras is closed in the
category of topological Lie algebras under the formation of all limits
and is therefore complete. It is the smallest category that contains
all finite dimensional Lie algebras and is closed under the formation
of all limits.

Proof. [13], 3.3, 3.36; [14]. ut

2. The Lie Theory of Topological Groups: Lie’s Third
Theorem

Definition 2.1. A topological group G is said to have a Lie alge-
bra L(G) if the space Hom(R, G) of all continuous one parameter
subgroups (i.e. morphisms of topological groups) X : R → G with
the topology of uniform convergence on compact subsets of R has
a continuous addition and bracket multiplication making it into a
topological Lie algebra in such a fashion that

(X + Y )(r) = lim
n→∞

X(
r

n
)Y (

r

n
)

and

[X, Y ](r2) = lim
n→∞

X(
r

n
)Y (

r

n
)X(

r

n
)−1Y (

r

n
)−1.

If G has a Lie algebra, set exp X = X(1) and exp(r·X) = X(r) and
call

exp : L(G) → G

the exponential function of G.
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The full subcategory LIEALGGR of TOPGR containing all topo-
logical groups with Lie algebra is complete and there is a limit pre-
serving functor L : LIEALGGR → topLIEALG assigning to a topo-
logical group with Lie algebra its topological Lie algebra.

Remarkably, this functor has a left adjoint.

Theorem 2.2. The functor L : LIEALGGR → topLIEALG has a
left adjoint Γ: topLIEALG → LIEALGGR. Thus there is a natural
morphism of topological Lie algebras ηg : g → LΓ(g) such that for
each topological group H with a Lie algebra and each morphism
f : g → L(H) of topological Lie algebras there is a unique morphism
f ′ : Γ(g) → H such that f = L(f ′) ◦ ηg:

The universal property can also be expressed dually as follows:
For each topological group G with a Lie algebra there is a natural
morphism of topological groups εG : ΓL(G) → G such that for each
morphism f : Γ(h) → G there is a unique morphism f ′ : h → L(G)
of topological Lie algebras such that f = εG ◦ Γ(f ′):

The proof follows from the Adjoint Functor Existence Theorem (see
for instance [11], Appendix 3, p. 728, Theorem A3.60), for which
the Solution Set Condition has to be verified (see for instance [11],
p. 728, Definition A3.58). The adjunction provides a natural bijec-
tion

f 7→ f ′ : Hom
(
g, L(H)

)
→ Hom(Γ(g), H).
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If ηg : g → LΓ(g) happens to be an isomorphism, then the universal
property represents Lie’s Third Theorem because Γg is a topological
group with Lie algebra whose Lie algebra is the given Lie algebra g.
If G is a finite dimensional Lie group and g = L(G) then Γ(g) is none
other than the universal covering group G̃ of the identity component
G0 of G, and εG : G̃ → G is the universal covering morphism onto
this component. If g is one of the notorious Banach Lie algebras
failing the conclusion of Lie’s Third Theorem, then Γ(g) may well be
singleton or otherwise degenerate in the sense that ηg : g → LΓ(g)
may fail to be an isomorphism. Quite generally, it is clear that the
natural morphism εG : ΓL(G) → G is the natural generalisation of
the universal covering morphism of general Lie theory and we do
define

G̃
def= Γ

(
L(G)

)
.

If G is a compact connected abelian group, then G̃ is just the
underlying topological abelian group of the Lie algebra L(G) =
Hom(R, G), and if G̃ is identified with L(G), then εG : G̃ → G is to
be identified with the very exponential function expG : L(G) → G
which we studied at length in [11] and [17]. This example shows
that εG in general is rather far from a covering morphism while
retaining all the while its universal property.

It is somewhat surprising that the adjunction theorem and the
existence of the functor Γ has not been formulated before in spite
of the high level of development of Lie group theory; it seems as
if the theory of finite dimensional Lie groups was not particularly
conducive to reveal the full functorial set-up of Lie’s Third Theo-
rem.

Be that as it may, on the category proLIEGR of pro-Lie groups,
the adjunction theorem works with astonishing perfection. Indeed
as a first step we have

Theorem 2.3. Every pro-Lie group G has a pro-Lie algebra as
Lie-algebra and thus is an object of LIEALGGR. The assignment L

which associates with a a pro-Lie group G its pro-Lie algebra is a
limit preserving functor L : proLIEGR → proLIEALG.

