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Introduction

We prove a new structure theorem which we call the Countable Layer Theorem.
It says that for any compact group G we can construct a countable descending
sequence G = ⌦0(G) ◆ · · · ◆ ⌦n(G) · · · of closed characteristic subgroups of G with
two important properties, namely, that their intersection

T1
n=1⌦n(G) is Z0(G0), the

identity component of the center of the identity component G0 of G, and that each
quotient group ⌦n�1(G)/⌦n(G), is a cartesian product of compact simple groups
(that is, compact groups having no normal subgroups other than the singleton and
the whole group).
In the special case that G is totally disconnected (that is, profinite) the intersec-

tion of the sequence is trivial. Thus, even in the case that G is profinite, our theorem
sharpens a theorem of Varopoulos [8], who showed in 1964 that each profinite group
contains a descending sequence of closed subgroups, each normal in the preceding
one, such that each quotient group is a product of finite simple groups. Our con-
struction is functorial in a sense we will make clear in Section 1.
Let ⇤n(G) denote the quotient group ⌦n�1(G)/⌦n(G) and remember that this is a

product of finite simple groups if G is profinite. Included among the applications is
the Topological Decomposition Theorem saying that for an arbitrary compact group
G, the two compact groups G and G0⇥

Q1
n=1⇤n(G/G0) are homeomorphic. As G/G0

is profinite,
Q1

n=1⇤n(G/G0) is a product of finite simple groups which, if infinite, is
by purely point set topological arguments in turn homeomorphic to a Cantor cube
(that is a space of the form 2

X with a discrete 2-element space 2 and a suitable set
X). So we obtain, as an easy corollary, that each totally disconnected compact group
is homeomorphic to a Cantor cube (cf. [5, pp. 96ff]). The Topological Decomposition
Theorem also implies the Kuz’minov Theorem (cf. [2, p. 93]) that every compact
group is a dyadic space, that is, a continuous image of a Cantor cube.
Furthermore, the Topological Decomposition Theorem yields a very explicit cal-

culation of the topological weight of a compact group in terms of G0 and algebraic
invariants of G/G0.



410 K. H. Hofmann and S. A. Morris
1. Countable characteristic sequences

As a first step towards the Countable Layer Theorem we examine functorially
sequences of characteristic subgroups of compact groups. The key feature we notice
is that these potentially transfinite sequences are in fact countable.
A subgroupN of a compact groupG is called subnormal if there is a finite sequence

N = N1 / N2 / · · · / Nm = G of closed subgroups, each normal in the next.
We shall write N // G whenever N is subnormal in G. A morphism f :G ! H
between compact groups will be called normal, respectively, subnormal, if f (G) /
H, respectively f (G) // H. In [6, 9·72], it is shown that a subnormal connected
closed subgroup of a compact connected group is normal and that a subnormal
morphism between compact connected groups is normal. The composition of two
normal morphisms is subnormal, the composition of two subnormal morphisms is
subnormal.
We shall make reference to the category C of compact groups and all continuous

morphisms between them and two subcategories, neither of them full:

C = category of all compact groups and all morphisms,
CS = category of all compact groups and all surjective morphisms,

CSN = category of all compact groups and all subnormal morphisms.

A morphism f :G! H of compact groups is called an epimorphism if it is surjec-
tive. By [6, p. 702, EA3·17] this is perfectly in accordance with category theoretical
terminology. We shall write Epi (G,H) for the set of epimorphisms from G to H,
that is, the expressions Epi (G,H) and CS(G,H) denote one and the same thing.
A subfunctor ⌃:A ! A on any of the categories listed above is a functor which

attaches to each compact groupG a subgroup ⌃G 6 G in such a fashion that for each
A-morphism f :G ! H we have f (⌃G) ✓ ⌃H and ⌃f :⌃G ! ⌃H is the restriction
and corestriction of f .

Definition 1·1. A possibly transfinite sequence of subfunctors ⌅↵:CS ! CS,
which assigns to each compact group G a descending chain of closed subgroups,
indexed by ordinals ↵ = 0, 1, . . . ,!,! + 1, . . . , ⇣ = ⇣(G),

G = ⌅0G > ⌅1G > · · · > ⌅⇣G = ⌅⇣+1G

will be called a strongly characteristic sequence if the following conditions are satisfied:
(i) (8↵ < ⇣) ⌅↵+1G⇣⌅↵G.
(ii) ⌅�G =

T
↵<� ⌅↵G for all limit ordinals � 6 ⇣.

