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1. Introduction: the abelian subgroup conjecture

In this paper we formulate a new conjecture and introduce methods to verify it in
many cases.

Conjecture (The Abelian Subgroup Conjecture). Every infinite compact group G
has an abelian subgroup A of weight w(A) = w(G).

As usual the weight w(X) of a topological space X is defined by

w(X) = min{cardB: B is a basis of the topology of X}.

When G is an infinite metrizable compact group, that is w(G) = @0, the conjecture
states that G contains an infinite abelian subgroup. It is a consequence of Wilson
[14] that this is the case if every compact torsion p-group contains an infinite abelian
subgroup; a purely group-theoretic result by Hall and Kulatilaka [3], and by Kar-
gapolov [11] from the early 1960s states that an infinite locally finite group has an
infinite abelian subgroup. The finishing touch was applied by Zelmanov [16] who
proved that every compact p-torsion group is locally finite. Thus our Abelian Sub-
group Conjecture is settled for compact groups G with w(G) = @0. But this line of
argument does not tell us whether a non-metrizable compact group G must contain
a non-metrizable compact abelian subgroup A, that is, whether w(G) > @0 implies
the existence of A such that w(A) > @0. If true, our conjecture would show this and
more.
The following definition assists us in addressing our conjecture and what we know

about it.

Definition 1·1. (i) A subgroup A of a topological group G is said to be large if
w(A) = w(G) and is said to be small if w(A) < w(G).
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(ii) A topological group G is called a LAS group if it has a large abelian subgroup.

Thus the Abelian Subgroup Conjecture asserts that every compact group is a LAS
group.

Proposition A. Let G be a locally compact group in which the identity component

G0 is large. Then G is an LAS group.

Proof. Firstly assume that G is compact. Then G contains a maximal compact
connected abelian subgroup T (pro-torus in the language of [7]) such that w(T ) =
w(G0) (see [7, pp. 465, 466, theorem 9·36(vi)]). Since G0 is large we have w(G0) =
w(G). Thus w(T ) = w(G) and G is a LAS group.
Now if G is locally compact then for a maximal compact subgroup K of G0 the

group G0 is homeomorphic to the product space K ⇥Rn for some n (see [5] or [10]).
Let T be a maximal pro-torus of K. By the preceding, w(T ) = w(K), but clearly
w(K) = w(G0) and since G0 is large, w(G0) = w(G).

Corollary B. Every connected locally compact group is a LAS group.

So the Abelian Subgroup Conjecture is true for connected compact groups.
Notice that any abelian subgroup of a discrete free group is countable, and thus

there are discrete, hence locally compact, groups which are not LAS groups.
We shall prove the following:

Theorem C (the Reduction Theorem). Let G be an infinite compact group and

N / G a closed normal small subgroup such that G/N is a LAS group. Then G is a

LAS group.

The next result is an easy consequence of the Reduction Theorem.

Theorem D (the Extension Theorem). Let G be an infinite compact group and N a

closed normal subgroup such that G/N and N are LAS groups. Then G is a LAS group.

As a consequence of Proposition A and Theorem D we obtain at once a result
which will show that proving or disproving the Abelian Subgroup Conjecture is a
problem on profinite groups.

Corollary E (the Reduction Corollary). Let G be a compact group and assume

that G/G0 is a LAS group. Then G is a LAS group.

In [8] we called a compact group strictly reductive if it is (isomorphic to) a cartesian
product of compact simple groups, where we call a group simple if it has no more
than two normal subgroups. Accordingly a compact simple group is either cyclic of
prime order, or finite simple, or is a centre-free compact connected simple Lie group.
It is important to point out that a compact connected Lie group is said to be a
simple Lie group if its Lie algebra is simple. A simple Lie group such as SU(2) is not
necessarily a simple group because it can have a non-trivial finite centre.
If {S

j

: j 2 J} is a family of LAS groups, then G =
Q

j2J Sj is either a finite
group or an LAS group: indeed let A

j

be a closed abelian subgroup of S
j

such that

w(A
j

) = w(S
j

) and set A
def
=
Q

j2J Aj

. For an infinite group G we have

w(G) = sup({card J} x {w(S
j

) : j 2 J})
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(see e.g. [7, p. 764]). Thus w(S) = w(A). As a consequence, the following lemma is
quite elementary:

Lemma F. Every infinite strictly reductive group is a LAS group.