Proof. Chapters 2 and 3. ut
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From Theorem 2.2 we get a left adjoint Γ of L, and in [13], Chapter
6, we show that for each g the topological group Γ(g) is simply
connected and arcwise connected. Taking this and the preceding
two theorems together, for pro-Lie groups we obtain the following
result:

Theorem 2.4. (Lie’s Third Theorem for pro-Lie groups) The
Lie algebra functor L : proLIEGR → proLIEALG has a left adjoint
Γ. It associates with every pro-Lie algebra g a unique simply con-
nected and arcwise pro-Lie group Γ(g) and a natural isomorphism
ηg : g → L

(
Γ(g)

)
of topological Lie algebras such that for every mor-

phism ϕ : g → L(G) there is a unique morphism ϕ′ : Γ(g) → G such
that ϕ = L(ϕ′) ◦ ηg. For each pro-Lie group G there is a func-
torially associated simply connected and arcwise connected group
G̃ = ΓL(G) and a natural morphism εG : G̃ → G whose image
is dense in the identity component G0 of G; for each morphism
f : Γ(h) → G there is a unique morphism f ′ : h → L(G) of topolog-
ical Lie algebras such that f = εG ◦ Γ(f ′).

Proof. [13], Chapter 6. ut

Let us denote by p̃roLIEGR the full subcategory of proLIEGR con-
sisting of all simply connected pro-Lie groups and all morphisms
between them. Then we get

Corollary 2.5. The adjoint functors L and Γ via restriction and
corestriction induce functors

L : p̃roLIEGR → proLIEALG and Γ: proLIEALG → p̃roLIEGR,

which implement an equivalence of categories.
The functor

G 7→ G̃ : proLIEGR → p̃roLIEGR

is a retraction functor and is left adjoint to the inclusion
p̃roLIEGR → proLIEGR.

In this regard, the category of simply connected and arcwise con-
nected pro-Lie groups is a faithful image of the category of pro-Lie
algebras. We do have a rather satisfactory body of information on
the structure of pro-Lie algebras; therefore Corollary 2.5 helps us
to have a good grip on the structure of simply connected pro-Lie
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groups. How well this works we shall see soon. Since every pro-Lie
group G carries with it the natural morphism εG : G̃ → G whose
image is dense in G0, we have an effective hold on the structure
theory of connected pro-Lie groups. The morphism εG, in a loose
but well understood sense may be regarded as a group theoreti-
cal substitute of the exponential function expG : L(G) → G. For
abelian pro-Lie groups, ε and exp may be identified.

Just as the Bohr compactification of a topological group pro-
vides a functorial left reflection from the category of topological
groups into the category of compact groups, we have left reflections
TOPGR → LIEALGGR → proLIEGR. This in fact a consequence of
a rather general lemma on full subcategories of the category TOPGR
of topological groups:

Lemma 2.6. (Retraction Lemma for Full Closed Subcategories of
TOPGR)
For any full subcategory G of the category TOPGR of topological
groups and continuous morphisms that is closed in TOPGR under
the formation of all limits and the passage to closed subgroups, there
is a left adjoint functor F : TOPGR → G which on G agrees (up to a
natural isomorphism) with the identity functor on G. In particular
given any topological group G, there is a topological group FG in G
and a morphism ηG : G → FG with dense image such that for every
morphism f : G → H into a G-group H there is a unique morphism
f ′ : FG → H such that f = f ′ ◦ ηG.

Proof. Corollary 1.41 of [13]. ut

In particular, taking for G the category proLIEGR, for each topolog-
ical group G we get a pro-Lie group PG and a natural morphism
ηG : G → PG such that every morphism from G into a proLie
group factors through ηG. Without too much additional effort one
shows the existence of free pro-Lie groups over pointed topologi-
cal spaces. In fact, every pointed completely regular space may be
considered as a subspace of a pro-Lie group such that the subgroup
algebraically generated by the subspace is a free group and that the
universal property holds; we do not dwell here on this subject; for
free compact groups instead of free pro-Lie groups see for instance
[11], Chapter 11.
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We noted prominently that the functor L preserves all limits. It
it, however, remarkable that L preserves some colimits as well:

Theorem 2.7. The functor L preserves quotients. Specifically,
assume that G is a pro-Lie group and N a closed normal subgroup
and denote by q : G → G/N the quotient morphism. Then G/N is a
proto-Lie group whose Lie algebra L(G/N) is a pro-Lie algebra and
the induced morphism of pro-Lie algebras L(q) : L(G) → L(G/N) is
a quotient morphism. The exact sequence

