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FREE COMPACT ABELIAN GROUPS 

S I D N E Y A. M O R R I S , S y d n e y , Australia 

§1. I N T R O D U C T I O N 

In this paper we give a construction of free compact abelian groups. The 
method is similar to that used by G e l b a u m [1] to prove the existence of free 
topological groups. However, in G e l b a u m / s case the group obtained may 
have to be retopologized whilst this is not necessary in our case. 

We show that the subgroup G of the free compact abelian group on a to-
pological space X generated algebraically by X is the free abelian group on X. 
From this we deduce the existence of free abelian topological groups. 

The theory of varieties of topological groups was introduced and developed 
in [5], [6], [7] and [8], We show here that the group G mentioned above is the 
free topological group of the variety generated by the circle group. Conse-
quently G is not a free abelian topological group. 

I t was shown in [4] t h a t C(X), as a semigroup, characterizes X within 
the class of compact Hausdorff spaces. We investigate the following question: 
does there exist an abelian topological group H such that the group of conti-
nuous mappings of X into H characterizes X within the class of compact 
Hausdorff spaces? We show that the answer is in the negative. 

By the term "group,, we will mean ''abelian}, group. We will denote the multi-
plicative group of complex numbers of modulus one (the circle group) with 
the usual topology by T. The cartesian product group of a set {Gv : y e T} 
of topological groups with the usual product topology will be denoted by J~\ @y • 

yer 
Finally note that we write all groups multiplicatively. 

§2. PRELIMINARIES 

Definition. A non-empty class V_ of topological groups is said to be a variety 
of topological groups if it has the properties: 

(a) if G is a subgroup of the product group Y\@v> where T is any index set and 
yer 

Gy is in V for y e r, then G is in V_, 
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(b) if H is a quotient group of any G in _V[, then II is in V. 
Clearly a variety of topological groups determines a variety of groups [9]; 

the latter is simply the class of groups which with some topology appears in the 
former. (This is indeed a variety of groups by 15.51 of [9].) 

Definition. Let G be any topological group and V_(G) be the intersection of all 
varieties of topological groups containing G. Then V_(G) is said to be the topological 
variety generated by G. (Clearly this is indeed a variety of topological groups.) 

Definition. Let F be in the variety V of topological groups. Then F is said to 
be a free group of V_ on the space X, denoted by F(X, V), if it has the properties 

(a) X is a subspace of F, 
• (b) X generates F algebraically, 

(c) for any continuous mapping <p of X into any H in V, there exists a continu-
ous homomorphism 0 of F into II such that 0 = OJ on X. 

In the particular case that _V is the variety of all topological groups, F(X, V) 
is called the free topological £roup on X. 

Definition. Let X be any Hausdorff topological space. Then the compact 
Hausdorff group F is said to be a free compact group on X if there exists a conti-
nuous mapping u of X into F such that, 

(i) the subgroup of F generated algebraically by u(X) is dense in F(X), and 
(ii) if q is any continuous mapping of X into any compact group G, there 

exists a continuous homomorphism 0 of F into G such that 0u (p. 
For a given topological space X, the uniqueness of the free topological 

and free compact groups on X can be deduced from the proof of Theorem 8.9 
of [3]. 

Lemma 2.1. Let G be a locally compact Hausdorff group and II its dual group. 
If A is a subgroup of H ivhich separates points of G, then A is dense in II. 
(cf.) 23.20 of [3]) 

Proof . Suppose A is not dense in H. Let B be the closure of A. Then II B 
is a non-trivial locally compact Hausdorff group. By §1.5.2 of [10]. there 
exists a non-trivial continuous homomorphism 0 of IIjB into T. 

Define the mapping f of H into T by f(y) — 0(By) for all y in II. Then f 
is a continuous homomorphism of II into T which is not identically one but 
is one on B. By the Pontryagin Duality theorem ([10]) there exists an x ~^ 1 
such that £(y) — y(x) for all y in II. Then y(x) = 1 for all y in A. This implies 
x — 1. since A separates points of G. This is a contradiction and thus A is 
dense in / / . 
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§3. F R E E COMPACT GROUPS 

Let X be a Hausdorff topological space and F(X) the group of all continuous 
mappings of X into T where the product of elements / and g of F(X) is defined 
by (fg) (x) f(x) g (x) for all x in X. P u t the discrete topology on F(X) and let F 
(X) be its dual group. We will show that F(X) is the free compact group of X. 

Lemma 3.1. The mapping u of X into F(X) given by u(x) = yx, xe X, 
where yx(f) f(x) for all f in F(X) is continuous. Further u is a JiomeomorpJilsm 
of X onto u(X) if and only if X is a completely regular space. 