The significance of the class of strictly reductive groups is clear from the next
theorem which we proved in [8].

Countable Layer Theorem. Any compact group G has a canonical countable

descending sequence G = ⌦0(G) ◆ · · · ◆ ⌦
n

(G) ◆ · · · of closed characteristic subgroups
of G with the two properties, that their intersection

T1
n=1⌦n(G) is Z0(G0), the identity

component of the centre of the identity component G0 of G, and that each quotient group

⇤
n

(G)
def
= ⌦

n�1(G)/⌦n(G) is a strictly reductive group.

In [7] there are numerous pieces of information on the structure of compact groups
which express the intuition that large compact groups are ‘broad and wide’ but not
too ‘deep’. The Countable Layer Theorem confirms this impression. We shall use it
in this paper to prove:

Theorem G (the Dominant Layer Theorem for Profinite Groups). Assume that
G is an infinite profinite group for which there is a natural number n such that

w(⌦
n

(G)) < w(G). Then G is a LAS group.

The proofs of our results require some tools in addition to the Countable Layer
Theorem, and we shall first provide these.

2. The automorphism group of a strictly reductive group

For a locally compact group the topology on the automorphism group is a refine-
ment of the compact open topology (cf. [7, p. 257]). If B

j

, j = 1, 2 are bases for two
topologies O

j

on a set X, then {U w V : U 2 B1, V 2 B2} is a basis for O1 _ O2. Let
X
j

= (X,O
j

) and X = (X,O1 _ O2). Since clearly w(X) 6 w(X
j

), we deduce

w(X) = max{w(X1), w(X2)} (⇤)

if at least one of the topologies is infinite.
Now we recall that for a locally compact group G, the topology O of the automor-

phism group AutG is CO _ CO�1 where OC is the compact open topology induced
from that of Hom(G,G) (cf. [7, p. 257]). In [7, p. 361, corollary 7·75], it is shown
that for two locally compact abelian groups A and B one has

w(Hom(A,B)) 6 max{w(A), w(B)}. (⇤⇤)

The proof of claim (b) of the required proposition 7·74 of [7] is readily modified
so that the last line of that proof remains true for non-abelian groups; this is the
only place where commutativity is used. Thus proposition 7·75 of [7] is available
for locally compact groups which are not necessarily abelian. We shall write End(G)
instead of Hom(G,G).

Lemma 2·1. Let G be an infinite locally compact group. Then

w(Aut(G)) 6 w(End(G)) 6 w(G).
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Proof. By the preceding remarks, we have w(End(G)) 6 w(G) from (⇤⇤). Then by

the definition of the topology of Aut(G), in view of (⇤) above, we obtain w(Aut(G)) 6
w(End(G)).

Now we return to strictly reductive compact groups. Let us recall some notation
from [8].

Notation. Let S denote a set of representatives for the set of isomorphism classes
of the class of all compact simple groups. For a compact group G and S 2 S, the
smallest closed subgroupG

S

ofG containing all closed normal subgroups isomorphic
to S is called the S-socle of G.
We showed in [8, 2·3] that for a strictly reductive compact group G and the

sequence (G
S

)
S2S of S-socles of G, there is a sequence of cardinals (J(G,S))

S2S

such that

G%
Y

S2S

G
S

, G
S

%SJ(G,S).

Proposition 2·2. Let G =
Q

S2S SJ(G,S) be strictly reductive. Then every auto-
morphism f of G preserves G

S

, and the morphism

(f
S

)
S2S 7�! ((s

S

)
S2S 7�! (f

S

(s
S

))
S2S) :

Y

S2S

Aut(SJ(G,S)) �! Aut(G)

is an isomorphism.

Proof. This is a straightforward exercise.

Proposition 2·2 reduces the structure theory of Aut(G) to the determination of the
automorphism group of SX for a set X and S 2 S. The situation will be different
according as S is abelian or non-abelian.
Firstly we deal with the abelian case

Proposition 2·3. Assume that S 2 S is abelian, say, S = Z(p), then
(i) AutSX %GL(Z(p)(X)).
(ii) If X is infinite, then w(AutSX) = cardX.