0 → L(N) → L(G) → L(G/N) → 0

induces an isomorphism X + L(N) 7→ L(f)(X) : L(G)/L(N) →
L(G/N). ut

The core of Theorem 2.7 is proved by showing that for every quo-
tient morphism f : G → H of topological groups, where G is a
pro-Lie group, every one parameter subgroup Y : R → H lifts to
one of G, that is, there is a one parameter subgroup σ of G such
that Y = f ◦ σ. ([13], 4.19, 4.20.) This requires the Axiom of
Choice.

Corollary 2.8. Let G be a pro-Lie group. Then {L(N) |N∈N (G)}
converges to zero and is cofinal in the filter I(L(G)) of all ideals i

such that L(G)/i is finite dimensional.
Furthermore, L(G) is the projective limit limN∈N (G) L(G)/L(N)

of a projective system of bonding morphisms and limit maps all of
which are quotient morphisms, and there is a commutative diagram

Proof. [13], 4.21. ut
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Theorem 2.7 expresses a version of exactness of L. But there is also
an exactness theorem for Γ.

Theorem 2.9. If h is a closed ideal of a pro-Lie algebra g, then
the exact sequence

0 → h
i−−−−→g

q−−−−→g/h → 0

induces an exact sequence

1 → Γ(h)
Γ(j)−−−−→Γ(g)

Γ(q)−−−−→Γ(g/h) → 1,

in which Γ(j) is an algebraic and topological embedding and Γ(q) is
a quotient morphism.

Proof. [13], 5.7, 5.8, and 5.9. ut

There are some noteworthy consequences of Theorem 2.7.

Proposition 2.10. Any quotient morphism f : G → H of pro-
Lie groups onto a finite dimensional Lie group is a locally trivial
fibration.

Proof. [13], 4.22 (iv). ut

For a topological group let E(G) denote the subgroup generated by
all one parameter subgroups, that is

E(G) def= 〈exp L(G)〉.

Proposition 2.11. (i) For a pro-Lie group G, the subgroup E(G)
is dense in G0, i.e. E(G) = G0. In particular, a connected nonsin-
gleton pro-Lie group has nontrivial one parameter subgroups.

Proof. [13], 4.22(i). ut

Corollary 2.12. For a pro-Lie group G the following statements
are equivalent:

(a) G is totally disconnected.
(b) L(G) = {0}.
(c) The filter basis of open normal subgroups of G converges to

1.
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Proof. [13], 4.22. ut

We noted that for any pro-Lie group G, the additive group of its
Lie algebra L(G) is also a pro-Lie group. So we noted that for an
abelian pro-Lie group G, the exponential function exp : L(G) →
G is in fact a morphism of pro-Lie groups, and the underlying
additive group of L(G) is the group G̃ = Γ

(
L(G)

)
. All of this

applies, in particular, to locally compact abelian groups and, in
particular, to compact abelian groups. In [11], Chapters 7 and
8, one finds the information that for a compact abelian group G,
the kernel of the exponential function exp: L(G) → G is naturally
isomorphic to the fundamental group π1(G), and that the image of
exp is the arc component Ga of 1 in G. Thus there is a bijective
morphism L(G)/π1(G) → Ga. It is proved in [17] and in [13], 4.10ff.
that for a compact connected abelian group G this morphism is an
isomorphism iff in the character group Ĝ of G every finite rank
pure subgroup is a free direct summand. Whenever this condition
is satisfied, Ga is a quotient of the pro-Lie group L(G) and this
quotient is incomplete if G is not arcwise connected. The simplest
such example is the character group G of the discrete group ZN.
In this case L(G) ∼= Hom(ZN, R) ∼= R2ℵ0 , and this vector group is
a simple example of a pro-Lie group with an incomplete quotient
group.

Quotients of pro-Lie groups, after all of this, are a somewhat
delicate matter. It is therefore good to have sufficient conditions
for quotients to be complete, such as for instance in the following
theorem.

Theorem 2.13. The quotient of an almost connected pro-Lie group
modulo an almost connected closed normal subgroup is a pro-Lie
group.