Proof . Clearly, by Theorem 1.2.6 of [10], u is continuous. Obviously 
if it is a homeomorphism of X onto u(X), then X is completely regular. 

Let X be completely regular. Then for any pair of distinct points x and y 
in X, there is an / in F(X) such that f(x) 4= f(y). Thus u is one to one. Let 0 
be any open set in X and ya be any point in u(0). Since X is completely regular, 
there is a (/ in F(X) such that g(a) =j= — 1 and {x : g(x) 4= — 1} c= 0. But 
{y : y E F(X), y(g) 4= —1} is open in F(X). Thus {yx : yx(g) 4= —1} is an open 
neighbourhood of ya in u(X), and is contained in u(0). Hence u is a homeo-
morphism of X onto u(X). 

Lemma 3.2. Let cp be a continuous mapping of a Hausdorff space Xi into 
a Hausdorff space X2. Then there exists a continuous homomorphism 0 of F(X±) 
into F(X2) such that the diagram beloiu commutes. 

‘ 
F{X, 

Ui 

F(X2) 

W2 

X„ 

Proof . Define <2> : F(XX) ->F(X2) by &(y) = f, yeF(X{), where £(/) -
y(f(f) for a l l / i n F(X2). Clearly f is in F(X2) and it can easily be verified that 

0 is a continuous homomorphism and that the diagram commutes. 
Lemma 3.3. If X is a compact Hausdorff group, then there exists an open 

continuous Jwmomorphism 6 ofF(X) onto X such that d(u(x)) = x for all x in X. 
Proof . Let F be the dual group of X. Then F is a topological subgroup 

of F(X). By Lemma 24.5 of [3], the map O of F(X) onto the dual group H of V, 
defined by 0(y) — y \ F, yeF(X), is an open continuous homomorphism. 
By the Pontryagin duality theorem, the mapping a, defined by oc(x) — yx \ II 
for all x in ^Y, is a topological isomorphism of X onto H. 
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Define d:F(X)->X by d(y) = or^(6(y)), y e F(X). Clearly 6 is an open 
continuous homomorphism of F(X) onto X. Let d(yx) = ?/. Then or1(0(yx))=y\ 
that is ©(y j/ = f(y) for all / in R. Thus /(a;) = /(y) for all / in R. This implies 
x = y. Thus (5(w(#)) = x for all # in X. 

Theorem 3.4. For any Hausdorff space X, F(X) is the free compact group on X. 
Proof . Clearly F(X) is a compact group. Let A be the subgroup ot F(X) 

generated algebraically by u(X). Then u(X), and therefore A, separate points 
of R(X). Thus, by Lemma 2.1, A is dense in F(X). 

Let ip be any continuous mapping of X into any compact Hausdorff group Ki. 
By Lemma 3.2, there exists a continuous homomorphism 0 ofF(X) into F(Xi) 
such that the diagram below commutes. 

‘ 
F(X) -> J T O 

Wl 

X -> X.. 

Lemma 3.3 implies that there is a continuous homomorphism d of F(Ki) 
onto Xi such t h a t d(m(x)) = x for all x in X T . Define IF : F(X) -> Xi by <F(y) = 
= d(0(y)) for all y in F(X). Clearly W is a continuous homomorphism and 
*F?£ := \p. 

Corollary 3.5. The Hausdorff space X is a subspace of its free compact group 
if and only if it is completely regular. 

Corollary 3.6. Every compact Hausdorff group is a quotient group of its free 
compact group. 

Proof . In view of Theorem 3.4, this is just a restatement of Lemma 3.3 

§4. CONSEQUENCES 

Theorem 4.1. The subgroup A of F(X) algebraically generated by u(X) is 
(algebraically) a free group on u(X). 

Proof . Suppose a = u(x\)Ei ... u(xn)en ~ l s i , w^here u(x-t) =j= U(XJ) for 
i #= j and E% is a non-zero integer for each i. Let 0 be an open set in u(X) 
which contains u(x±) but not u(xi) for i =(= 1. Since u(X) is completely regular, 
there exists a continuous map 0 of u(X) into {z : z = eu, 0 < t < 1} c=T 
such that 0(y) = 1 for all y not in 0 and 0(u(x{)) = e*. 
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Let cp Oti. Then <p is a continuous mapping of X into T. Therefore there 
-exists a continuous homomorphism 0 of F(X) into T such that 0u cp. 
Then 0(a) e2£i =j= 1. This is clearly a contradiction and the theorem is 
proved. 