Proof. (i) The compact abelian group G
def
= SX has character group bG which can

be identified with Z(p)(X). Now � 7! b� : AutG! Aut bG is an anti-isomorphism and
Aut bG%GL(Z(p)(X)). Every group has the anti-automorphism x 7! x�1.
(ii) Since linear self-maps of Z(p)(X) are determined by their action on a basis we

have an isomorphism GL(Z(p)(X))% (Z(p)(X))X and w((Z(p)(X))X) = w((Z(p)(X))X) =
max{cardX,w(Z(p)(X))} (cf. [7, p. 763, 764, EA4·3]), and this cardinal equals cardX.

Next we turn to the non-abelian case
If G is a compact group, let InnG 6 AutG denote the normal subgroup of inner

automorphisms and define OutG
def
= (AutS)/(InnS), called the outer automorphism

group.
We acknowledge the fact that the outer automorphism group is not a group of

automorphisms, but the terminology is entrenched in the literature.

Lemma 2·4. If S 2 S, then OutG is a finite soluble group.
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Proof. If S is connected, then OutG is isomorphic to the symmetry group of

the Dynkin diagram which is a finite soluble group. (Indeed it is abelian with one
exception, D4 whose automorphism group is S3.)
If S is a finite simple group, then the Schreier Conjecture applies; it asserts that

for a finite simple group the outer automorphism group Out(S) is a (finite) soluble
group, and it is verified by the classification of finite simple groups.

Let X be a set. If F is a finite field, such as Z(p), then any F -vector space of
dimension cardX is isomorphic to the direct sum V = F (X) and End V %M

X⇥X(F )
the ring of column finite matrices. These form a subset of the compact space FX⇥X

with the Tychonoff topology. If End V is equipped with the topology of pointwise
convergence then the identification End V ! M

X⇥X(F ) is a homeomorphism. The
group of units of End V is the automorphism group AutV = GL(V ) and w(AutV ) 6
w(V ) = cardX if X is infinite.
Define P (X) ✓ XX to be the group of all bijections with the topology introduced

in [7, p. 506]. For each finite set E ✓ X setWid(E) = {f 2 P (X): (8x 2 E) f (x) = x};
then the set of allWid(E) as E ranges through the set of finite subsets of X is a basis
for the identity neighbourhoods of a group topology for P (X).
The group P (X) operates on Z(2)(X) by �·(r

x

)
x2X = (r

�

�1(x))x2X . Thus we obtain
a faithful representation

⇡ : P (X)! GL(X,Z(2)), ⇡(�)((r
x

)
x2X) = (r

�

�1(x))x2X .

Lemma 2·5. The representation ⇡ : P (X)! GL(X,Z(2)) is a topological embedding.

Proof. An element � 2 P (X) is in Wid(E) for some finite subset E if and only if
⇡(�) fixes the basis vectors (�

xe

)
x2X , e 2 E for the Kronecker

�
xy

=
⇢
1 if x = y,
0 otherwise.

The proof of lemma 9·83 of [7, p. 508] which is expressed for a compact connected
simple group S applies also to any non-abelian finite simple group and yields the
following.

Theorem 2·6 (the Automorphism Group of Strictly Reductive Groups). Let G =Q
S2S SJ(G,S) be a strictly reductive group. Then AutG%

Q
S2SAut(S

J(G,S)), and the
groups AutSJ(G,S) are determined as follows.
Assume that S is a compact simple group and X is an arbitrary set.

Case A. Assume that S = Z(p). Then AutSX %GL(Z(p)(X)) and w(AutSX) = cardX.
Case B. Assume that S is non-abelian. Then
(i) Aut(SX) % Aut(S)X⇥⌃P (X) for a suitable automorphic action ⌃ : P (X) !
Aut([Aut(S)]X).

(ii) If X is infinite then w(AutSX) = w(SX). The group InnS is isomorphic to S,
and OutS = AutS/ InnS is finite and soluble.

(iii) If X is infinite,

w(P (X)) 6 w(GL(X,Z(2))) 6 cardX.

Proof. The first assertion follows from Proposition 2·2. Case A follows from Propo-
sition 2·3. Case B: Assertion (i) is taken, with the necessary changes, from the proof
of lemma 9·83 of [7, p. 508].
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Proof of (ii): AutS is an extension of the normal subgroup InnS % S of inner

automorphisms by the finite soluble group OutS. Thus we know that w((AutS)X) =
max{@0, cardX}.
(iii) Follows from Lemma 2·5.