Proof. [13], 4.28. ut

3. Core results on pro-Lie algebras

In view of the functorial correspondence set up between the
categories proLIEGR, p̃roLIEGR, and proLIEALG every piece of
information on pro-Lie algebras translates at once into information
on pro-Lie groups; this translation process is often referred to as



LIE THEORY AND THE STRUCTURE OF PRO-LIE GROUPS ... 555

Lie Theory. Because of Corollary 2.5 this works especially well for
the translation between pro-Lie algebras and simply connected pro-
Lie groups. Chapter 7 of [13] gives details on the workings of a Lie
theory of pro-Lie groups. It is this Lie theory of pro-Lie groups that
calls for a thorough understanding of the fine structure of pro-Lie
algebras in the first place.

Definition 3.1. A pro-Lie algebra g is called semisimple if it is
isomorphic to a product

∏
j∈J sj of a family of finite dimensional

simple real Lie algebras sj . A pro-Lie algebra g is called reductive
iff it is isomorphic to a product of an abelian algebra RI for a set I
and a semisimple algebra s.

Definition 3.2. For subsets a and b of a Lie algebra g let [a, b]
denote the linear span of all commutator brackets [X, Y ] with X ∈ a

and Y ∈ b. Inductively, define g(1) = g[1] = [g, g] and g(n+1) =
[g(n), g(n)], g[n+1] = [g, g[n]]. A Lie algebra g is said to be countably
solvable if

⋂∞
n=1 g(n) = {0} and countably nilpotent if

⋂∞
n=1 g[n] =

{0}. If a Lie algebra g has a unique largest countably solvable
ideal, then it will be called the radical r(g), and if it has a largest
countably nilpotent ideal, then it will be called the nilradical n(g).

This information suffices for pro-Lie groups. However we men-
tion that it is more satisfactory from an algebraic point of view
to proceed to a transfinite definition of the commutator series of
a Lie algebra by transfinite recursion, forming the intersection of
all prior terms in the sequence at a limit ordinal. The transfinite
commutator series has to become stable for cardinality reasons; if
stability is attained at {0} we call the Lie algebra transfinitely solv-
able. However, in [13] we prove a theorem that says that a pro-Lie
algebra is transfinitely solvable iff it is countably solvable iff every
finite dimensional Hausdorff quotient algebra is solvable. Similar
comments apply to nilpotency in place of solvability.

If the pro-Lie algebra g happens to have a unique smallest mem-
ber among the family of all closed ideals i such that g/i is reductive,
then it is called the coreductive radical ncored(g).
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Theorem 3.3. Every pro-Lie algebra g has a closed
radical, a closed nilradical and a coreductive radical
such that the following properties are satisfied:
(i) ncored(g) ⊆ n(g) ⊆ r(g).

(ii) ncored(g) = [g, g]∩ r(g) = [g, r(g)]
(iii) g/r(g) is semisimple and g/ncored(g) is reductive.

Proof. [13], 6.48, 6.66, 6.67. ut

For finite dimensional Lie algebras, these are standard facts, but for
pro-Lie algebras, a lot is to be proved here. Solvability for infinite
dimensional Lie algebras is really a transfinite concept involving
ordinals, and for topological Lie algebras we must also consider
the closed commutator series. As we remarked, for pro-Lie alge-
bras one never has to go beyond the commutator sequence indexed
by natural numbers, and that the algebraic and topological con-
cepts of solvability agree. Similar comments apply to nilpotency.
An effective treatment of semisimplicity and reductivity involves
the duality of weakly complete topological vector spaces applied to
g-modules.

But indeed more is true.

Definition 3.4. For a a pro-Lie algebra g, a subalgebra s is called
a Levi summand if the function

(X, Y ) 7→ X + Y : r(g) × s → g

is an isomorphism of topological vector spaces.

For each X in a pro-Lie algebra g, a derivation ad X and an
automorphism of topological Lie algebras eadX are defined by
(adX)(Y ) = [X, Y ] and ead X(Y ) =

∑∞
n=1

1
n! ·(adX)n(Y ), where

the infinite series is summable (that is, the net of finite partial
sums converges for all X and Y ).