Saying that ⌅↵ is a subfunctor on CS means that for each surjective continuous
homomorphism f :G ! H we have f (⌅↵G) ✓ ⌅↵H and that ⌅↵f :⌅↵G ! ⌅↵H is
the restriction and corestriction of f . Since ⌅↵ is a functor of CS into itself, the
morphism ⌅↵ is surjective. Hence

f (⌅↵G) = ⌅↵H.

We further note that, in particular, all ⌅↵G are characteristic, hence normal in G.
It is clear that for each G, the sequence ⌅↵G, properly descending because of (i),

will have to stabilize at some smallest ordinal ⇣(G) for reasons of cardinality. We shall
write

⌅1(G)
def
= ⌅⇣(G)G.
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In particular, each strongly characteristic sequence attaches to each compact group
a characteristic closed subgroup ⌅1G. For all ordinals ↵ beyond ⇣(G) we write
⌅↵G = ⌅1G.
We hasten to present some examples. For subsets X and Y of a topological group

G we let [X,Y ] denote the smallest closed subgroup containing all commutators
xyx�1y�1, x 2 X, y 2 Y .

Example 1·2. We define, by transfinite recursion,

⌅↵G =
⇢
[G,⌅�] if ↵ = � + 1,T
�<↵ ⌅�G if ↵ is a limit ordinal. (1)

Then ⌅↵ is a strongly characteristic sequence, called the descending central sequence.

Proof. We must show that for each surjective morphism f :G ! H we have
f (⌅↵G) = ⌅↵H. For each subgroup K of G write ⌃GK = [G,K]. One sees read-
ily that f (⌃K) = [H, f (K)] = ⌃Hf (K). It now suffices to follow the pattern of the
proof of Example 1·3 below.

Indeed, ⌅↵G/⌅↵+1G is central in G/⌅↵+1G for all ↵ 6 ⇣.
We say that a compact groupG is transfinitely nilpotent if ⌅⇣(G)G = {1}. A compact

connected group is transfinitely nilpotent if and only if it is abelian ([6, 9·4]).

Example 1·3. Assume that ⌃:CS ! CS is a subfunctor. Then we can define, by
transfinite recursion, a sequence

⌅↵G =
⇢
⌃(⌅�G) if ↵ = � + 1,T
�<↵ ⌅�G if ↵ is a limit ordinal. (2)

Then ⌅↵G is a strongly characteristic sequence.

Proof. Let f :G! H be a surjective morphism. We prove by transfinite induction
that f (⌅↵G) = ⌅↵H. Since ⌅1 = ⌃ the assertion holds for ↵ = 1. Assume the assertion
is true for all � < ↵. If ↵ = � + 1, then f (⌅↵G) = f (⌃(⌅�)) = ⌃f (⌅�G) (since
⌃ is a subfunctor of CS) = ⌃⌅�H (by the induction hypothesis) = ⌅↵H by the
recursive definition of ⌅↵. Now assume that ↵ is a limit ordinal. Then the intersectionT
�<↵ ⌅�G is also the limit of the filter basis of compact sets ⌅�G, � < ↵. Hence

f (⌅↵G) = f (lim�<↵ ⌅�G) = lim�<↵ f (⌅�G) (by the continuity of f ) = lim�<↵ ⌅�H
(by the induction hypothesis) =

T
�<↵ ⌅�H = ⌅↵H again by the definition of ⌅↵.

The following special cases are of interest.

Example 1·4. Set ⌃G = [G,G]. Then ⌃:C ! C is a subfunctor which induces a
subfunctor on CS. The sequence ⌅↵ is strongly characteristic and ⌅↵G is called the
transfinite commutator sequence.

A compact group is called transfinitely solvable if ⌅⇣(G)G = {1}. A compact con-
nected group is transfinitely solvable if and only if it is abelian ([6, 9·4]). Every
transfinitely nilpotent group is transfinitely solvable.
The next special case is of particular interest for us. By definition, a compact simple

group is a compact topological group with precisely two closed normal subgroups.
Examples are for instance SO(3), or A5 (the 60 element simple group), or Z(2), Z(3)
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or isomorphic copies of these, at any rate. Note that while SU (2), for example, is a
simple Lie group in frequently used terminology, it is not simple in our sense.

Notation. Let S denote a set of representatives for the isomorphism classes on the
class of all compact simple groups.