Corollary 4.2. Let X be a completely regular Ha^lsdorff space. Then the free 
topological group on X exists and is Hausdorff. 

Proof. By comments in §2 of [2] it is sufficient to prove that there exists 
some Llausdorff group topology on the free group on X, which indices the given 
topology on X. 

Lemma 3.1 implies X is a subspace of F(X) and Theorem 4.1 implies that 
the subgroup of F(X) generated algebraically by X is the free group on X. 
The proof is complete. 

R e m a r k 4.3. We are led to ask: If X is a completely regular Hausdorff 
space, is the subgroup A of F(X) algebraically generated byr X (actually u(X)) 
the free topological group on X ? If this is not true in general is it true for 
some N? We will show in Theorem 4.4 that the answer to each of the questions 
is in the negative. 

Theorem 4.4. If X is a completely reg^dar Hausdorff space, then the s^lbgroup A 
of F(X), algebraically generated by X, is the free group F(X, V(T)) on X of the 
topological variety V(T) generated by T. Consequently A is not the free topological 
gioup on X. 

Proof . Theorem 5.4 of [7] shows that F(X) is in V_(T). Therefore A is 
in V(T). Thus by Theorem 2.6 of [5], F(X, V(T)) exists. Clearly F(X, V((T)) 
is algebraically isomorphic to A and has a finer topology than A. Consequently 
F(X,V_(T)) is Hausdorff which implies by Lemma 5.3 of [7] that it can be 
imbedded in a compact Hausdorff group II. 

Let cp be the identity mapping: X(^ F(X))-> X(^ F[X, V(T)]). Then <p 
is a continuous mapping of X into H. Theorem 3.4 implies that there exists 
a continuous homomorphism 0 of F(X) into II such that 0 X cp. The 
map 0 | A is a continuous algebraic isomorphism of A onto F(X, V(T)). There-
fore A has a finer topology than F(X, V(T)). Hence A is topologically iso-
morphic to F(X, V(T)). 

The final remark in the theorem now follows immediately from Theorem 7.28 
of [8]. 

Corollary 4.5. The topological variety V(T) is a ^-variety ([6]). 
Proof . This statement is equivalent to the fact that F(X, V(T)) exists 

and is Hausdorff, which is proved in Theorem 4.4. 
The following theorem which appears in [1] is an immediate consequence 

of Theorem 3.4. 
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Theorem 4.6. Liet X be a completely regular Hausdorff space. Then F(X) 
is the Bohr compactification of the free topological group on X. 

We point out that Theorem 3.4 could have been proved using Theorem 4.6. 
Whilst this proof would have been shorter in the case that X is completely 
regular, the proof in the more general case would not. 

§5. CHARACTERIZATION OF TOPOLOGICAL SPACES 

In this section all topological spaces considered will be Hausdorff. A. N . 
M i l g r a m [4] showed that if X and Y are compact spaces such tha t C(X) 
and C(Y) are isomorphic semigroups then X and Y are homeomorphic. 
We are therefore led to ask the question: does F'(X) characterize X within 
the class of compact spaces? The following theorem, together with results 
in [2] shows tha t the answer is in the negative. 

Theorem 5.1. Let X and Y be topological spaces with topologi cally iso-
morphic free topological groups. Then their free compact groups are topologi-
cally isomorphic. Further, K(X) and F( Y) are isomorphic. 

Proof . This is an immediate consequence of Theorem 4.6 and the Pontryagin 
duality theorem. 

We point out tha t it is shown in [2] that there do exist non-homeomorphic 
compact spaces with topologically isomorphic free topological groups. 

Let G be any topological group and X any topological space. Define r(G, X) 
to be the group of all continuous mappings of X into G with the obvious group 
structure. 

We are led to ask the question: does there exist a topological group G such 
that r(G, X) characterizes X within the class of compact spaces? The following 
theorem shows that the answer is again in the negative. 

Theorem 5.2. Let X and Y be topological spaces with topologically isomorphic 
free topological groups. Then for any topological group G, r(G, X) is isomorphic 
to r(G, Y). 

Proof. Let F be the free topological group on X. Then for any continuous 
mapping <p of X into G, there is a unique continuous homomorphism 0 of F 
into G such that 0u = cp. Thus there is a one-one correspondence <p <-» 0 
between continuous mappings of X into G and continuous homomorphisms 
of F into G. In fact this gives an algebraic isomorphism between r(X) and 
the group of continuous homomorphisms of F into G. Thus F determines F(X). 
From this the result immediately follows. 
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