Theorem 3.5. (The Levi-Mal’cev-Theorem for Pro-Lie Algebras)
Every pro-Lie algebra g has Levi summands s so that g is alge-
braically and topologically the semidirect sum r(g) ⊕ s. Each Levi
summand s ∼= g/r(g) is semisimple. For two Levi-summands s and
s∗ there is an element X ∈ ncored(g) in the coreductive radical such
that s∗ = eadXs.
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Proof. [13], 6.52., 6.76. ut

These results translate into structural information concerning sim-
ply connected pro-Lie groups. In order to see this we first record
the fact that we have explicit information on Γ(g) for a countably
nilpotent pro-Lie algebra g such as it occurs as the nilradical and
the coreductive radical of a pro-Lie algebra.

We need to recall some background on the algebra of the Baker-
Campbell-Dynkin-Hausdorff series.

Lemma 3.6. If x and y are two elements then in the Q-algebra of
formal power series, the formal power series x∗y = log(exp x exp y)
is of the form x ∗ y =

∑
r,s≥0 Hr,s(x, y) where Hr,s is a Lie poly-

nomial of degree r in x and s in y which is computed as follows,
H0,0(x, y) = 0, H1,0(x, y) = x, H0,1(x, y) = y, H1,1(x, y) = [x, y],
where the higher terms are computed as follows. For each pair of
nonnegative integers r and s with r+s = 1, let J ′(r, s) be the set of
tuples (r1, . . . , rm, s1, . . . , sm−1) such that r1+· · ·+rm = r, s1+· · ·+
sm−1 = s− 1, r1 + s1, r2 + s2, . . . , rm−1 + sm−1 ≥ 1 for m ∈ N, and
let J ′′(r, s) be the set of tuples (r1, . . . , rm−1, s1, . . . , sm−1) such that
r1+· · ·+rm−1 = r−1, s1+· · ·+sm−1 = s, r1+s1, r2+s2, . . . , rm−1+
sm−1 ≥ 1 for m ∈ N. Then Hr,s(x, y) = H ′

r,s(x, y) + H ′′
r,s(x, y)

where
(r + s)·H ′

r,s(x, y) =

where
∑

J ′ is extended over all m∈N and(r1, . . . , rm, s1, . . . , sm−1)∈
J ′(r, s), and
(r + s)·H ′′

r,s(x, y) =

where
∑

J ′′ is extended over all m∈N and(r1, . . . , rm−1, s1, . . . , sm−1)
∈ J ′′(r, s).

Proof. See [3], Chapitre II, §6, no 4, Theorème 2. ut

Given any Lie algebra L and elements X, Y ∈ L, the elements
Hr,s(X, Y ) ∈ L are well defined, and thus

(
Hr,s(X, Y )

)
r,s∈N is a
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family of elements in L. If L is a topological Lie algebra, then it
may or may not be summable.

Lemma 3.7. Let g be a countably topologically nilpotent pro-Lie
algebra. Then the family

(
Hr,s(X, Y )

)
r,s∈N is summable for all

X, Y ∈ g. Therefore the element X ∗ Y is well defined.

Proof. See [13], Chapter 8, Lemma 8.4. ut

Theorem 3.8. (Theorem on Pro-Lie groups with Pronilpotent Lie
Algebra)
(i) Let g be a pronilpotent pro-Lie algebra. Then Γ(g) ∼= (g, ∗) and

In particular, Γ(g) is homeomorphic to to RJ for some set J and
thus is arcwise connected and simply connected.

(i) X ∗ Y ∗ (−Y ) = eadXY for all X, Y ∈ g.
(ii) Z

(
(g, ∗)

)
= (z(g), ∗) = (z, +).

Proof. See [13], Chapter 8, Theorem 8.5. ut

There are examples of countably topologically nilpotent pro-Lie
algebras with trivial center. A theorem that would be similar to
Theorem 3.8 fails in the prosolvable case. However, we can show

Proposition 3.9. (Theorem on the Topological Structure of Sim-
ply Connected Pro-Lie Groups with Prosolvable Lie Algebras) Let
G be a simply connected pro-Lie group whose Lie algebra g = L(G)
is prosolvable, that is, which is its own radical. Let n denote its
nilradical or its reductive radical, as the case may be. Then the
following statements hold:
(i) Γ(n) ∼= (n, ∗) may be considered as a closed normal subgroup N

of G such that L(G/N) is naturally isomorphic to g/n.
(ii) expG/N g/n → G/N is an isomorphism of weakly complete vec-

tor groups.
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(iii) The quotient morphism q : G → G/N admits a continuous cross
section σ : G/N → G such that σ(N) = 1

(iv) There is an N -equivariant homeomorphism ϕ : G → N×(G/N)
such that ϕ(n) = (n, N) for all n ∈ N , and pr2 ◦ϕ = q.