Then S is a countable set. (Indeed the set of isomorphism classes of connected
compact simple groups is in bijective correspondence with the set of isomorphism
classes of compact real Lie algebras which is in bijective correspondence with the
set of isomorphism classes of complex simple Lie algebras which is in bijective cor-
respondence with the set of isomorphism classes of Dynkin diagrams and that is
countable (see e.g. [1]). The set of isomorphism classes of simple abelian groups is
in bijective correspondence with the set of primes. The set of isomorphism classes
of finite nonabelian simple groups is countable since, up to isomorphism, there is
only a finite number of groups of order n 2 N. We shall assume that the abelian
representatives are Z(p) def= Z/pZ, p = 2, 3, 5, 7, . . .; when considered as fields, these
are also written as GF(p).

Notation. Let G be a compact group.

(i) We write Epi (G,S) for
.S
S2SEpi (G,S).

(ii) Set ⌦(G)
def
=
T
f2Epi (G,S) ker f .

A simple group S has no subnormal subgroups other than {1} and S. If S 2 S
then a subnormal morphism f :G ! S is either the constant morphism
constGS or an epimorphism. Thus CSN(G,S) = {constGS} x Epi (G,S) and
⌦(G) =

T
f2CSN(G,S), S2S ker f .

Lemma 1·5. ⌦:CSN ! CSN is a subfunctor inducing a subfunctor ⌦:CS !
CS.

Proof. Let f :G ! H be a surjective CSN-morphism. We have to show that
f (⌦G) = ⌦H. Since f is surjective, f (f�1(⌦H)) = ⌦H and f induces a surjective
morphismG/f�1(⌦H)! H/⌦H. It is no loss of generality to assume that ⌦H = {1}
and to show that f (⌦G) = {1}, that is ⌦H ✓ ker f .
Let S 2S and let �:H ! S be a morphism in Epi (H,S). Then ��f 2 Epi (G,S),

and thus ⌦(G) ✓ ker � � f = f�1(ker �). Therefore

⌦(G) ✓
\

�2Epi (H,S)

f�1(ker �) = f�1

0

@
\

�2Epi (H,S)

ker �

1

A = f�1⌦(H) = ker f.

Now we are ready for another example of a strongly characteristic sequence.

Example 1·6. For any compact group G we define, by transfinite recursion,

⌦↵G =
⇢
⌦(⌦�) if ↵ = � + 1,T
�<↵⌦�G if ↵ is a limit ordinal. (3)

Then ⌦↵ is a strongly characteristic sequence; indeed every ⌦↵G is preserved under
every subnormal endomorphism of G.
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This sequence will be particularly valuable as we uncover the structure of each of

the factor groups ⌦↵G/⌦↵+1G in the next section.
For the following we recall that compact Lie groups satisfy the descending chain

condition for closed subgroups.

Lemma 1·7. Let G be a compact Lie group and G1 = G > G2 > · · · a descending
sequence of closed subgroups. Then there is a natural number N such that Gn = GN for

all n > N .

Proof. We shall denote by L(H) the Lie algebra of a Lie group H. Now L(G1) >
L(G2) > · · · is a descending sequence of finite dimensional vector spaces which
becomes stationary from a certain natural number M on. Thus (Gm)0 = (GM )0 for
m > M . Let f = card (GM/(GM )0) be the finite index of the identity component of
GM . Then there exist at most f natural numbers nj > M such that Gnj ⇣ Gnj+1.
Let N = 1 + max j nj .

Corollary 1·8. Let ⌅↵ be a strongly characteristic sequence of subfunctors on CS.
Then for each compact Lie group G, the ordinal ⇣(G) is finite.

Proof. Since compact Lie groups satisfy the decending chain condition for closed
subgroups by Lemma 1·7, the assertion is immediate.

The following theorem is important information on strongly characteristic
sequences. Recall that ! denotes the first infinite ordinal.

Theorem 1·9 (Countable Subfunctor Theorem). Let ⌅↵ be any strongly character-
istic sequence of subfunctors on the category CS of epimorphisms of compact groups.

Then the cardinal ⇣(G) at which the sequence for G becomes stationary is at most ! for
each compact groupG. That is, the descending sequence of characteristic closed subgroups
G = ⌅0G > ⌅1G > ⌅2G > · · · becomes stationary after a finite number of steps or, at
the latest, at the group ⌅!G =

T1
n=0 ⌅nG.