The significance of Theorem 2·6 is that for any compact group G with a normal
subgroup N which is strictly reductive, we have a representation � : G ! AutN
given by �(g)(n) = gng�1; the structure and size of AutN has just been determined
in Theorem 2·6.
In this paper we do not need the full power of Theorem 2·6. For most of our

applications it suffices to know the size of the automorphism group measured by its
weight. But Theorem 2·6 is a viable result in its own right and is likely to be useful
in future applications of the Countable Layer Theorem.

3. Abelian subgroups of a compact group

Recall that the centralizer of a closed subgroup is closed, and that it is normal if
the subgroup is normal: indeed if g 2 G, then x 2 Z(N,G) implies

(gxg�1)n(gxg�1) = g(x(g�1ng)x�1)g�1 = g1g�1 = 1.

For a subset N of G let Z(N,G) be the centralizer of N in G.

Proposition 3·1. Let G be an infinite compact group and N / G a closed normal

subgroup. Then

w(G/Z(N,G))
⇢

6 w(N ) if N is infinite,
<1 if N is finite.

In particular, if N is small then Z(N,G) is very large.

Proof. (i) The function I : G ! AutN , I(x)(n) = xnx�1 is a morphism of topo-
logical groups. Clearly ker I = Z(N,G). Since G is compact, so is G/ker I and thus
this group is embedded into AutN . Therefore, w(G/Z(N,G)) 6 w(AutN ). If N is
infinite, by Lemma 2·1 we have w(AutN ) 6 w(N ) and thus

w(G/Z(N,G)) 6 w(N ).

If N is finite, then AutN is finite and thus

card(G/Z(N,G)) <1.

In the second case, as w(G) is infinite, Z(N,G) is very large in G. In the first case
this is true if w(N ) < w(G).

Remark 3·2. Let N be a closed normal subgroup of a compact group G.
(i) If N is abelian, then N ✓ Z(G,N ), and
(ii) if N is centre-free, then N w Z(N,G) = {1} and the product NZ(N,G) is a

direct product of compact groups.

Proof. (i) Every abelian subgroup is contained in its centralizer. (ii) Since Z(N ),
the centre ofN , isNwZ(N,G) and since all groups in sight are compact, the assertion
follows.
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The following lemma pertains to the multilinear algebra of topological groups in

general. In this lemma and its proof we shall write all groups additively. Let V be
a compact abelian group and let V ⌦ V be the tensor product of compact abelian
groups [6] which, together with the bilinear continuous function ⌦ : V ⇥V ! V ⌦V
classifies continuous Z-bilinear maps b : V ⇥ V ! W into a topological group by
providing a unique morphism b0 : V ⌦ V !W such that b(v, v0) = b0(v ⌦ b0).

Lemma 3·3. For a compact abelian group V
(i) the tensor product V ⌦ V is totally disconnected, and

(ii) if V/V0 is infinite, then w(V ⌦ V ) = w(V/V0).

Proof. We have Hom(V ⌦ V,T) % Hom(V,Hom(V,T)) = Hom(V, bV ). Since bV is
discrete each morphism � : V ! bV annihilates the identity component V0 and �(V )
is finite. Hence V0 2 ker� and �(V ) ✓ tor bV . Thus V ⌦ V % (V/V0) ⌦ (V/V0). Write
W = V/V0. Then W is totally disconnected. For a prime p let W

p

denote the p-
Sylow subgroup of V (cf. [7, p. 370]). So cW

p

is the p-Sylow subgroup of bV . Then
(V ⌦ V )b %Hom(V, bV ) = Hom(V,

P
p

cW
p

)%
P

p

Hom(V,cW
p

) =
P

p

Hom(W
p

,cW
p

).
Thus

w(V ⌦ V ) = card(V ⌦ V )b = card
 
X

p

Hom(W
p

,cW
p

)

!
.

Thus we have to determine the cardinality of
P

p

Hom(W
p

,cW
p

). If W is infinite,

card

 
X

p

Hom(W
p

,cW
p

)

!
= max

⇢
@0, sup

p

card(Hom(W
p

,cW
p

))
�
.