(v) G is homeomorphic to RJ for some set J.
(vi) G is simply connected in any sense for which the additive group

of a weakly complete topological vector space is simply con-
nected.

Proof. [13], 8.13. ut

From the Levi-Mal’cev Theorem for Pro-Lie Algebras 3.5 we know
that every pro-Lie algebra is algebraically and topologically the
semidirect sum of the radical r(g) and a semisimple Levi summand
s. One deduces for a connected pro-Lie group G the existence
of a closed radical R(G) which is simply connected, if G is simply
connected, and whose structure is given in the previous proposition.

The categorical equivalence of the category proLIEALG of pro-
Lie algebras and of p̃roLIEGR in Corollary 2.5 allows us to con-
clude that for a simply connected Lie group G the radical R(G) is
a semidirect factor with a semisimple Levi complement. This all
results in the following

Theorem 3.10. (Structure Theorem for Simply Connected Pro-
Lie Groups)
Let G be a simply connected pro-Lie group with Lie algebra g. Then
(i) G is the semidirect product of a closed normal subgroup R(G)

whose Lie algebra L
(
R(G)

)
is the radical r(g) and a closed sub-

group S whose Lie algebra s is a Levi summand of g.
(ii) There is a family of simple simply connected Lie groups Sj,

j ∈ J such that S ∼=
∏

j∈J Sj .
(iii) There is a closed normal subgroup N = Ncored(G) of G con-

tained in R(G) such that the pro-Lie algebra L(N) = ncored(g)
is the coreductive radical of g and that there is an N -equivariant
isomorphism ϕ : R → N × (R/N), where N ∼= (ncored(g), ) and
where R/N ∼= r(g)/ncored(g) is a vector group.

(iv) R is homeomorphic to RJ for some set J.
(v) G is homeomorphic to a product of copies of R and of a family

of simple, simply connected real finite dimensional Lie groups.
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Proof. [13] Theorem 8.14. ut

We say that a topological group G with Lie algebra g = L(G) is
exponentially generated if G is algebraically generated by the image
of the exponential function, that is, if G = 〈expG g〉.

Corollary 3.11. If G is a simply connected pro-Lie group, then G
is exponentially generated.

Proof. [13], Corollary 8.17. ut

In particular, a simply connected pro-Lie group is arcwise con-
nected.

According to a classical theorem ([8], p. 180, Theorem 3.1) ev-
ery one of the Lie groups Sj in Theorem 3.10 is homeomorphic to
Rnj × Cj with a natural number nj and a maximal compact con-
nected subgroup Cj of Sj . As a consequence of 3.10 we therefore
have:

Theorem 3.12. (Topological Structure of Simply Connected Pro-
Lie Groups) If a simply connected pro-Lie group G is written as a
semidirect product of R(S) and a subgroup isomorphic to

∏
j∈J Sj

according to Theorem 3.10, and if we denote a maximal compact
subgroup of Sj by Cj , then for a suitable set P , the group G is
homeomorphic to RP ×

∏
j∈J Cj .

In particular, G is homotopy equivalent to a a compact connected
semisimple group, and its entire algebraic topology (homotopy, co-
homology) is that of a simply connected semisimple compact group.

Proof. This is an immediate consequence of Theorem 3.10. ut

4. The Structure of Abelian Pro-Lie Groups

In order to understand what we have to face when we leave
the terrain of simply connected pro-Lie groups we turn to the sub-
category of commutative pro-Lie groups; we shall see that in the
connected case we completely understand their structure and that
in the totally disconnected domain, some questions remain.
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Irrespective of our earlier listing of examples, let us record what
examples we are looking at. A topological group G which is com-
plete and has a filterbasis of identity neighborhoods which are open
normal subgroups is called prodiscrete. By Definition 1.2 and Corol-
lary 2.12,

a topological group is prodiscrete if and only if it is a totally dis-
connected pro-Lie group.

Example 4.1. Let Z(p∞) =
( ⋃∞

n=1
1
n ·Z

)
/Z denote the discrete

Prüfer group of all elements of p-power order in T = R/Z, further
Z and Q the discrete group of integers, respectively, rationals. Let
Qp be the field of p-adic rationals for some prime p with its p-adic
topology. The following examples are abelian pro-Lie groups.
(i) All locally compact abelian groups. (In particular, all abelian

Lie groups.)
(ii) All products of locally compact abelian groups,
specifically:
(iii) the groups RJ ;
(iv) the groups QJ

p ;
(v) the groups QJ ;
(vi) the groups ZJ ;
(vii) the groups Z(p∞)J .
Another noteworthy example is
(viii) The free abelian group Z(N) in countably infinitely many gen-
erators supports a nondiscrete nonmetric pro-Lie topology.