Proof. Let N
def
= {N / G:G/N is a Lie group} and consider any N 2 N. Let

q:G! G/N be the quotient map. Then

(⌅1G)N/N = q(⌅1G) = ⌅1(G/N ) = ⌅!(G/N )

by Corollary 1·8. Hence

(8N 2N) (⌅1G)N = q�1⌅!(G/N ).

Furthermore, the equation q(⌅!G) = ⌅!(G/N ) implies q�1⌅!(G/N ) = ⌅!(G)N . NowT
N2N(⌅1G)N = ⌅1G and

T
N2N ⌅!(G)N = ⌅!G by [6, 9·1(ii)]. Therefore

⌅⇣(G) = ⌅1G = ⌅!G.

We claim that this implies ⇣(G) 6 !; for if not, then ! < ⇣(G). Then by Definition
1·1(i) we would have

⌅⇣(G)G = ⌅! < ⌅!+1G 6 ⌅⇣(G)G,

which would be a contradiction.
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We turn to an immediate application. Let us say that a compact group is countably

nilpotent if the intersection of the traditional descending central series

G, [G,G],
⇥
G, [G,G]

⇤
, . . .

is {1}, and let us say that a compact group is countably solvable if (it is solvable or)
the intersection of the traditional commutator series

G, [G,G],
⇥
[G,G], [G,G]

⇤
, . . .

is {1}. Then we have at once:

Corollary 1·10. A compact transfinitely nilpotent group is countably nilpotent and
a compact transfinitely solvable group is countably solvable.

Proof. This follows immediately from Theorem 1·9 and Examples 1·2 and 1·4.

Corollary 1·11. The strongly characteristic sequence G,⌦G,⌦(⌦G), . . ., becomes
stationary after a finite number of steps or at the latest with ⌦1G =

T1
n=0 ⌦nG.

Proof. This follows immediately from Theorem 1·9 and Example 1·6.

We shall investigate more thoroughly what Corollary 1·11 means in the next sec-
tion. In particular, we will identify ⌦1G.
For the concept of a projective limit, used in the following see [6, pp. 17ff] or [9,

pp. 12ff].

Corollary 1·12. In the notation of Theorem 1·9,

G/⌃!(G) = lim (G/⌃1(G) G/⌃2(G) G/⌃3(G) · · ·). (4)

Proof. By Theorem 1·9 we have
T1
n=1 ⌃nG/⌃!G = {1} in the compact group

G/⌃!G. Then (4) follows from 1·33(ii) on p. 21 of [6].

It is noteworthy that for any strongly characteristic sequence ⌃n the compact
group G/⌃!G is a projective limit of a countable inverse sequence of compact groups
G/⌃nG which are technically simpler that G/⌃!G itself. We note, in this context,
that there is no way to represent a nonmetrizable compact group as a projective
limit of a countable inverse sequence of Lie groups.
We conclude this section by observing that the examination of descending

sequences of subgroups (with operators) is a classical subject in the context of
the Jordan–Hölder Theorem which, however, deals with sequences whose succes-
sive factor groups are simple. A good reference for finite groups is [7, pp. 55ff]. The
first author to transport this formalism into the framework of profinite groups was
Varopoulos [8, pp. 458–460]. Varopoulos’ result has not received the attention it
deserves.

2. Strictly reductive compact groups

In this section, we characterize those compact groups which have enough contin-
uous homomorphisms onto compact simple groups to separate points as products of
compact simple groups. This result will be called the Strict Reduction Theorem.
For our first definition in this section, recall that the countable set S is a fixed set

of representatives for the class of compact simple groups.
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Definition 2·1. For a compact group G and S 2 S, the smallest closed subgroup

GS of G containing all closed normal subgroups isomorphic to S is called the S-socle
of G.

Clearly, GS is a fully characteristic subgroup of G, that is, every (continuous!)
endomorphism maps GS into itself. Most often, GS will be singleton, but in totally
disconnected abelian groups, non-degenerate socles are common.

Definition 2·2. A compact group is called strictly reductive if it is (isomorphic to) a
cartesian product of compact simple groups.

Proposition 2·3. Assume thatG is a strictly reductive compact group, and let (GS)S2S

denote the sequence of S-socles of G. Then there is a sequence of cardinals
�
J(G,S)

�
S2S

such that

G%
Y

S2S

GS , GS %SJ(G,S).

