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PROJECTIVE LIMITS OF FINITE-DIMENSIONAL
LIE GROUPS

KARL H. HOFMANN anD SIDNEY A. MORRIS

1. Introduction

In the theory of compact and locally compact groups it has been customary to
study and use ‘projective limits of Lie groups’. By this one means usually that a
topological group G is a projective limit of Lie groups if it has arbitrarily small
compact normal subgroups N such that G/N is a finite-dimensional Lie group.
Such a group is necessarily locally compact; conversely if G is a locally compact
group and U is a compact identity neighborhood, then any closed normal
subgroup contained in U is trivially compact. At the root of this intuition of
‘projective limits of Lie groups’ is,

— firstly, the theory of compact groups reaching back to the twenties of the last

century (for a recent presentation see [3]),

— secondly, Iwasawa’s fundamental paper of 1949 [7] giving decisive structural
information on locally compact groups being projective limits of Lie groups
in this sense, and,

— thirdly, Yamabe’s article [9] in which he showed that every locally compact
group G for which the factor group G/ G, modulo the identity component is
compact, is indeed a projective limit of Lie groups in this sense.

Groups for which G/ G, is compact are called ‘almost connected’. All of this was
made popular within the horizon of the theory of topological groups through the
enormously influential book by Montgomery and Zippin [8].
We say that a topological group G is a projective limit of Lie groups, or,
equivalently, is Lie projective, if there is a projective system
{fix: Gy = G;| j<k, (jk)eJxJ}

for a directed index set J and for finite-dimensional Lie groups G; and if

G=lmG; = {(81)./'61 ellG

jeJ

(Vji<k)g; :fjk(gk)}

is the projective limit of this system.

We say that G is a pro-Lie group if G is a complete topological group and
every identity neighborhood contains a normal subgroup N such that G/N is a
finite-dimensional Lie group, and that the intersection of every two such normal
subgroups contains a third of the same type. Every pro-Lie group is a Lie
projective group. Indeed let .4°(G) denote the filter basis of all N such that G/N
is a finite-dimensional Lie group. Then the natural quotient maps G/N — G/M
for M2 N in A(G) form a projective system such that G =limyc 4 G) G/N.
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The converse, namely, that a Lie projective group is a pro-Lie group, is far from
obvious, as one experiences as soon as one attempts a proof. But in this article,
our first order of business is to prove that the two concepts are indeed equivalent.

Both of these concepts are vastly more general than the concept described in
the beginning of the introduction. This is illustrated by any infinite power R or,
for that matter, by any infinite product of a family of non-compact finite-
dimensional Lie groups. Such products are pro-Lie groups but are not locally
compact. We shall observe here (and give more details in a monograph in
preparation [4]) that pro-Lie groups have an excellent Lie Theory in the sense that
each pro-Lie group G has a generally infinite-dimensional Lie algebra £(G) with
an exponential function exp: £(G) — G whose image generates a dense subgroup
of Gy; we illustrated the usefulness of this sort of Lie theory in our monograph on
compact groups [3]. The additive group of £(G) is itself a pro-Lie group. The
category of all pro-Lie groups will be recognized as being complete and as being
the smallest full subcategory of the category of all topological groups and
continuous group morphisms (being closed under passing to isomorphic objects)
such that it contains all finite-dimensional Lie groups. It is relatively simple
to prove that the category of Lie projective groups is complete; it seems
prohibitively difficult to show directly that the category of pro-Lie groups is
complete. Thus the category of Lie projective groups has good functorial
properties while the category of pro-Lie groups has good structural properties,
and it is therefore a great advantage to know that the two categories are indeed
one and the same category. It is not easy at all to prove that a closed subgroup H
of a pro-Lie group G is again a pro-Lie group, but we show this to be the case
here; the stumbling blocks are, firstly, that the continuous algebraic isomorphism
H/(HNN)— HN/N is not an isomorphism of topological groups in general
and, secondly, that an easy criterion is not available that says when a subgroup of
a Lie group is an analytic group in the absence of closedness. If G is a pro-Lie
group and N is a closed normal subgroup then G/N has arbitrarily small
subgroups modulo which this quotient is a finite-dimensional Lie group, but,
unfortunately, in general it fails to be complete as we show elsewhere [5, 4].
Nevertheless we show here that this does not impair the Lie theory of pro-Lie
groups in the following sense. If G is a pro-Lie group then the morphism
q: G— G/N induces a surjective morphism of Lie algebras.

The bottom line is that the category of pro-Lie groups is suitable in all respects
in which any category of locally compact groups is defective:

it is closed under all limits and contains all finite-dimensional Lie groups;

it has an excellent, albeit in general infinite-dimensional, Lie theory;

it is closed under passing to the additive groups of the Lie algebras.
And, in addition it still has the following property:

— it includes all almost connected locally compact groups and thus is the true
background theory for any Lie theory of locally compact groups.

The classical example of a semidirect product (Z/ ZZ)Z X, Z with the shift action
of Z on the product is a locally compact group which is not a pro-Lie group;
certain p-adic Lie groups such as SL(2,@,) likewise are not pro-Lie groups in
our sense.

The second major result in this article concerns the Lie algebra functor £ from
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the category of pro-Lie groups into the category of topological Lie algebras. It is
not obvious whether or not a connected non-degenerate pro-Lie group G has non-
degenerate one-parameter subgroups R — G at all, that is, whether its Lie algebra
2(G) is non-zero. However, we shall show in this paper that for any quotient
morphism f: G — H between pro-Lie groups, the induced morphism of topo-
logical Lie algebras £(f): £(G) — L(H) is surjective, and since G has many
non-degenerate quotients G/N which are finite-dimensional Lie groups, this will
answer the question in the affirmative.

It is a consequence of fairly general category-theoretical considerations that
£ preserves all limits and thus, notably, preserves kernels. The proof of the surjectivity
of £(f) for all quotient maps reduces comparatively quickly to the proof that
L(f) is surjective whenever f is a quotient morphism G — R. Thus we have to
show that every quotient morphism G — R splits. The proof of this fact is
surprisingly complex, and, not surprisingly, it uses the Axiom of Choice.

For a recent thorough study of very general Lie algebra functors we refer to
the article by H. Glockner [2] who discusses and strongly uses projective limits of
finite-dimensional Lie groups.

Acknowledgment. We are grateful to the referee whose extremely careful
scrutiny of our text helped to clarify matters and remove a number of obscurities.

2. Projective limits

For a proof of the first background theorem on projective limits, see [1, 2, 6] or
[4, 1.27 and 1.33].

THEOREM 2.1 (Fundamental Theorem on Projective Limits). Let G = lim;¢; G;
be a projective limit of a projective system
gz{fjki GkHGjl(],k)GJXJ,]gk}
of topological groups with limit morphisms f;: G — G;, and let %U; denote the

filter of identity neighborhoods of G;, U the filter of identity neighborhoods of G,
and N the set {ker f;| j € J}. Then

() % has a basis of identity neighborhoods { "' (U) | ke J, U €U},
(i) A" is a filter basis of closed normal subgroups converging to 1.
If M2N in A and if vyy: G/N — G/M is defined by vyy(gN) = gM, then
{vun: G/N -G/M|(M,N)e /' XN ,M2N}
is a projective system of topological groups, and there is a unique isomorphism
n: limyc  G/N — G such that the following diagram commutes with j <Kk,

M =Xker f;, N = ker f;, and with the morphisms fj/: G/kerfj — G, induced by the
limit map f;: G — Gj:

L G/MEMN /N Y tim G/P
PeN(G)
f/[ Mf;i l"
...G; G, — G
Sik

The limit maps vy are quotient morphisms.
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(ii)) Assume that all bonding maps f;: Gi — G, are quotient morphisms
and that all limit maps f; are surjective. Then the limit maps f;: G — G; are
quotient morphisms.

(iv) Set H; =f;(G) for each j€J and let f;: H, — H; be the morphisms
defined by fjy for j<k. Then

{fj/k: HkHHjl(],k)GJXJ,Jgk}

is a projective system of topological groups and G =lim;.;H;. The limit maps
f j': G — H; are corestrictions of the f; and they have dense images.

(v) Assume that all G; are complete; then so is G.

(vi) Let G be a complete topological group and N a filter basis of closed normal
subgroups converging to the identity. Then vg: G— G 4, v(g) = (gN)NeA/-(@ is
an isomorphism. That is, G =limy. , G/N.

Our next theorem implies, in particular, that a closed subgroup of a projective
limit of finite-dimensional Lie groups is a projective limit of finite-dimensional
Lie groups in a natural way. We remind the reader of the following terminology: a
filter basis # in a topological group G is called a Cauchy filter basis if for each
identity neighborhood U of G there is a member F € & such that FF “lcu.
(See, for example, [4, Theorem 1.30 and the paragraph preceding it].)