None of the groups in (iii)–(vii) is locally compact if J is infinite; but
if J is countable, all are Polish, that is, completely metrizable and
second countable. A countable product of discrete infinite count-
able sets in the product topology is homeomorphic to the space
R\Q of the irrational numbers in the topology induced by R. Thus
the space of irrational numbers in its natural interval topology can
be given a prodiscrete group topology in many ways. The examples
(iv)—(viii). Example (viii) illustrates that a countable group can
very well be a nondiscrete pro-Lie group; we learn that a pro-Lie
group may very well be a countable union of closed indeed com-
pact subsets with empty interior and thus may fail to satisfy the
conclusion of the Baire category theorem.
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Recall that a subgroup of a topological group is said to be fully
characteristic, if it is mapped into itself by every continuous endo-
morphism of G. We start off with defining three fully characteristic
closed subgroups of an abelian pro-Lie group.

For the first we refer to André Weil’s Lemma in the domain of
of locally compact groups which says

Let g be an element of a locally compact group and 〈g〉 the subgroup
generated by it. Then one (and only one) of the two following cases
occurs

(i) n 7→ gn : Z → 〈g〉 is an isomorphism of topological groups.
(ii) 〈g〉 is compact.

This important tool generalizes to pro-Lie groups:

Theorem 4.2. Let E be either R or Z and X : E → G a morphism
of topological groups into a pro-Lie group G. Then one and only
one of the two following cases occurs
(i) r 7→ X(r) : E → X(E) is an isomorphism of topological groups.
(ii) X(E) is compact.

Proof. [13], Chapter 5 or [15]. ut

Definition 4.3. Let comp(G) denote the set {x ∈ G : 〈x〉 is
compact}.

Theorem 4.4. In an abelian pro-Lie group, comp G is a fully
characteristic closed subgroup such that G/ comp(G) is an abelian
pro-Lie group which does not contain any nondegenerate compact
subgroup.

Proof. For the proof which is rather straightforward from Weil’s
Lemma for pro-Lie groups, see [13], [15]. ut

The identity component G0 of any topological group is a fully char-
acteristic closed subgroup. In the case of abelian pro-Lie groups we
can say:

If G is a commutative pro-Lie group then G/G0 is a pro-Lie group
which has arbitrarily small open subgroups.
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We define G1
def= G0 comp(G) and note

If G is a commutative pro-Lie group then G1 is a closed fully char-
acteristic subgroup and G/G1 is a pro-Lie group with arbitrarily
small open subgroups and no nontrivial compact subgroups. G1 is
the smallest closed subgroup containing all connected and all com-
pact subgroups.

Theorem 4.5. (Main Theorem on Abelian Pro-Lie Groups) Let G
be an abelian pro-Lie group. Then the following conclusions hold:
(i) There is a closed subgroup V of G which is isomorphic to a

vector group RJ for some set J such that (v, c) 7→ v + c : V ×
comp(G) → G1 is an isomorphism of topological groups.

(ii) There is a closed subgroup H of G containing comp(G) such
that (v, h) 7→ v +h : V ×H → G is an isomorphism of topolog-
ical groups, that is G ∼= RJ × H.

(iii) H0 is compact and equals comp G0, and comp(H) = comp(G).
(iv) H/H0

∼= G/G0, and this group a pro-discrete group.

Proof. [13], Theorem 5.30, or [15]. ut

Corollary 4.6. Let G be an abelian pro-Lie group. Then the
exponential function expG of G = V ⊕ H decomposes as

expG = expV ⊕ expH

where expV : L(V ) → V is an isomorphism of weakly complete vec-
tor groups, and where expH may be identified via restriction with
the exponential function expcomp(G0) : L

(
comp(G0)

)
→ comp(G0)

of the unique largest compact connected subgroup.
As a topological group, the group G̃ = Γ(L(G)) is isomorphic

V × L(H) ∼= RI for some I.
The arc component Ga of zero in G is V⊕Ha = V⊕comp(G0)a =

expG L(G).