If W
p

is infinite, then the divisible hull of cW
p

has the same cardinality as cW
p

itself
and is therefore of the form Z(p1)(X) with cardX = w(W

p

). Then Hom(W
p

,cW
p

) is

isomorphic to a subgroup of Hom(W
p

,Z(p1)(X))%Hom(W
p

,Z(p1))(X) = cW
p

(X)
and

the cardinal of this group is w(W
p

). Thus

card

 
X

p

Hom(W
p

,cW
p

)

!
6 max

⇢
@0, sup

p

w(W
p

)
�
= w(W ).

Thus for infinite W = V/V0 we have w(V ⌦ V ) 6 w(W ).
On the other hand, let S be the p-socle ofcW

p

, then S%Z(p)(X), and Hom(W
p

,cW
p

)
contains a subgroup isomorphic to a subgroup of

Hom(W
p

,Z(p)(X))%Hom(W
p

, Z(p))(X);

since W
p

has epimorphisms onto Z(p), this group has cardinality at least cardX =
w(W

p

). This implies w(V ⌦ V ) > w(W ). This completes the proof.

We are interested in symplectic maps, that is, continuous bilinear functions
� : V ⇥ V ! H, i.e. those satisfying �(v, v) = 0 for all v 2 V ; because of the polariz-
ation trick 0 = �(v +w, v +w)�(v, v) + �(v, w) + �(w, v) + �(w,w) = �(v, w) + �(w, v),
they satisfy �(w, v) = ��(v, w).
Let � : V ⇥ V ! V ⌦ V be the bilinear map given by �(v1, v2) = v1 ⌦ v2.

For a compact abelian group V , let
V2

V = (V ⌦ V )/h�(v, v) : v 2 V i and let
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p : V ⌦ V !

V2
V be the quotient map. For v, w 2 V set v ^ w = p(�(v, w)). Then

for any symplectic map � : V ⇥ V ! H there is a unique morphism of topological
groups f

�

:
V2

V ! H such that �(v, w) = f
�

(v ^ w).

Lemma 3·4. Let V be an infinite compact abelian group and letK be a closed subgroup

of

V2
V .

(i) Assume that (
V2

V )/K is infinite. Then there is a closed subgroup A of V such

that A ^A ✓ K and w(V/A) 6 w((
V2

V )/K).
(ii) Assume that (

V2
V )/K is finite, then there is a closed subgroup A of finite index

in V such that A ^A ✓ K.

Proof. (i) SetD
def
= (
V2

V )/K; thenD is totally disconnected by Lemma 3·3(i). Let
F : V ⇥ V ! D be the unique bilinear map such that F (v, v0) = (v ^ v0) +K.
The family N(D) of compact open subgroups of D has cardinality w(D). Let

f :
V2

V ! D be the unique morphism such that F (v, w) = f (v ^ w). For each U 2
N(D) let W (U ) = f�1(U ). Then by the surjectivity of f we have card{W (U ): U 2
N(D)} = cardN(D). Moreover

T
U

W (U ) = C. There is some open subgroupA(U ) 6
V such thatA(U )^A(U ) ✓W (U ). SetA =

T
U2N(D)A(U ). ThenA^A ✓W (U ) for all

U 2 N. HenceA⇥A ✓ C. Then the filter basisF consisting of the finite intersections
of the set {A(U )/A : U 2 N(D) intersects in the singleton set {A}, and thus by the
compactness of V/A converges to A. Since F ✓ N(V/A) we know that F is cofinal
in N(V/A) and thus cardF = cardN(V/A) = w(V/A). But cardF = card{A(U ) :
U 2 N(D)} 6 cardN(D) = w(D). Hence w(V/A) 6 w(D). This completes the proof
of (i).
(ii) If (

V2
V )/K is finite, the K is open in

V2
V . Also V0 ^ V = {0} ✓ K. Hence by

the compactness of V there is an open subgroupA of V such thatA^A ✓ A^V ✓ K.
Since V is compact and A open, V/A is discrete and compact, hence finite.

Lemma 3·5. Let V be an infinite compact abelian group and � : V ⇥ V ! H a sym-

plectic map into a topological group H and let C be the smallest closed subgroup of H
containing �(V ⇥ V ). Then:
(i) there is a closed subgroup A of V such that �(A⇥A) = {0} and w(V/A) 6 w(H);
(ii) C is totally disconnected and compact, and w(C) 6 w(V ).