THEOREM 2.2 (The Closed Subgroup Theorem for Projective Limits). Assume
that N is a filter basis of closed normal subgroups of the complete topological
group G and assume that lim A" =1 and that all quotient groups G/N are
complete for N € N". Let H be a closed subgroup of G. For N € A" set Hy = HN.
Then the following conclusions hold.

(i) The isomorphism vg: G —limyc o G/N maps H isomorphically onto
limNEM HN/N

(i1) Under the present hypotheses,
H= lim H/(HNN)= lim HN/N = lim HN/N.
New New New

(iii) The limit maps
U A}imVHN/N—>HM/M, Me N,
eN

are quotient morphisms.

(iv) The standard morphisms H/(HNN)— HN/N are isomorphisms of
topological groups.

Proof. (1) We note that
Hy/N=Hy/NcG/N, (1)

and thus Hy/N, as a closed subgroup of a complete group, is a complete
group. Let % be the filter of identity neighborhoods of G; for U € % find V € %
such that VV c U. Since lim.4/" =1 by hypothesis, there is an N € 4" such
that N V. For any subset A of a topological group, the closure A is the
intersection of the sets AW where W ranges through all identity neighborhoods.
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Thus Hy = HN c HNV c HVV c HU whence
(1 Hv= (| HNc (| HU=H=H. (2)

Nen Nen Ueu

For Mo N, the bonding map vyy: G/N— G/M induces a bonding map
pun: Hy/N — Hy, /M by restriction and corestriction, and

2= {vyn: G/N — G/M| (M,N)€ NV x N, Mo N}, (3)
a@ﬂ:{,U.MNHN/N—>HM/M|(M,N)GJ‘/XJV,MQN} (4)

are projective systems in which the bonding maps have dense image. (In the former
system they are of course quotient morphisms.) The projective limits are written
limyc  G/N and limy. , Hy /N, respectively. There is a unique morphism

e: NIIE%HN/N —’Nhefg/,G/N, 8((gNN>Ner”) = (gNN)NeA/'
such that the following diagram commutes:

o Hy /M EMY g /N limy. , Hy/N

inclMl lincl,\, la (5)

G/M MY G/N limy. ,G/N

Since G is complete, by Theorem 2.1, there is an isomorphism

ve: G — lim G/N,
New

and there is a morphism 6y: H — limy. - Hy/N defined by 65(h) = (AN)yc s
such that the following diagram commutes:

1)
H —" limy¢ - Hy /N

incll ls (6)

G—— 1imN€e/‘/‘ G/N
Y6

We claim that 84 is an isomorphism. For this purpose we define a function
o: limy. ,Hy/N — H of which we shall show that it is a morphism of
topological groups and inverts 6.

Let (gyN)ye . €limyc - Hy /N, thatis, gy € Hy and M D N implies gy, € gy M,
equivalently, gy € gyyM. Then & := {gyN | N € A"} is a Cauchy filter basis in G,
and % does not depend on the particular choice of the representatives g, of the
cosets gy N, but only on the cosets. Since G is complete by hypothesis, g = lim %
exists. Note that g is also the limit of the net (gy)ye.s, irrespective of the
choice of the representatives gy. We claim that g € Hy for all N € 4. Fix N € A~
and consider N> P in A". Then gpP C gyN C Hy, for all of these P and thus
g € Hy = Hy for all N € .//; this proves the claim. Therefore g € (\yc. Hy = H by
(2). We thus define a function ¢: limy,  Hy/N — H by setting

o((gvN)ye.y) =lim{gyN|N € /}. (7)
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From this definition it follows that
o((gvN)ne s (gnN)nes) = o((gngvN)ve.r) = limgy gy
= lim gy limg,'\, = U((gNN)NeA’”)G((gll\/N)Nevfl’”)-

Thus o is a morphism of groups. Next we show that o is continuous at the identity.
Let V € %; pick a U € % such that UU c V; by Theorem 2.1(i) we may assume that
U= UN = NU for some N € ./". Now we define Uy, cHy /M by Uy =Hy/M
for M # N and by Uy = U/N and set

U= (MEV UM> N lim Hy /M.
Now let g = (g M)pye v € U. Then gyN € Uy = U/N. Hence for N o P we have
gp € gvN c U. Thus o(g) = limy, . gy € Uc UU V. This concludes the proof
of the claim that o: limy. , Hy/N — H is a morphism of topological groups. For
h € H we have

im h=h.

0(0u () = o(AN e ) = Jim

Now let g = (gyN)ye.y; then
ou(o(g)) = BH(A}ieIT}VgN) = (hN)ye s

with h=limyc - gy. If now Ne€ ./ then NoP implies gp € gyN whence
h=limpc 4 gp € gyN, and thus AN = gyN for all N € 4. We conclude that
6y (0(g)) = g. Therefore o and &y are inverses of each other. We have shown that
H =limy. , Hy/N where Hy/N is a closed subgroup of G/N for each N from
the filter basis A"

(ii) The filter basis {HNN|N € ./} in H converges to 1. We know that
yu: H—limyc o H/(HNN), yy(h) = (h(HNN))yc. is an isomorphism by
Theorem 2.1. The bijective morphisms of topological groups H/(H "N) — HN /N,
with N € A7, induce a bijective morphism j in the sequence of morphisms

. o incl .
H . tim H/(HAN) —L— 1im HN/N 2% tim Hy/N -2~ H
New NeN NeN

whose composition is the identity, that is, o o incl o j o vy = id, so that
incl o (joyyoo)=id.

Hence the inclusion morphism incl is an isomorphism.

(iii)) We must show that the limit morphisms uy,: limyc  HN/N — HM /M
are quotient morphisms. Indeed, let U be an identity neighborhood of the
limit; since lim .4~ = 1 by hypothesis, we may assume that there is an N € M such
that Ukerpuy = U. Then uy(U) is an identity neighborhood of HN/N. Since
pun: HN/N — HM /M is a quotient morphism and py; = ppyy © py, we conclude
that uy, (U) is open which establishes the claim.

(iv) We must show that

ay: H/(HAN) — HN/N, ny(h(HAN))=hN,

is an isomorphism. In the proof of (ii) we saw that 6 =j o yy: H — limy¢  HN /N
is an isomorphism of topological groups. By what we have just seen, for each
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M € ./, the morphism uy ©joyy: H— HM/M is a quotient morphism. Its
kernel, however, is H N M. Hence in the canonical decomposition

ojo
HMHM/M

quotl TldHM/M

H/(HmM)n—>HM/M
M
the morphism 7;, is an isomorphism. U

COROLLARY 2.3. FEwery closed subgroup H of a pro-Lie group G is
Lie projective.

Proof. We continue the notation of Theorem 2.2. As a closed subgroup of the
finite-dimensional Lie group G/N, the group HN /N is a finite-dimensional Lie
group. By Theorem 2.2(ii) we have H =limyc o) HN/N, and thus H is a
projective limit of finite-dimensional Lie groups. |

A topological group G is said to be a proto-Lie group if the set A(G) of all
closed normal subgroups N of G such that G/N is a finite-dimensional Lie
group, is a filter basis converging to 1. Note that it is a pro-Lie group if it is, in
addition, complete. A proto-Lie group is densely embedded into a pro-Lie group
via yg: G — limy¢ (6) G/ N, v5(g) = (§N)nec . (G)- For easy reference we quote
the following characterisation of pro-Lie groups from [4].

ProrosITION 2.4. For a topological group G, the following two conditions
are equivalent:

(1) G is a proto-Lie group;
(ii) there is a filter basis .# of closed normal subgroups converging to 1 such
that G/M is a finite-dimensional Lie group for each M € M.
If these conditions hold, then 4 is cofinal in N (G). Moreover, if G is complete,
then these conditions are equivalent to
(iii) G is a pro-Lie group.
If (iii) holds then G =limy. , G/M.

Proof. Since (i)=(ii) is trivial by the definition of a proto-Lie group, we
prove (ii) = (i). Clearly, .# < A4"(G). We claim that

(VN € A (G))(3M € M)N 2 M. (8)

Let us begin by assuming that condition (8) is satisfied. Then we claim firstly
that A47(G) is closed under finite intersections and hence is a filter basis. Let
Ny, N, € /(G), then by (8) there are subgroups M,, M, € .4 with N;2 M, for
j=1,2. Since .# is a filter basis, there is an M € .# such that M| "M, D M.
Hence N; "N, 2> M. Therefore G/ (N, NN,) is a quotient group of the finite-
dimensional Lie group G/M and is therefore itself a finite-dimensional Lie group.
Hence Ny NN, € A°(G). Secondly, since .# c ./ (G), and since .# converges to
1, the filter basis .A"(G) converges to 1 as well. And finally, by (8), .# is cofinal
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in A(G), whence G =limy¢ ,G/M =limyc 4G G/N by cofinality (see [4,
Cofinality Lemma 1.21]).