Proof. [13], Theorem 5.20. ut

Moreover, if h is a closed vector subspace of L(G) such that exp h =
Ga, then h = L(G).

The most instructive special case is the connected case.
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Corollary 4.7. A connected abelian pro-Lie group is isomorphic
to RJ × C where C is unique largest compact subgroup of G.

The group G is simply connected iff C = {0}.

Proof. This is an immediate consequence of Theorem 4.5. ut

This illustrates very clearly how the structure of abelian pro-Lie
groups decomposes into vector groups of arbitrary dimension and
compact groups of arbitrary dimension. We have seen in the struc-
ture theorems contained in 3.8, 3.9, and 3.10 that in a topological
description of simply connected pro-Lie group, the vector groups
RJ play a central role. The absence of simple connectivity in the
abelian case is due to the presence of compact subgroups. In non-
commutative groups, other causes may account for a possible failing
of simple connectivity, such as the factoring of a closed central sub-
group of a semisimple pro-Lie group of the form

∏
j∈J Sj for simply

connected simple Lie groups Sj in Theorem 3.10.

We say that a topological abelian group G has duality if the

natural evaluation morphism G → ̂̂
G into its Pontryagin bidual is

an isomorphism of topological groups.

Corollary 4.8. A connected abelian pro-Lie group has duality,
and its dual is isomorphic to R(J) ⊕ A for a real vector space R(J)

equipped with its finest locally convex topology and for a torsion free
discrete group A.

Proof. This is an immediate consequence of the fact that the prod-
uct of two groups with duality has duality (see e.g. [11],
p. 306, Proposition 7.10). ut

In order to test the distance between abelian pro-Lie groups and
locally compact abelian groups it is instructive to consider those
abelian pro-Lie groups which are compactly generated. Indeed a
topological group G is said to be compactly generated if there is a
compact subset K such that G = 〈K〉, that is, G is algebraically
generated by K.
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Theorem 4.9. (Structure of Compactly Generated Abelian pro-
Lie groups).

(i) For a compactly generated abelian pro-Lie group G the char-
acteristic closed subgroup comp(G) is compact and the characteris-
tic closed subgroup G1 is locally compact.

(ii) In particular, every vector group complement V is isomor-
phic to a euclidean group Rm.

(iii) The factor group G/G1 is a compactly generated pro-Lie
group which has arbitrarily small open subgroups but no nontrivial
compact subgroups.

If G/G1 is Polish, then G is locally compact and

G ∼= Rm × comp(G) × Zn.

Proof. See [13], Theorem 5.32. ut

A compactly generated pro-Lie group with arbitrarily small open
subgroups but no nontrivial compact subgroups is isomorphic to a
closed subgroup of a group ZJ . If it is not of finite rank, then it is
not isomorphic to a subgroup of ZN. There is an example of a pro-
Lie group which is algebraically isomorphic to Z(N), the free abelian
group of countably many generators, but it fails to be compactly
generated.

What is unsatisfactory here is that we do not know whether
there is an example of a compactly generated pro-Lie group with
arbitrarily small open subgroups and no nondegenerate compact
subgroups which is not isomorphic to Zn.

For connected abelian pro-Lie groups we have presented a very
satisfactory structure theory. The simply connected abelian pro-Lie
groups are bland: they are the additive groups of weakly complete
vector spaces and thus are isomorphic to RJ for some set. At the
opposite end we have those abelian pro-Lie groups which have no
infinite discrete cyclic subgroups; they are precisely the compact
ones. The dichotomy between compact groups and groups that are
homeomorphic to RJ was also evident in the topological structure
theorem of arbitrary, not necessarily abelian, connected pro-Lie
groups 3.12. Due to the presence of a semisimple pro-Lie group
factor, the product decomposition with one factor being a compact
connected group and the other factor being homeomorphic to RJ is
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just a topological one. For locally compact connected groups such
a decomposition persists in the absence of simple connectivity, but
whether an arbitrary connected pro-Lie group is homeomorphic to
a product of a maximal compact subgroup and a space homeomor-
phic to RJ is not established for pro-Lie groups in general. (Added
in proof May 14, 2004:) On the other hand, we were able to estab-
lish, by developing a systematic theory of Cartan subalgebras of
pro-Lie algebras, that each pro-Lie group does have maximal com-
pact connected subgroups and that these are conjugate under inner
automorphisms.
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