Proof. (i) There is a morphism f :
V2

V ! H such that �(v, w) = f (v ^ w). Let
K = ker f . Then w((

V2
V )/K) = w(im f ) 6 w(H). Then by Lemma 3·4 there is a

closed subgroup A of V such that w(V/A) 6 w(
V2

V )/K) 6 w(H) and A ^ A ✓ K,
i.e. �(A⇥A) = {1}
(ii) Recall that V ^ V generates a dense subgroup of

V2
V whence C = f (

V2
V ).

Then by Lemma 3·3, the homomorphic image C of a totally disconnected
compact group is compact totally disconnected. Thus we have w(C) = w(f (

V2
V ))

6 w(V ^ V ) 6 w(V ).

Let G0 be the closure of the commutator subgroup of a topological group G.

Lemma 3·6. Let N be a closed central subgroup of a compact group G such that G/N
is abelian. Then G contains a closed abelian subgroup A ◆ N such that w(G/A) 6
w(G0) 6 w(N ) if N is infinite and G/A is finite if G0 is finite.
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Proof. Since N is central in G, the group G is nilpotent of class at most two.

Then (x, y) 7! [x, y] = xyx�1y�1 : G ⇥ G ! G0 ✓ N is bilinear. We note that
� : G/N ⇥G/N ! N , �(xN, yN ) = [x, y] is a symplectic map (G/N )⇥ (G/N )! G0.
Then by Lemma 3·4 if G0 is infinite, there is a closed subgroup A of G containing N
such that [A,A] = �(A/N⇥A/N ) = {0}, that is, A is abelian and w(V/A) 6 w(G0) 6
w(N ). If G0 is finite, then A can be found to have finite index in G.

In Definition 1·1 we called a subgroup H of a topological group G large if w(H) =
w(G) and we called G a LAS group if it has large abelian subgroups. In order to
facilitate the formulation of some technical results we complement these definitions
as follows.

Definition 3·7. Let G be a topological group. A subgroup H of G is called very
large if w(G/H) < w(G). A topological group is called a VLAS group if it has very
large abelian subgroups.
The set of cardinals {w(G/H): H 6 G and H is an abelian subgroup of G} has a

smallest element since every set of cardinals is well-ordered. This smallest element
is called the abelian index abind(G).

In [8] we established a result of which the following is a corollary.

Fact 3·8. Let G be an infinite compact group and H a closed subgroup. Then

w(G) = max{w(H), w(G/H)}.

These concepts are intended for infinite groups G. The following remarks are im-
mediate.

Remark 3·9. Let G be an infinite compact group. For a small subgroup H we have
w(G) = w(G/H). If H is a very large subgroup of G, it is large, and thus a VLAS
group is a LAS group. The group G is a VLAS group if an only if abind(G) < w(G).

All abelian topological groups are VLAS groups. A finite non-abelian group is
never a LAS group unless it is singleton. In Corollary B of the Introduction it was
shown that every connected compact group is a LAS group. Since for a maximal pro-
torus T of a connected compact group G, the factor space G/T has weight w(G),
a similar statement is true for all other maximal abelian subgroups T , a compact
connected group is not a VLAS group.
IfH is a large subgroup of G andH is a LAS group then G is a LAS group, and an

analogous statement is true for VLAS groups. By the Reduction Theorem (Theorem
C in Section 1) which we shall prove in Theorem 3·10 below, if N is a small closed
normal subgroup and G/N is a LAS group, then G is a LAS group.
The following theorem is the enabling result for proofs by induction.

Theorem 3·10 (the Reduction Theorem). Let G be an infinite compact group and

N / G a small closed normal subgroup.
(i) If G/N is a LAS group then G is a LAS group. Indeed, if B is an abelian

subgroup of N there is a closed abelian subgroup A of G containing B such that

w(A) = w(G).
(ii) If G/N is a VLAS group, then G is a VLAS group. More specifically,

abind(G) 6 max{w(N ), abindG/N} or abind(G) is finite.
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Proof. Since G/N is a LAS (VLAS) group, G contains a large subgroup H such

that N / H and H/N is a large (very large) abelian subgroup of G/N . Thus

w(H) = max{w(N ), w(H/N )} = max{w(N ), w(G/N )} = w(G), respectively,
w(G/H) = w((G/N )/(H/N )) < w(G/N ) 6 w(G);

in the second case we may assume that w(G/H) = abind(G/N ).
By Proposition 3·1 we have w(H/Z(N,H)) 6 w(N ) if N is infinite and know that