Thus it remains to prove (8). So let N € A°(G) be given. Let U = UN be an
open identity neighborhood of G such that UN /N is an identity neighborhood of
the finite-dimensional Lie group G/N which contains no subgroups other than
the singleton one. If p: G— G/N is the quotient map, then the image filter
basis p(.#) converges to the identity in G/N. Hence there is an M such that
p(M)c UN/N. Then the subgroup p(M) is singleton, that is M < N, which is
what we had to show.

If G is complete, then (i) shows that G is a pro-Lie group and by Theorem
2.1(vi) we then know that G = limy,. , G/M. O

3. Weakly complete vector spaces and Lie algebras

For the concept of weakly complete vector spaces see [3, p.319ff]. Here is one
way of describing a weakly complete vector space: a topological vector space is
weakly complete if there is an isomorphism of topological vector spaces to some
product vector space R*.

ProrosITION 3.1. Let f: V— W be a morphism of weakly complete vector
spaces. Then f(V) is a closed vector subspace of W.

Proof. We have a canonical decomposition

where g(v) = v+ ker f, j(w) =w, and f'(v +kerf) = f(v). After replacing f by
f' we may assume without loss of generality that f is injective and has a dense
image. Then f is both a monic and an epic in the category of weakly complete
vector spaces since it has a zero cokernel. By the Duality Theorem for Real
Vector Spaces (see [3, p.325, Theorem 7.30]) the dual f: W — V is a linear map
between real vector spaces which is both a monic and an epic. But then it is
bijective, that is, is an isomorphism. By duality again, f :f is an isomorphism
and thus has an inverse in the category of weakly complete vector spaces. Hence
it is bijective. In particular, it is surjective and thus the lemma is proved. U

LEMmA 3.2. Let g =limy; g, be a projective limit of a projective system
{vier ax—g;li<k, (k) eJxJ}
of finite-dimensional real vector spaces in the category of weakly complete vector

spaces. Let y;: @ — g; denote the limit maps. Then for each j € J there is an index
k; = j such that 'ijj(gk) cv,(9).

Proof. Since g; is finite dimensional, v;(g) is a closed vector subspace of g;.
By the Duality Theorem for Real Vector Spaces (see [3, p.324, Theorem 7.30],
statement (ii) is equivalent to the following assertion.
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(x) Let E = colimyc;E; be the direct limit of a direct system
i E; = Exlj<k, (j. k) €I xJ}

of finite-dimensional vector spaces. Fix an index j € .J. Then there is an index
k; = j such that g ik vanishes on kery;.

Now E is the directed union of the images 74(Ey). If x € E; is such that
1,,(x) # 0 for all k, then 7;(x) # 0. Thus for each x € kery; there is a k, = j such
that 7, (x) = 0. Since dimkern; <dimE; is finite, kern; is finitely generated.
Statement (x) follows. [l

We record that for a topological group G, a one parameter subgroup is a
continuous group morphism f: R — G.

We shall deal with topological groups that have a Lie algebra. The space
Hom(R, G) of all one parameter subgroups X: R — G endowed with the topology
of uniform convergence on compact sets is denoted £(G). Accordingly € is a
limit-preserving functor from the category of topological groups to the category
having topological spaces with base points as objects and base-point-preserving
continuous functions between them as morphisms. For suitably good specimens of
topological groups, the assignment £ has much better properties, as we shall
outline in the following definition. For a real number r we set square(r) = r>. In
a group we write the commutator (g7h<gfllfl as comm(g, h).

DEerFINITION 3.3. Let G be a topological group. Then it is said that G has a
Lie algebra or, equivalently, that G is a topological group with a Lie algebra if
the following conditions hold.

(i) For all X, Y € £(G), the following limits exist pointwise:
1 1 "
xvitim ((1x)(17)), o)
n— oo n n

2
1 I
[X, Y] o square := lim comm(—-X, —- Y) (10)
n

n— oo n

and X+ 7, [X, Y] € £(G).

(ii) Addition (X,Y)— X +7Y: &(G)x &(G) — L(G) and bracket multiplication
(X,Y)— [X,Y]: £(G)x &(G) — £(G) are continuous.

(iii)) With respect to scalar multiplication -, addition 4, and bracket
multiplication [-, -] the set £(G) is a real Lie algebra.

In particular, if G has a Lie algebra, then £(G) is a topological Lie algebra.
Note that a topological group G has a Lie algebra if and only if the connected
component G of the identity has a Lie algebra.

A Lie algebra is said to be profinite dimensional if it is a projective limit of
finite-dimensional real Lie algebras. The underlying vector space of a profinite-
dimensional Lie algebra is a weakly complete vector space.

Using the continuity of the functor ¥, it is not hard to see that all Lie
projective groups have a Lie algebra, and indeed a profinite-dimensional one.

We shall have to deal with topological groups G for which we make some
standard assumptions.
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NoraTiOoN 3.4. For G there is a projective system
{fjk Gk_>Gj | (j,k) GJXJ,J$I€}

of finite-dimensional Lie groups G; such that G =lim;.; G;. The limit maps
are denoted f;: G — G, the kernels ker f; of the limit maps will be abbreviated
by K;. The finite-dimensional Lie algebras £(G;) will be written g;. Let us write

fix = L(fj) and f; := L(f)).

ProposITION 3.5. There is a projective system
{fur o —9;1 (J k) eI xJ, j<k}
of finite-dimensional real Lie algebras and Lie algebra morphisms such that

2 =limg;
(G) = limg,
and that the continuous Lie algebra morphisms ;. £(G) — g; are the limit morphisms.

Proof. By [4, Theorem 2.25(ii)], the functor ¥ from the category of all
topological groups having a Lie algebra and continuous group morphisms between
them to the category of topological Lie algebras is continuous and thus, in
particular, preserves projective limits. Hence £(G) = lim,c,; £(G;), and we may
identify the two profinite-dimensional Lie algebras. O

We set a; ={,(¢(G)) cg; for each j € J, and let aj;: a; — a; be the morphism
of finite-dimensional Lie algebras induced by f;; for j <k.

LEMMA 3.6. The system
L i=A{aj q — ;| (j k) €IxJ, j<k}

is a projective system of finite-dimensional Lie algebras and surjective bonding
maps. We have

£(G) = lima,.

The limit maps o;: £(G) — q; are quotient morphisms.
Proof. We apply the Fundamental Theorem on Projective Limits, Theorem
2.1(iv), to the system % and conclude that lim %’ =1lim .. The limit maps

a;: £(G) — q; are surjective and thus are quotient maps [3, p.3.26, Theorem 7.30].
It also follows that the bonding maps oj;: a; — a; are surjective. ]

The following diagram illustrates the situation:

a.
aj i ak Q(G) = limjej aj
incljl inclkl . Jidg(G)
g; 8k ¢(G) = lim;c;g;
Tk

Now for each j€J, the subalgebra a; of the finite-dimensional Lie algebra g;
determines an analytic subgroup A; := (expg, ;) of G; such that £(A;) = a;. (For
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linear Lie groups a reference is [3, p. 155, Theorem 5.52]. The proof there does
not depend on the assumption that G is a linear Lie group.)

LEMMA 3.7.  Under our general assumptions for G = lim;c; G; we have

Proof. From Lemma 3.2 we have
(VjeJ)3k;=j, ki€ J)iu,(s,) <0

The assertion now follows from the fact that, as a finite-dimensional connected
Lie group, (ij)o is algebraically generated by exp g, and that A; is algebraically
generated by a;. Thus

Fik;((Gi,)o) = fix,({exp ay,)) = (exp L(fjx,)(8x,)) = (expa;) = A;. O

The morphisms fj;: Gy — G; induce morphisms V;; :=f;x | Ay Ay — A; with
B(\ij) = ajk and fﬁ() (Gk)() — (GJ)O Then

is a projective system of analytic groups; let A :=lim;c;A; be its limit. Each
analytic group carries a topology which is in general finer than the induced topology,
making the subgroup A; into a connected Lie group H; such that £(H;) = £(4;) = q;
and that the morphisms y;;: A; — Ay induce morphisms of Lie groups ¢;;: Hy — H;
such that £(¢;;) = ;. We have injective morphisms

[oF]

: incly, inclg,

0

H.

J A;

J

where ¢; is the bijective morphism of topological groups given by &;(h) = h and

incl denotes the respective inclusion morphisms.
We consider the projective system

H = {qﬂjk: HkHHll(j,k)GJXJ,‘]gk}

of finite-dimensional Lie groups and let H = lim;.; H; denote its limit; we note
that due to the continuity of the functor £ we have

L(H) = lim 2(H,) = lima; = £(G). (Q)

It is not at all clear at this time that a pro-Lie group is connected if its finite-
dimensional Lie group quotients are connected. However, we observe the following
lemma which we shall presently apply to H = lim;.; H;.

LEMMA 3.8.  Assume that H is a projective limit lim; ¢ ; H; of finite-dimensional
Lie groups satisfying the following two hypotheses:

(i) for all j €J the Lie group H; is connected, and
(i) the limit maps ¢;: H— H; with j€J induce surjective morphisms
L)) L(H) — L(H).