Proof. Since G is a strictly reductive compact group we have G%
Q

k2K Gk for a

family of compact simple groups Gk. For each S 2S, set K(S)
def
= {k 2 K:Gk %S}

and define J(G,S) = cardK(S). Then K =
.S
S2S K(S) and

G%
Y

S2S

Y

k2K(S)

Gk %
Y

S2S

SJ(G,S). (5)

Let us write G =
Q

S2S SJ(G,S). For T 2S set

PT
def
= {(gS)S2S 2 G: gS = 1 if S⇣T}%T J(G,T ).

Every factor T↵
def
= {(g�)�2J(G,T ):�⇣↵)g� = 1} is a normal subgroup of T J(H(G,T ),

isomorphic to T , and corresponds to a subgroup of PS which is normal in G and
isomorphic to T . Since PT is the smallest closed subgroup of G containing all these
subgroups, we have PT ✓ GT . Now let N be a closed normal subgroup of G iso-
morphic to T . The projection of N onto any simple factor of the product G is de-
generate unless this factor is isomorphic to T . The common kernel of all projections
G ! SJ(G,S) with S ⇣ T is exactly PT . Hence N ✓ PT . Therefore GT ✓ PT by the
definition of the T -socle GT (see Definition 1·1). Thus GT = PT and the Proposition
is proved.

Remark. We shall, as a rule, consider the cardinals J(G,S) as sets; this is often done
anyhow when cardinals emerge as certain ordinals and ordinals are considered as sets
(of predecessors). To call the sets J(G,S) cardinals is just a device for expressing the
fact, that the family of these cardinals determines G up to isomorphism.

Lemma 2·4. Let S 2 S and assume that on the compact group G the set of epimor-

phisms Epi (G,S) separates the points of G. Then G%SJ for some set J .

Proof. Let N be the set of all kernels of non-degenerate epimorphisms f :G! S.
Then

T
N = {1} by assumption.

(a) Assume that G is abelian. Then S = Z(p) for some prime p. Hence G/N %Z(p)
for allN 2N. ThusN?, the annihilator ofN in the character group Ĝ, is isomorphic
to Z(p). Then Ĝ = {0}? = (

T
N)? =

P
N2N N? is a GF(p) vector space and thus
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is isomorphic to GF(p)(J) for some set J with card J = dimGF(p) Ĝ. Hence G%Z(p)J
by duality as asserted.
(b) Assume that G is non-abelian. Then S is a non-abelian compact simple group.

We shall prove by induction that for every finite subset {N1, . . . , Nn} ✓ N of n
elements, the morphism

g 7! (gN1, . . . , gNn):G! G/N1 ⇥ · · ·⇥G/Nn (6n)

is surjective. If n = 1, there is nothing to prove. Assume that (6n) holds for all n-
element subsets of N, and consider an n + 1-element subset {N1, . . . , Nn+1} of N.
Let D be the image of the morphism

g 7! (gN1, . . . , gNn+1):G! G/N1 ⇥ · · ·⇥G/Nn ⇥G/Nn+1. (6n+1)

Then by (6n) the projection of D onto the first n factors is surjective, and so is
the projection on the last. For a proof of the claim that the morphism in (6n+1) is
surjective we may, after factoring

Tn+1
j=1 Nj in all groups in sight, assume this inter-

section is trivial. LetM
def
=
Tn
j=1Nj , P

def
= MNn+1. Then (m,n) 7! mn:M⇥Nn+1 ! P

is an isomorphism and P is normal in G. Now G/P is a homomorphic image of both
G/M andG/Nn+1. ButG/Nn+1 is simple. Thus either P = G or P = Nn+1. In the first
case we are finished since then G = MNn+1 is a cartesian product with M % S and
Nn+1%Sn. The second case would meanM ✓ Nn+1, and sinceM wNn+1 = {1}, this
means M = {1}. Now we may write G = Sn, and since S is non-abelian simple, the
normal subgroups are the partial products and there are exactly n normal subgroups
N such that G/N % S. However, we assumed that there are n + 1 of them. This
contradiction rules out the second case and the induction is complete.

Now we define ⌘:G ! P
def
=
Q

N2N G/N by ⌘(g) = (gN )N2N. Then ⌘ is injective
and, since G is compact, it is an isomorphism onto its image. Let M be the filter
basis of cofinite partial products M of P . By the surjectivity of the function (6n)
we see that P = ⌘(G)M for all M 2 M. Since M converges to 1 and ⌘(G) is closed
by the compactness of G we conclude ⌘(G) = P . Thus ⌘ is an isomorphism and the
Lemma is proved.

Set ⌦S(G)
def
=

T
f2Epi (G,S) ker f . The S-cosocle is the quotient group �S(G)

def
=

G/⌦S(G).