H/Z(N,H) is finite otherwise. Then Z(N ) = Z(N,H) wN is central in Z(N,H) and
Z(N,H)/Z(N )%H/N is abelian. Now Lemma 3·6 applies and shows that Z(N,H)
contains an abelian subgroup A1 containing Z(N ) such that

w(Z(N,H)/A1) = w((Z(N,H)/Z(N ))/(A1/Z(N ))) 6 w(Z(N,H)0) 6 w(Z(N ))

provided Z(N,H)0 is infinite. Otherwise A1 can be found so as to have finite index in
Z(N,H). Thus w(H/A1) 6 w(N ) orH/A1 is finite. If B is any abelian subgroup ofN ,
then A1 ✓ Z(N,G) and B commute elementwise. Hence A = A1B is a closed abelian
subgroup of G containing B and satisfying w(H/A) 6 w(N ) or |H/A| <1. Thus if
w(G/H) = abind(G/N ), then abind(G) 6 w(G/A) 6 max{w(N ), abind(G/N )}.

We observe that in case (ii), the group A may likewise be chosen so as to include
any given abelian subgroup of N .
Sufficient conditions for G/N to be a LAS group are not hard to find:

(i) G/N is abelian.
(ii) G/N is strictly reductive.
(iii) G/N is connected.

In those cases, if N is a small closed normal subgroup of the infinite compact group
G, then G is a LAS group.

Theorem 3·11 (the Extension Theorem). Let G be an infinite compact group and

N a closed normal subgroup. If both G/N and N are LAS groups then G is a LAS
group.

Proof. Either N is large, that is w(N ) = w(G), or N is small, that is w(N ) < w(G).
In the first case, since N is a LAS group, so is G. In the second case, the Reduction
Theorem 3·10 applies.

Corollary 3·12 (the Reduction Corollary). Let G be a compact group and assume
that G/G0 is a LAS group. Then G is a LAS group.

Proof. By Proposition A of the Introduction, G0 is a LAS group. Hence the corol-
lary is a direct consequence of the Extension Theorem 3·11.

Another immediate consequence of the Extension Theorem is

Corollary 3·13 (Reduction mod Z0(G0)). Let G be a compact group. If G/Z0(G0)
is a LAS group, then G is a LAS group.

By this corollary, whenever we wish to use the Countable Layer Theorem for prov-
ing that a compact group G is a LAS group we may assume that Z0(G0) = {1}.
A simple induction argument yields the following consequence of the Extension

Theorem 3·11:
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Corollary 3·14. Let G be an infinite compact group and let N1 ◆ · · · ◆ N

k

be a

finite sequence of closed normal subgroups of G such that G/N1 and Nj�1/Nj

are LAS
groups for j = 2, . . . , k. Then G is a LAS group.

Recall the concept of layers from the Countable Layer Theorem and the paragraph
following it in the Introduction. The next result is an immediate consequence:

Proposition 3·15. If an infinite compact group has only a finite number of layers,
then it is a LAS group.

Proof. Apply Corollary 3·14 with N
j

= ⌦
j

(G) and notice that all of G/N1 and
N
j�1/Nj

are either strictly reductive or connected abelian.

4. Applying the Countable Layer Theorem

Let G be a compact group and recall the sequence of characteristic subgroups
⌦
n

(G) of the Countable Layer Theorem in the Introduction.

Theorem 4·1 (the Dominant Layer Theorem). Let G be a compact group. If there

is a natural number n such that w(⌦
n

(G)/Z0(G0)) < w(G/Z0(G0)) then G is a LAS
group.

Proof. By Proposition 3·15, G/⌦
n

(G) is a LAS group. Therefore

(G/Z0(G0))
�
(⌦

n

(G)/Z0(G0))

is a LAS group. By hypothesis, ⌦
n

(G)/Z0(G0) is a small subgroup of G/Z0(G0). Then
by the Reduction Theorem 3·10, the group G/Z0(G0) is a LAS group and thus by
3·14, G is a LAS group.

The name of the theorem will become more obvious when we formulate and prove
Theorem 4·4 below.