Then H is connected.
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Proof. Let h be an arbitrary element of H. We shall show that arbitrarily close
to h there are elements from the arc component of the identity of H; thus the arc
component of the identity is dense in H and so H is indeed connected. For a
proof let U be any identity neighborhood of H. By Theorem 2.1(i) we may
assume that U = goj_l(V) for some identity neighborhood V of H;. Since H; is
connected by hypothesis (i), and since any connected finite-dimensional Lie group
is algebraically generated by the image of its exponential function, there are
elements Xj,...,X, € ¢(H;) such that ¢;(h) = expy, X;...expy, X,. By hypo-
thesis (ii) the morphism £(g;): ¢(H) — £(H;) is surjective, and thus we find
elements Y,, € £(H) such that X,, = ¥(¢;)(Y,,) for all m = 1,...,n. Accordingly,
expy, X = expy, L(¢;)(Yn) = ¢;(expn ¥,,) in H; for all m and so

¢j(h) = ¢;(expu Y1) ... ¢j(expy ¥,) = ¢j(expy Y ...expy V).
Let a: [0, 1] — H denote the arc in H given by a(t) = expy(¢-Y;)...expy(t-Y,).

Then «(0) =1 and (1) =expy Y, ...expy ¥, € ¢; '(¢;(h)) = hkerp; c hU. This
proves our claim and thus finishes the proof of the lemma. |

LEMmA 3.9. The system
H = {pu: Hy— H; | (j, k) € IxJ, j<k}

is a projective system of quotient morphisms between finite-dimensional connected
Lie groups and its limit H =lim;c; H; is a connected pro-Lie group. The limit
maps ¢;: H — H; are quotient morphisms.

Proof. Since all £(p;;) = ;. are surjective, the morphisms ¢;; are surjective,
and since H, as a connected finite-dimensional Lie group is o-compact and locally
compact and H; is locally compact, by the Open Mapping Theorem (see, for
example, [3, p.650]) the morphisms ¢;; are quotient morphisms. Therefore, the
limit maps ¢;: H — H; are quotient morphisms by Theorem 2.1(iii). It follows
that H is a pro-Lie group and that % := {ker¢; | j € J} is a cofinite filter basis of
A (H). Now the preceding Lemma 3.8 applies to show that H is connected. ]

We illustrate the situation in the following diagram showing the limits of the
various projective systems that we consider:

Pik ’
g & e
ik .
A]<——Ak A:hmjeJA]
incl A, incly, ... incl, (D)
i .
(Gj)o «—— (Gk)o- .Gy = (lim;c ;(G})o)o
incl G))o incl(g,), inclg,
ik

The universal property of the limit G gives us the morphisms e: H— A
and the various inclusion morphisms incl filling in diagram (D). Notice that
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= £(G) and we may identify £(g) and the various maps
y the concrete construction of the limits we have

LH)=2(A) =L¢(B
L(incl) with idg(g).

b
G= {(gj)jej € H G;
{

(Vi <k inJ)flg) = g,},

jeT

(aj)jes € H Aj

jeJ

(VjiskinJ)fi(ay) = aj},

H= {(hj)je, e[]H

jeT

Thus A is a subgroup of G and we may identify H with A except that its topology
may be finer than the topology induced from G on A.
The situation is again illustrated by the following diagram:

L(H) L(4) £(G)
€XPyu l €Xpa J leXPG
H A G

& incly
%l ‘P/J ij
H; A; G;
! gj ! inclA/_ !

where ¢ and all ¢; are bijective and all incl are embeddings.

For a given Lie projective group G = lim;c; G; a connected pro-Lie group H
has emerged almost out of nowhere and it is mapped under the bijective
morphism & onto the subgroup A of G. Clearly we must identify this subgroup of G,.

Lemma 3.10. H = Gy.

Proof. By Lemma 3.7,
(Vjed)3j<k €J)fu,((Gy)o) CA;.

Now we notice that (ij)o is locally arcwise connected and H; is A; equipped
with the arc component topology (cf. [3, p.156, Theorem 5.52(iv) and
pp. 760 f.]). Hence the restriction and corestriction fj; | (G, )o: (Gj,)o — A; factors

through &;: H; — A; for a morphism J?jkj: (Gy,)o — H; such that
Jﬁ'gj i=incly, © &0 fj.: (G, )o — (Gj)o-
Temporarily, set

in the category of topological groups and continuous morphisms. Thus for each
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J €J there is a k; =j and a commutative diagram

i
(G~ (G, )o ... G°

2

Hje———H, ... H
\ ‘p]k
incl; o s]l 1nc1kj o Sk’l JinclA og
(Gj>0 <T(Gk,-)o---G0
Jkj

It follows that there is a morphism f; : fjk [(Gi,)o © [, ]GO G° — H; Wthh is
independent of the choice of k in as much as it agrees w1th fi ik, © fk k © fk\ G° for
k = k;. We notice that for j < < ;' we get Bi=ejjir o 5, G’ — H;. Thus the unlversal
property of H = lim; . ; H; implies the existence of a unique morphlsm B:G°—H
such that 3; = ¢; © B
From 1ncl a0gof; k= f] K, We conclude that
incly o g o B =1idgo.

Thusincly o e: H — G is a retraction, and since it is injective, it is an isomorphism.
As it is also an inclusion map (except for continuity), we now see that it is an
isomorphism. This shows G° = H. Thus G is connected and so

H=G"cG,. (12)
Now (11) and (12) imply H = G, O

4. Are Lie projective groups pro-Lie groups?

For easy reference we recall the definition of .#°(G) and complement it in a
way that will be useful to us.

DErFINITION 4.1. For a topological group G let
N(G):={N<2G|G/N is a Lie group},
No(G) :={N <Gy | Gy/N is a Lie group} = N(Gy). O

In a pro-Lie group, 4/°(G) is a filter basis which converges to 1.
We work in the setting of Notation 3.4. Recall that K; :=ker f; and that for
each j € J we have an injective morphism G/K; — G;.

LEmMmA 4.2 (The First Fundamental Lemma). Let G be a projective limit
lim; ¢ ; G; of finite-dimensional Lie groups. Then the following conclusions hold.

(1) The identity component G is a pro-Lie group and thus

Go= lim G,/M.
Me Ny(G)

(i) Set M :={GyNK;|je€J}. Then M is a cofinal subset of Ny(G); that is,
for each M € N (G) there is a j € J such that Gy "K; C M.
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(iii) For each je€J, the natural map (Go/(GyNK;))— (GoK;)/K; is an
isomorphism, the group G K; /K ; is a Lie group and a closed subgroup of G /K ;, and

Proof. (1) By Proposition 2.4 and Lemmas 3.9 and 3.10, the identity
component G, is a pro-Lie group, and we have G, =limy¢ 4;6)Go /M by
Theorem 2.1(vi).

(i) Since lim.4#4(G) =1 and f;: G — G, is continuous for each j € J, we have
lim f;(A5(G)) = 1. But G, is a Lie group and thus has no small subgroups. Hence
there is an M € ./;,(G) such that f;(M) = {1}, that is, M C K;. Thus we have a
quotient morphism Go/M — G/ (GyN K ;). Since quotients of finite-dimensional
Lie groups are Lie groups, G, / (Gy N K;) is a Lie group whence Gy N K; € A(G) by
Definition 4.1. Hence .# < Ay(G).

By Theorem 2.1(i) we know that lim;c; K; = 1. Then lim;c; Go N K; = 1. Let
M € Ny(G). Then Gy/M is a Lie group, and thus there is an open identity
neighborhood U of G, such that UM = U and U/M has no non-singleton
subgroups. Then there is a j € J such that Gy N K; c U. Since (GoNK;)M /M is
a subgroup of G,/M contained in U/M, we have Gy " K; C M.

(iii) By (ii) above, Gy/(GoNK;) is a finite-dimensional Lie group. We set
N :={K;|jeJ}. By Theorem 2.1 we know that lim./" = 1. So we can apply
Theorem 2.2 with H = G(. In particular, Theorem 2.2(iv) yields the assertions
of (iii). O

Note that we have shown, in particular, that every connected Lie projective
group is a pro-Lie group.

A topological group G is said to be protodiscrete if the filter basis of open normal
subgroups converges to 1. If G is in addition complete, it is called prodiscrete.

ProposiTiION 4.3. (a) For a Lie projective group G, the following statements
are equivalent:

(i) G is prodiscrete;

(i1) G is zero dimensional;
(iii) G is totally disconnected;
(i) ¢(G) = {0}.

(b) A quotient of a protodiscrete group is protodiscrete.

Proof. First we prove (a).

(1)= (ii)). By (i), G is a closed subgroup of a product of discrete groups and
therefore the filter of its identity neighborhoods has a basis of open subgroups.

(i1) = (iii) = (iv). This is clear.