Corollary 4·2. Let G be a profinite group. If w(⌦
n

(G)) < w(G) for some n, then G
is a LAS group.

Accordingly, if the Abelian Subgroup Conjecture is false, then there exists a coun-
terexample G where G is a profinite group such that w(⌦

n

(G)) = w(G) for all
n = 1, 2 . . . .
In view of Corollary 3·14, for further comments, we may just as well assume that

Z0(G0) = {1}. Then let us finally express the condition that w(⌦
n

(G)) < w(G) in
terms of the layers of the Countable Layer Theorem.

Lemma 4·3. Let G ◆ N1 ◆ N2 ◆ N3 ◆ · · · be a descending sequence of infinite
normal subgroups with

T1
n=1Nn

= {1}.

Proof. Then the following conditions are equivalent:
(i) w(N1) < w(G).
(ii) There is a cardinal @ < w(G) such that w(N

n�1/Nn

) 6 @ for n = 2, 3, . . . .

Proof. (i) implies (ii): w(N
n�1/Nn

) 6 w(N
n�1) 6 w(N1). Thus let @ = w(N1).

(ii))(i): repeated application of Fact 3·8 yields

w(N1/Nn

) = max{w(N1/N2), . . . , w(Nn�1/Nn

)}.
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Thus w(N1/Nn

) 6 @ by (ii). From
T
n

N
n

= {1} and the compactness of N1 we
conclude that N1% lim

n

N1/Nn

and thus w(N1) = sup
n

w(N1/Nn

) 6 @ < w(G).

Let us now return to the Countable Layer Theorem in the Introduction. The factor
groups ⇤

n

(G), n = 1, 2, . . . are called the layers. We shall say that a layer ⇤
n

(G) is
dominant if there is a cardinal @ such that w(⇤

m

(G)) 6 @ < w(⇤
n

(G)) for m⇣n.

Theorem 4·4 (the Dominant Layer Theorem, Second Version). Any infinite com-
pact group with a dominant layer is a LAS group.

Proof. We may assume that Z0(G0) = {1}. Let ⇤
n

(G) = ⌦
n�1(G)/⌦n(G) be a

dominant layer with a minimal n. We apply Lemma 4·3 with N1 = ⌦n(G), N2 =
⌦
n+1(G) etc. and obtain w(⌦n(G)) < w(G/⌦

n

(G)) 6 w(G). Then Theorem 4·1 proves
the claim.

Let us comment finally that under the hypotheses of Theorems 4·1 and 4·4 we
have an additional piece of information.

Proposition 4·5. Let G be an infinite profinite group such that ⌦
n

(G) is small for
some n 2 {1, 2, . . . }. Then G has a large subgroup S containing ⌦

n

(G) which contains
an abelian subgroup A such that w(S/A) < w(S); that is, S is a VLAS group.

Proof. We obtain S directly from Proposition 3·15 such that S/⌦
n

(G) is abelian
and w(S) = w(G). Now we apply 3·10(ii) with S in place of G and ⌦

n

(G) in place
of N and find abind(S) 6 max{w(⌦(G)), abindS/⌦

n

(G)} = w(⌦
n

(G)) since S/⌦
n

(G)
is abelian and thus has abelian index zero. But w(⌦

n

(G)) < w(G) = w(S). Thus
abind(S) < w(S).

Added in proof. In the meantime,Wolfgang Herfort pointed out (W. Herfort, The
Abelian Subgroup Conjecture: A Counter Example, J. of Lie Theory 12 (2002), 305–
308) that the free profinite p-group F

p

(X) on any infinite set X converging to 1 has
weight card(X) and has the property that all of its closed subgroups are free (see [12]
or [15]). Thus the only nondegenerate abelian closed subgroups are isomorphic to the
additive group Z

p

of p-adic integers, and thus all abelian subgroups have a countable
weight. Hence F

p

(X) is a counterexample to the Abelian Subgroup Conjecture for
any uncountable setX. (See our comment preceding Theorem C for the discrete case.)
In contrast with the hypothesis of the Dominant Layer Theorem 4·4, the layers of
F
p

(X) are all isomorphic to Z(p)X and thus have weight card(X). The results of
this paper remain valid and are a challenge to find further sufficient, perhaps even
necessary and sufficient conditions for a profinite group to be a LAS group.
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