(iv)=(i). Let G = lim;c; G; with a projective system as in Notation 3.4. By
Theorem 2.1(iv) we may and will assume that the limit maps f;: G — G; have
dense images. Let D; be the discrete group G;/(Gj;), and let

9 ={Fy;: Dy —D;|j<k, (j.k)eJxJ}

be the projective system induced by £ and let D = lim;c; D;.
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Since G; = f;(G) and the groups D; are discrete, the limit maps F; are surjective.
Then each quotient D/ ker F; for the limit maps F;: D — D; is discrete, and
D =lim;.; D /ker F ; by Theorem 2.1(ii). Hence D is a prodiscrete group. Now by
hypothesis (iv) we have {0} = £(G) = lim;., £(G;). Then by Lemma 3.6, for each
J€J, there is a k; = such that fj; (g;,) = {0}, that is, fj; ((Gy,)o) = {1}. Thus

ffk,' factors through a morphism F ik, Djx, = G;. We have a diagram

ik,

Gj%ij..

61,,1 le q
Fjy,
D; < Dy,
Fo )

.G
...D
G —Gy,...G
jk;

By an argument analogous to that used in the proof of Lemma 3.10 we conclude
the existence of a morphism 7; := _jk/_ °Fy:D— G; which is independent of the
choice of k; in as much as it agrees with ijj ° Fir© Fy for k= k;. We notice
that for j<j' we get ;= fjj ° 7rj’: D — G;. Thus the universal property of
D = lim;; D; implies the existence of a unique morphism p: D — G such that
m; =f; o p. Hence G is a retract of D. But retracts of prodiscrete groups are
easily seen to be prodiscrete. This complete the proof of (a).

Now we prove (b). If G is protodiscrete, /"(G) is a filter basis of open normal
subgroups which converges to 1. Now let N be a closed normal subgroup of G.
Define % = {NU/U | U € A'(G)}. Now NU is an open and hence closed normal
subgroup of G and thus the NU /U are open-closed subgroups of G/N, and we
claim that % converges to the identity of G/N. Let W be an open identity
neighborhood of G/N and V its full inverse image in G. Then V is an open
identity neighborhood of G such that NV = V. Since .4"(G) converges to 1, there
isa U € A (G) such that U cV. Then NUcC NV =V and thus NU/N < W. This
proves the claim and proves (b) in view of Proposition 2.4. O

LEMmA 4.4 (The Second Fundamental Lemma). For any Lie projective group
G, the component factor group G/ G, is protodiscrete; if it is complete, then it
is prodiscrete.

Proof. 'We retain the notation of the proof of Proposition 4.3 and consider the
commutative diagram

fir .
(G))o < (Go ... Go = }IEH}(G/')O

incll incll lincl
fik

G, —r— G, ... G=1imG,
jeJ -
quotl quotl lq
Fi
jel
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The morphism ¢g: G — D is the fill-in map given by the universal property of the
limit in the last row. Since the composition

uot
(G Yo incl G, q ;

is constant, so is the composition

Go mch q D

Hence we have a unique morphism p: G/Gy — D, p(gGy) = q(g). Assume that
g =(g)jes €G is such that p(gG,) =1, that is, (g;(G;)o)jes =¢q(g) =1 in
hm]EJD, thus

g€ ﬂ fi7((G))o) = 1im(G))o = G-

7
jed /€

This shows that p is injective. The sets F;~ (1) are basic identity neighborhoods
of D by Theorem 2.1(i). As p_lF_l( )= f] (( Gj)o)/ Gy and this is an open-closed
subgroup, we see that p is an embedding. Therefore G/ G, may be identified with the
subgroup S := img = {(gJ(G )0)jes | (g)jes € G} of D.

LetN; = F; ! (1). Then N; is an open-closed normal subgroup of D and S N N; is an
open- closed normal subgroup of S. Since lim;c; N; = 1, we have lim;.; SN N; = 1.
Hence G/Gy=S is a protodiscrete group and S =(jesSN; is prodlscrete If
G/G, is complete, then G/G, =S and G/G, is prodiscrete. O

Before we continue, we record an independent elementary lemma.

LEMmA 4.5. Let f: A— B be a quotient morphism of topological groups with
discrete kernel. Then there are an open symmetric identity neighborhood V of A
and an open symmetric identity neighborhood W of B such that f|V: V — W is a
homeomorphism, and for every subgroup K of B contained in W there is a
subgroup S of A contained in V such that f(S) = K.

Proof. Let U be a symmetric open identity neighborhood of A such that
U? Nkerf = {1}. Then f(U) is an open symmetric identity neighborhood of B.
Then f|U: U —f(U) is continuous, open and surjective; if wuy,u, € U and
f(uy) =f(u,), then uyus' € (kerf) N U?. Thus f|U is a homeomorphlsm Now
let V be an open symmetric identity neighborhood in A such that V2cU, and
set W:=f(V). Then f|V:V — W is a homeomorphism onto an open identity
neighborhood of B. Define qo W —V to be its inverse and take w;, w, € W
such that wyw, € W. Set v, = ¢(w;), for j=1,2, and v = @(ww;). Then
(f1U)(v) = (f|V)e(w;w,) = wyw,. Further v,9, € V> c U. Then

(flU)(v192) = f(01) f(v2) = (fIV)e W) (fIV)e(wy) =wiw, = (f|U)(v).

Since (f|U) is injective, we conclude that v = v;v,, that is, ¢: W —V is a
homeomorphism such that

(Vwi, wo e W)(wiwa € W) = (@(wiw2) = @(wi)e(w2)). (13)
In particular, if we W then w ' € W and ww ™' = 1€ W and thus

ew)e(w™) =e(1) =1
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and thus @(w ') = ¢(w)~". Now let K be a subgroup of B contained in W. Let
g1, 82 € ¢(K). Then there are elements w;, w, € K C W such that g; = ¢(w;), for
j=1,2, and w1w51 € K< W. Hence

2182 = e(m)ewa) ™ = e(w)e(wr') = e(wmwy') € ¢(K).
It follows that ¢ (K) c V is a subgroup of A. O

LeEmMmA 4.6 (The Third Fundamental Lemma). Let G be a topological group
such that G is a finite-dimensional Lie group and assume that f: G — L is an
injection into a finite-dimensional Lie group. If G/ G, is a protodiscrete group,
then G is a finite-dimensional Lie group.

Proof. 'We must show that G is open in G. First we make some reductions. Since
f(G) is a Lie group as a closed subgroup of a Lie group, we may and will assume
that L = f(G). Next, since f ' (L,) is open in G, there is no loss in assuming that
L = L, that is, that L is connected.

Let M =f(G,). Then M is a closed normal subgroup of L and f induces an
injective map G/f '(M)—L/M. Now G/f '(M), being a quotient of the
protodiscrete group G/G, is protodiscrete by Proposition 4.3(b) and is, at the
same time, without small subgroups. Hence it is discrete, that is, f ' (M) is open.
We may therefore assume that G = fﬁl(M ), that is, that M = L. Thus we may
assume that f(G,) is dense in L. ~

Now we consider the universal covering g: L — L and form the pullback

In terms of elements, we have P = {(g, Z) € (jxi | f(g) = q(?)} Ifp= (g, Z) ep
and F(p) = 1, then € = 1, whence f(g) = ¢(€) = 1 and thus g = 1 as f is injective.
Thus p = (1, 1) and this shows that F is injective. _

Next F maps ker Q isomorphically onto ker g. Indeed let p = (g, €) € ker Q. Then
1 = Q(p) = gandthen gF(p) = q(€) =f(g) = 1, thatis, F(p) € ker g. Conversely,
if £ €kerg, then 1 = g(£) =f(1), whence p := (1, q) € P, and Q(p) = 1, that is,
p €kerQ and F(p) =¢q. Now let V be an identity neighborhood of L such that
V nkerg = {1} and assume that p = (g, {) ckerQN (GxV); then g = Q(p) = 1
and 1 =f(g) =¢q(€); thus € € Vnkerq = {1}. Thus p = 1. Therefore kerQ is
discrete in P. If (U x V) N P is an identity neighborhood and

p=(u,v)e(UxV)NP,
then Q(p) = u and f(u) = g(v), whence
Q(UXV)NP)=UNfq(V),

and this set is an identity neighborhood. Thus the morphism Q is open and thus,
since its kernel is discrete, it implements a local isomorphism.

Therefore G is a Lie group if and only if P is a Lie group. Thus we must show
that P is a Lie group, that is, that P, is open.
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Now F(Py) is a normal analytic subgroup of L, and normal analytic subgroups in
simply connected Lie groups are closed. The full inverse of f(G,) in L is F(Py)kerq,
and thus this group is dense, and F(P,)kerq/F(P,) is dense in L/F(P,). Since
kerg is central in L, the group L/F (Py) is abelian and simply connected, and
hence is isomorphic to a vector group R”. Thus F induces an injective morphism
of P/P, into the vector group L/F(P,) and thus P/P, has no small subgroups.
The quotient morphism

uot
P26 66,

vanishes on P, and therefore factors through P/ Py:

t *
quot; o Q = (P Ak P/ P, Q G/ Gy).

We have kerQ* = P,/P,, where P, = Q 'G,. The following is a diagram of
abelian topological groups:

P/Py —— R"
JQ* where ¢ is an injective morphism.

G/G,

The morphism Q' := Q|P,: P, — G, is a covering morphism of the Lie group
G, with kernel ker Q = kerq and thus is a Lie group containing the closed normal
subgroup Py = (P;)y. Then kerQ* = P, /P, is a totally disconnected Lie group
and is therefore discrete. Since G/ G, has arbitrarily small open subgroups by the
hypothesis of protodiscreteness, Lemma 4.5 applies to Q* and shows that P/ P,
has arbitrarily small open subgroups (that is, P/ P, is a protodiscrete group). But ¢
injects P/ P, into R", and thus P/ P, has an identity neighborhood in which the
singleton group {P,} is the only subgroup; this subgroup, therefore, is open and
thus P, is open which is what we had to show. O

Now we are ready for the principal result of the first part of the article.

THEOREM 4.7 (The Pro-Lie Group Theorem). FEvery Lie projective group is a
pro-Lie group.

Proof. By the First Fundamental Lemma 4.2, a Lie projective group G has a
filter basis .# of closed normal subgroups M converging to 1 such that GyM /M
is a connected Lie subgroup of G/M, and that there is an injective morphism of
G/M into a finite-dimensional Lie group. By the Second Fundamental Lemma
4.4, G/ G, has a basis ¢ of open normal subgroups converging to the identity. It
follows that for each M € .4, the factor group G/M has a filter basis of open
normal subgroups U /M such that every open set V containing Gy M /M contains
one of the U/M, with U € (. Thus every G/M, with M € .4, satisfies the
hypotheses of the Third Fundamental Lemma 4.6. As a consequence of Lemma
4.6, G/M is a finite-dimensional Lie group. Then by Proposition 2.4, it follows
that G is a pro-Lie group. O

CoroLLARY 4.8 (The Closed Subgroup Theorem for pro-Lie Groups). A
closed subgroup of a pro-Lie group is a pro-Lie group.
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Proof. This is immediate from Corollary 2.3 and Theorem 4.6. 0

The Lie algebra £(G) of a pro-Lie group is limyc (g) £(G/N) with finite-
dimensional Lie algebras £(G/N) since & preserve limits. So the additive group
of £(G) is a Lie projective group. Hence it is a pro-Lie group by Lemma 4.6 and
we may conclude what is also observed in [4].

COROLLARY 4.9. The underlying topological vector space of the Lie algebra
of a pro-Lie group is a pro-Lie group in its own right and is a weakly complete
topological vector space.

5. The category of pro-Lie groups is complete

We shall henceforth denote by prollLIEGR the full subcategory of the category
TOPGR of all topological groups and continuous group homomorphisms between
them whose objects are pro-Lie groups. After the Pro-Lie Group Theorem 4.7,
prolLIEGR can also be described as the full subcategory TOPGR of all projective
limits of finite-dimensional Lie groups.

We begin with a basic lemma on limits in categories. Recall that a category is
said to be complete if it has all limits.

LeEmmA 5.1 (The Limit Existence Theorem). (i) If a category has arbitrary
products and equalizers, then it is complete.

(i1) If a category has arbitrary products and has intersections of retracts, then
it is complete.

(iii) If a full subcategory o/ of a complete category € is closed in € under the
formation of products and passing to intersections of retracts, then it is closed
under the formation of all limits and is therefore complete.

Proof. We refer to any significant source on category theory or to [3,
Appendix 3] or [4, Theorem 1.10]. O

THEOREM 5.2 (Completeness Theorem for pro-Lie Groups). (i) The category
prollIEGR of pro-Lie groups is closed in TOPGR under all limits and is
therefore complete.

(i1) The category prolLIEGR is the smallest full subcategory of TOPGR that
contains all finite-dimensional Lie groups and is closed under the formation of
all limits.

Proof. (i) We shall invoke Lemma 5.1(iii) and show that the prolIEGR is
closed in TOPGR under the formation of products and the passing to closed
subgroups; since any retract of a topological group in TOPGR is a closed
subgroup, this will settle the claim. But by Corollary 4.8, the category of pro-Lie
groups is closed under the passage to closed subgroups so it remains to show that
prolLIEGR is closed in TOPGR under the formation of arbitrary products.

So let {G, | a €A} be a family of Lie projective groups. We must show that
G :=]]4eca G4 is a Lie projective group. Since every G, is a projective limit of
finite-dimensional Lie groups, it is a closed subgroup of a product [];c,«L} of
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finite-dimensional Lie groups. Thus G is isomorphic to a closed subgroup of a
product P =]]yca, jeseLi of finite-dimensional Lie groups. Then P is the
projective limit of the projective system of all finite partial products and the
corresponding projections. Hence P is Lie projective and thus is a pro-Lie group
by the Pro-Lie Group Theorem 4.7. Since G is a closed subgroup of P, it is a
pro-Lie group, by Corollary 4.8. Thus (i) is proved.

(ii)) Let ¥ be any full subcategory of TOPGR which contains all finite-
dimensional Lie groups and is closed in TOPGR under the formation of all
limits. Let G be Lie projective. Then G = lim;.; G; for a projective system of
finite-dimensional Lie groups G;. Then all G; are contained in % and since % is
closed under the formation of all limits, G is in . Thus prolIEGR c %. O

6. The One Parameter Subgroup Lifting Theorem

Many categories of topological groups are stable under the passage to quotient
groups; the category of pro-Lie groups, regrettably, is not, as we see now.

ProposiTION 6.1 (The Quotient Theorem for Pro-Lie Groups). A quotient
group of a pro-Lie group is a proto-Lie group and thus is isomorphic as a
topological group to a dense subgroup of a pro-Lie group. If the quotient group is
complete, then it is a pro-Lie group.

Proof. (i) Let G be a pro-Lie group and K a closed normal subgroup. Define
f: G— H := G/K to be the open quotient morphism. For N € .4(G) the set NK
is a closed subgroup of G containing K, and since f is a quotient map and NK is
K-saturated, the set N* := f(NK) c H is closed and agrees with f(N). Then N*
is a closed normal subgroup of H, and since f is open,

H/N*=G/f'(N*)=G/NK = (G/N)/(NK/N)

is a finite-dimensional Lie group as a quotient of a finite-dimensional Lie group.
Let #4/ ={N"|N € A(G)}. Then .# is a filter basis of closed normal subgroups
of H such that all factor groups H/M, with M € ./, are finite-dimensional Lie
groups. Since A (G) converges to 1 as G is a pro-Lie group, from the continuity
of f we conclude that f(A'(G)) = {f(N)|N € A (G)} converges to 1 in H. But
since H is regular, that is, the filter of identity neighborhoods has a basis of
closed sets, .# converges to 1 in H. Thus H is a proto-Lie group and we
have a natural dense embedding morphism vyy: H — H , into the pro-Lie group
H y =limyc gy H /N. It follows by definition that the group H is a pro-Lie
group if and only if it is complete. |

The pro-Lie group R® has an incomplete quotient group modulo a totally
disconnected and algebraically free subgroup (see [5]); hence Proposition 6.1
cannot be improved.

The lifting of one parameter subgroups deals with the following situation.
Assume that f: G— H is a quotient morphism and Y € £(H); under which
circumstances is there an X € £(G) such that £(f)(X) = ¥?
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LEMMA 6.2. Assume that

L]

G— H

is a pullback of topological groups. Set K := ker ¢. Then the following conditions
are equivalent:

(i) K is a semidirect factor and ¢ is surjective;
(i1) ¢ is a retraction;
(i") ¢|Py: Py — R is a retraction, where Py is the identity component of P;
(iil) there is an X € £(G) such that L(f)(X) =Y;
(iv) there is a subgroup R of P such that KR =P and KR = {1}, and
further that ¢|R: R — R is open.
These conditions imply that
(V) there is a closed subgroup R of P such that KR =P and K "R = {1}

Proof. (i) < (ii). The equivalence of (i) and (ii) is a standard exercise in
topological group theory (see for example, [4, E1.5]).

(ii) = (ii"). If a morphism o: R — P satisfies ¢ o ¢ = idg, then ¢(R) c P, as R
is connected, and thus its corestriction g: R — P, satisfies ¢ o g = idg.

(ii") = (ii). Conversely, if o: R — P, satisfies ¢ o ¢ = idg, then its coextension
o: R — P satisfies ¢ o 7 = idR.

(i) = (iii). If X": R — P is a one parameter subgroup satisfying ¢ o X' = idg
then X := 70 X": R— G is a one parameter subgroup of G such that

LfAIX)=foX=fomoX =YogpoX' =Yoidg=7Y.

(iii) = (ii). Assume Y =&(f)(X)=foX. Then for all reR we have
f(X(r)) = Y(r). Now the explicit form of the pullback is

P={(g.r)eGxRIf(g) =Y(r)}

and ¢(g, r) = r (see, for example, [4, Theorem 1.5]). Hence (X(r), r) € P for all
r € R and if we set X'(r) = (X(r), r), then X': R — P is a morphism satisfying
o(X'(r)) = r for all r.

(1) = (iv) = (v). This is trivial.

(iv) = (ii). The morphism ¢|R: R — R is continuous and open. Thus ¢(R) is an
open subgroup of R and therefore equals R. So ¢ |Ris surjective, and since K "R = {0}
it is also injective. Hence it is an isomorphism of topological groups and thus is
invertible; the coextension a: R — P of (¢|R)™': R — R satisfies ¢ o ¢ = idg. [

LeEmmA 6.3. If f in the pullback (14) is surjective, then ¢ is surjective. If f is
open, then ¢ is open. If f is a quotient morphism so is .

Proof. Surjectivity: if r € R then, since f is surjective, there is a g € G such

that f(g) = Y(r).
Openness: the filter of identity neighborhoods of P has a basis of open sets of



PROJECTIVE LIMITS OF FINITE-DIMENSIONAL LIE GROUPS 669

the form W = P (U x1I), where U is an open identity neighborhood of G and [/
an open interval around O in R. Then

e(W)={rell(3geU)f(g) =Y} =1nY"(f(U)).
Since f is an open map, f(U) is an open subset of H and thus by the continuity

of Y, the set ¢(W) is open.
Quotients: this assertion follows from the combination of the preceding two. [l

LEMMA 6.4. In the pullback (14), assume that the morphism f is a quotient
morphism and that G is a pro-Lie group. Then P is a pro-Lie group.

Proof. By Proposition 6.1, H is a proto-Lie group. Let yy: H — H () be the
natural completion morphism. Then we obtain a diagram

©

P—¥% R

wl va oY (15)
G

H

Yuof o
We claim that (15) is a pullback in TOPGR. Thus we let T be a topological group
and let a: T — G as well as ap: T — R be morphisms of topological groups such
that yg o f o g =7vyg o Y o ag. Since vy is injective, f o oy =Y o ap. Since
(14) is a pullback in TOPGR, there is a unique &: T — P such that ag = mwo £
and ag = ¢ o £. This shows that (15) is a pullback as well.

The group R is a Lie group, and hence trivially a pro-Lie group. Thus R, G
and H ) are pro-Lie groups. By Theorem 5.2(i), the category prolIEGR is
closed under the formation of pullbacks. We apply this to (15) and conclude that
P is a pro-Lie group. O

We now are ready for a proof of the lifting of one parameter subgroups. This is
not easy because in the absence of countability assumptions, this requires the Axiom
of Choice, and the absence of compactness in the present situation forces us to rely
on completeness and the convergence of Cauchy filters. The proof will require from
the reader a certain facility handling ‘multivalued morphisms’ as a special type of
binary relations; but most of what is required will be self-explanatory in the proof.

LEMMA 6.5 (The One Parameter Subgroup Lifting Lemma). Let f: G — H be
a quotient morphism of topological groups and assume that G is a pro-Lie group.
Then every one parameter subgroup Y: R — H lifts to one of G, that is, there is a
one parameter subgroup o of G such that Y = f o ¢.
_

P
|
G
f
in the category of topological groups. Since f is assumed to be a quotient
morphism, by Lemma 6.3, the morphism ¢ is a quotient morphism, and by

Proof. We form the pullback

%)
R

R
JY (16)
H
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Lemma 6.4, the pullback group P is a pro-Lie group. If we can show that ¢ is a
homomorphic retraction, then by Lemma 6.2 we have an X € £(G) such that
L(f)(X) =Y. This reduces our task to showing that ¢ is a homomorphic
retraction. Thus, in order to simplify notation we may assume that H = R and
that we have to show that f is a retraction.

Let K =kerf. Since {N" =f(N)|N € A4(G)} converges to 1 in R, and since
there are no subgroups in (—1, 1) other than {0} there is an N € 4"(G) such that
f(N)=N"={0}, and thus Nc K. Then for all N€ /' (G), with NN, the
morphism f induces a quotient morphism fy: G/N — R, fy(gN) =f(g), and
fn(gN) =0 if and only if f(g) =0 which holds if and only if g €K, that is,
ker fy = K/N. If we let py: K— K/N and gy: G— G/N denote the quotient
morphisms, then we have a commutative diagram

1 Ny
incll linel
| X incl G f R 0 (17)
le lQN lidR
1 k/N LGN I m g

with exact rows and columns. Due to the fact that the exponential map of a Lie
group is a local homeomorphism at 0, an open morphism y: L; — L, between Lie
groups induces an open morphism £(y) between their Lie algebras:

o) 2W oy

expy, J lexpL2

An open morphism between topological real vector spaces is automatically
surjective, and thus £(y) is surjective. Hence there is a morphism oy: R — G/N
such that fy o oy = idg. The binary relation X := q[,] o gy: R— G satisfies the
following conditions:

(i) £(0) = N and every X(r) G is a coset modulo N;
(ii) the graph of X is a closed subgroup of R x G;

(iii) we have a commutative diagram of binary relations of which all but X
are functions:

R id—R> R
zl lmR
G L R (18)
QNJ lidR
G/ R
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A Dbinary relation X: R — G satisfying (i), (ii) and (iii) will be called a
multivalued morphism associated with N. The set & of all multivalued morphisms
L: R — G associated with some N € A"(G) is partially ordered under containment
C. By Zorn’s Lemma we find a maximal filter # < .%. It is our goal to show that
M :={Z(0)| X € F} is cofinal in A (G). Assuming that this is proved, we note
that for each r€R and L€ % the subset I(r) is a coset Nx=xN with
N =X(0) € A(G), and thus Z(r)E(r)"" = Nx(Nx)"' = N; since .# converges to
1, we conclude that {E(r) | X € #} is a Cauchy filter basis. Since G is complete,
it converges to an element o(r) € G, giving us a function o: R — G. As each
X(r), being a coset modulo N = £(0) € .#, is closed, we have a(r) € X(r) for all
L € #. Consequently, since (18) is commutative for each £ € & for N = £(0) we
have the following commutative diagram for all N € .#:
idg
R——R

.

G—R (19)

i

G/N——R
N

The upper rectangle shows that f o ¢ = idg, and the fact that each gy o £Z: R — G
is a morphism of topological groups shows that gy o o: R — G/N is continuous.
Theorem 2.1(i) shows that G has arbitrarily small open identity neighborhoods U
satisfying UN = U for some N € .#. Then if V is a zero neighborhood of R
such that gy(o(V)) cU/N, then o(V) € gy'(U/N) = U. This shows that o is
continuous. Hence ¢ is the required coretraction for f.

Thus the remainder of the proof will show that .# is cofinal in .4°(G). Suppose
that this is not the case. Then there exists an N € A"(G), with N D N, such that
M ¢ N for all M € # < N (G). Let us temporarily fix M; then M "N € A°(G),
and thus G':= G/(M N N) is a Lie group:

G

\
N e
N

MANN

This shows that for fixed M everything takes place in the Lie group G in which
MY :=M/(MAN)and N":=N/(MAN) are closed normal Lie subgroups with
M"ANT ={1}. Thus p: M" — G/N, p(m(M A N)) = mN is a morphism of Lie
groups mapping M t bijectively onto MN /N and inducing an isomorphism of Lie
algebras €M ") — &(MN/N)<c 2(G/N). Now M" is a closed normal subgroup
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of the Lie group G' and thus M "/ MOT is a discrete normal subgroup of the Lie group
G'/ MOT. We let M* be the open subgroup of M f containing (M"), and being such
that M*/M{ = (MT/M{)(G)g/M;. Hence M*/M; is a discrete normal
subgroup of a connected Lie group. Consequently it is finitely generated and thus
countable. Therefore M* has countably many components and so /JL(MOT ) is an
analytic subgroup M,, < G/N agreeing with (MN/N), and having Lie algebra
LM,,) = L(MN/N) = L((MN/N)y). (See [3, pp. 155, 156, 157].) Accordingly,
{L(MN/N)|IMe i}
is a filter basis of finite-dimensional vector subspaces of £(G/N). Hence there is
a smallest element m = L(MyN/N) in it such that for all M < My in .4/ we have
L(MN/N) =m. Let us abbreviate qy,~n): G— G/(My " N) by 9" G— G*,
further f(u;, Any: G* — R by f* and My/(My A N) by M*. Since
Lu): LM*) - gM*N/N) =m
is an isomorphism we have
MM* AN _

q#<(—1(l/l#mN ))0> =q"M{) forMcMyin 4. (20)
There is a ¥ € # such that M* = £#(0). Then for all £ € # contained in I*,
the subgroup ¢*(£(0)) of the Lie group G* is contained in ¢*(£*(0)) and satisfies
g*(Z(0) =My, and (f*og*oI)(R)=R. Thus for all reR we have

q"(Z*(r)) = ¢"(Z(r)) since the right-hand side is contained in the left and both
are cosets modulo M". In the Lie group G* we have the configuration

G
MyN
/ \ G*
My /N
MyNN

Let o := OM,AN: G* — R be defined by ¢ = ¢+ o L*. Then L* = qﬁjll# o¢” and
we have a commutative diagram of binary relations
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We conclude that S := ¢*(Z*(R)) = L*(R)/(M* A N) is a closed subgroup of G*
whose Lie algebra £(S) cannot be contained in K* = K/(M* A N) = ker f*. From
dim G*/K* = 1 we conclude that

LGH) =2(K*)+2(S) and L) =2ES)NLK)+R-X

for a suitable element X € £(G") satisfying f*(expg+ X) = 1. Setting 7: R — S,
7(r) = expg# r- X we obtain a coretraction for f*: G* — R. The binary relation

L:=(¢")'or: R— G is a member of . Moreover, for all L€ .# we have
q"(Z)(r) 2 7(r) forall r € R. Hence L N L is a member of . But now the maximality
of Z shows that £ € 7. But this implies that M* "N = L(0) € .# and that is a
contradiction to our supposition allowing us a choice of an N such that M "N # M

for all M € .#. This contradiction finally completes the proof. O

There are some subtleties here which we should point out. In [3, p.157] we
have seen the additive group [ of a Banach space mapped surjectively onto an
abelian Lie group G (which itself is quotient of a Banach space modulo a discrete
subgroup) such that G has a one parameter subgroup which does not lift to b.
This cannot happen if the domain is separable, but it does happen in the category
of not necessarily finite-dimensional Lie groups. While being surjective, the
morphism in question is not open and the Open Mapping Theorem fails.

We have seen that the functor £ preserves all limits and thus, in particular, all
kernels (since ker f for a morphism f of topological groups is nothing but the
equalizer of f and the constant morphism). We shall say that a functor §: .o/ — %
between categories of topological groups is strictly exact if it preserves kernels
and quotients. As a corollary of the One Parameter Subgroup Lifting Lemma we
obtain the following theorem.

THEOREM 6.6 (The Strict Exactness Theorem for &). The functor
L: proLIEGR — prolIEALG

is strictly exact.

Proof. We observed that £ preserves kernels because kernels are limits. We
have to show that £ preserves quotients.

Let f: G — H be a quotient morphism between pro-Lie groups. The morphism
L(f): £(G) — L(H) is surjective by the One Parameter Subgroup Lifting Lemma
6.5. Now any surjective morphism of topological vector spaces between weakly
complete vector spaces splits (see, for example, [3, p.326, Theorem 7.30(iv)])
and thus is in particular a quotient morphism. The underlying topological
vector spaces of €(G) and L(H) are weakly complete by a remark following the
definition of a profinite-dimensional Lie algebra, which precedes Notation 3.4 (see
also [4, Proposition 3.8 and Theorem 3.12]). Therefore the splitting applies to the
morphism £( f) and shows that it is a quotient morphism. O

COROLLARY 6.7. (i) If N is a closed normal subgroup of a pro-Lie group G,
then the quotient morphism q: G — G /N induces a map 2(q): L(G) — £(G/N)
which is a quotient morphism with kernel 2(N). Accordingly there is a natural
isomorphism X + &(N) — &(f)(X): &(G)/L(N) — &(G/N).

(i) Let G be a pro-Lie group. Then {&(N)|N € A (G)} converges to zero and
is cofinal in the filter #(2(G)) of all ideals i such that £(G) /1 is finite dimensional.
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Furthermore, (G) is the projective limit limy ¢ ) £(G)/L(N) of a projective
system of bonding morphisms and limit maps all of which are quotient morphisms,
and there is a commutative diagram

2(G) m LG @) =2( lim G/N)= lim £(G)/L(N)
- NeV(G) ne N(G)
eXpc J lﬂ(the N(G) expg/n)
G—— Gy = i G/N
7o 2(G) NG%G) /

Proof. (1) This is an immediate consequence of the Strict Exactness Theorem 6.6.
(i) We know that £ preserves limits. Thus

Lyg): ¥(G) — Q(G,Af”(G))

is an isomorphism. By (i) above, £(G/N) = £(G)/£(N) and thus
(G = i ) )
L(G) = Nel{ggl(G> L(G)/L(N).

Thus by Theorem 2.1(ii), the filter basis {&(N) | N € A47(G)} of the kernels of the
limit maps converges to 0 and the projective system of the £(G)/L(N) has the
natural quotient morphisms as bonding maps; by Theorem 2.1(ii) it follows that
the limit maps are quotient morphisms as well. It then follows that this filter basis
is cofinal in .#(L(G)). (Compare [4, 1.40].) O

For a topological group G let E(G) denote the subgroup (exp; G) generated by
the (images of the) one parameter subgroups and set E(G) = E(G).

CorOLLARY 6.8. (i) For a pro-Lie group G, the subgroup E(G) is dense in
Gy, that is, E(G) = Gy. In particular, a connected non-singleton pro-Lie group
has non-trivial one parameter subgroups.

(i) For a pro-Lie group G the following statements are equivalent:

(a) G is totally disconnected;
(b) £(G) = {0}.

(iii) If a morphism f: G — H of pro-Lie groups is a quotient morphism then the

induced morphism E(f): E(G) — E(H) is surjective, that is E(H) = f(E(G)). As

a consequence Hy = f(G).

(iv) Let G be a pro-Lie group and assume that for all N from a basis of N (G)
the quotient G/ N is connected. Then G is connected.

Proof. (i) First we show that non-singleton connected pro-Lie groups have
non-trivial one parameter subgroups. Let G be a non-singleton connected to pro-
Lie group. There is a g€ G with g#1. Since lim.A"(G) =1, there is an
N € A(G) such that g ¢ N. Then G/N is a non-singleton connected Lie group.
Thus £(G/N) # {0}. Then £(G) # {0} by Corollary 6.7(i).

Next we let G be an arbitrary pro-Lie group. The closed subgroup
E(G) = (expg £(G)) 1is fully characteristic, and hence normal. By the One
Parameter Subgroup Lifting Lemma 6.5, every one parameter subgroup of
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G/E(G) lifts to one in G which is contained in E(G) by the definition of E(G).
Hence &(G/E(G)) ={0}. Thus G/E(G) is totally disconnected by what we
have just proved, and thus G, c E(G) < G,.
(ii) (@)= (b). If Gy = {1} then E(G) = {1} and thus £(G) = {0}.
(ii) (b)=(a). Assume £(G) = {0}, then G, = {1} by (i).
(iii) By Theorem 6.6, £(H) = £(f)(2(G)), and thus
expy L(H) = expy £(f)(L(G)) = f(expg L(G)),
and consequently
E(H) = (expy L(H)) = (f(expg L(G))) = f{expg L(G)) = f(E(G)).
Thus Hy = E(H) = f(E(G)) f(Go) < Hy = Hy, and this shows that f (G,) = H,.
(iv) Let gy: G— G/N denote the quotient morphism. By (iii) we have
G/N =E(G/N) = qy(E(G)).

Thus G = E(G)N for all N € A7(G) and thus Gy = E(G) = E(G) = G. O

The relation Hy = f(G) for a quotient morphism f cannot be improved as the
example of the following quotient morphism of locally compact abelian groups
shows. Define G = Rx Z, for the group of p-adic integers Z,, set

H=G/{(n,—n)|ncZ}=S,

and let f be the corresponding quotient morphism. Note that H is compact and
connected. (Cf. [3, p. 19, Exercise E1.11].) We consider Z as a subgroup of Z, as
well. Then G, = Rx {0}, and f(G,) = H, # H = H,.

COROLLARY 6.9. An open morphism f: G— H of pro-Lie groups induces a
quotient (hence surjective) morphism £(f): £(G) — L(H).

Proof. Let f: G— H be an open morphism of topological groups. Then f(G) is
an open, and hence closed, subgroup of H and thus a pro-Lie group by Corollary 4.8.
The open and surjective corestriction G — f(G) (inducing an isomorphism of
topological groups G/kerf — f(G)) is a quotient morphism between pro-Lie
groups and thus induces a quotient morphism £(f): £(G) — &(f(G)) by the
Strict Exactness Theorem 6.6. Since f(G) is open in H, the inclusion j: f(G) — H
induces an isomorphism £(j): £(f(G)) — £(H) of topological Lie algebras. Thus
L(f): L(G)— L(H) is a quotient morphism. O

This corollary remains intact if G and H are merely topological groups that
have open subgroups being pro-Lie groups. This applies, for instance, to all
locally compact groups G and H.
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