Lemma 2·5. Assume that there are n different elements S1, . . . , Sn inS such that the S-
cosocle is nonsingleton exactly for S 2 {S1, . . . , Sn}. Then ⌦(G) = ⌦S1 (G)⇥· · ·⇥⌦Sn(G)
and �(G)%�S1 (G)⇥ · · ·⇥ �Sn(G) via the map g 7!

�
g⌦S1 (G), . . . , g⌦Sn(G)

�
.

Proof. We prove the assertion by induction on n. For n = 1 the assertion is true
trivially. Assume that it is true for n and let S1, . . . , Sn+1 be n+ 1 different elements
of S such that �S(G) is nontrivial exactly when S is one of these groups. Define

K
def
= ⌦S1

\
· · ·

\
⌦Sn .

Then

G/K%�S1 (G)⇥ · · ·⇥ �Sn(G) via gK 7!
�
g⌦S1 (G), . . . , g⌦Sn(G)

�

by the induction hypothesis (and the isomorphism theorem). Now K w ⌦Sn+1 (G) =
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⌦(G) by the assumption on the family of the Sj . Set P = K;⌦Sn+1 . Then P is normal
in G and (k1, k2) 7! k1k2:K ⇥ ⌦Sn+1 ! P is an isomorphism. The factor group
G/P is a homomorphic image of both G/K %�S1 (G)⇥ · · ·⇥ �Sn(G) and �Sn�1 (G).
By Lemma 1·4, �Sn�1 (G) % SIn+1n+1 for some set In+1, and so G/P % SIn+1 for some
I ✓ In+1 (even if Sn+1 is abelian). Similarly, G/K%SI11 ⇥ · · ·⇥ SInn with all Im ⇣6.
But now G/P can be a homomorphic image of this group only when I = 6, that is
�(G) = P = K;⌦Sn+1 . Then K % SIn+1 (G) and ⌦Sn+1 %�S1 (G) ⇥ · · · ⇥ �Sn(G). Thus
In+1 = J(G,S) and G%�S1 (G)⇥ · · ·⇥�Sn+1 (G); this proves the claim of the Lemma.

Theorem 2·6 (Strict Reduction Theorem). For a compact group G, the following
assertions are equivalent:
(i) G is strictly reductive;
(ii) the set Epi (G,S) of all morphisms f :G! S, S 2 S separates the points of G,

that is,

T
f2Epi (G,S) ker f = {1};

(iii) ⌦(G) =
⇥T

f2Epi (G,S) ker f =
⇤
{1}.

Proof. (ii) and (iii) are clearly equivalent.
(i))(ii). WriteG =

Q
S2S SJ(G,S). Since all projections ofG onto the simple factors

belong to Epi (G,S), and already these separate the points, the implication follows.

(ii))(i). We reduce the problem. Set P def
=

Q
S2S �S(G) and define ⌘:G ! P by

⌘(g) = (g⌦S(G))S2S. Then ⌘ is injective and, since G is compact, ⌘ is an isomorphism
onto its image. Let M be the filter basis of cofinite partial products of P . Then
Lemma 2·5 proves that for each M 2 M we have ⌘(G)M = P . Again since M
converges to 1 and ⌘(G) is compact, hence closed, we conclude ⌘(G) = P .

Proposition 2·7. Let G be a strictly reductive compact group and w(G) its weight.
Then

w(G) =
⇢Q

S2S card (S)
J(G,S)

if G is finite,
max{@0, supS2S J(G,S)} if G is infinite.

(7)

Proof. We note that cardS = @0, w(S) 6 @0 for all S 2 S, and that for in-
finite G we can apply [6, p. 764, EA4·3] to our Example 1·3 to obtain w(G) =
max{@0, supS2S w(SJ(G,S))}. Thus

w(G) = max{@0, sup
S2S

max{J(G,S), w(S)} = max{@0, sup
S2S

J(G,S)}.

3. The Countable Layer Theorem

With the machinery developed so far we now proceed to prove our main result,
the Countable Layer Theorem.

Corollary 3·1. Let ⌦ and ⌦n be as in Example 1·6 and Corollary 1·11

⌦nG/⌦n+1G is strictly reductive,

that is, this quotient group is isomorphic to a cartesian product of simple compact groups

for all n < ⇣(G) 6 !.

Proof. This is immediate from the definition of ⌦ and the Strict Reduction
Theorem 2·7.
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In the case of the descending central series and the descending commutator series

of a compact group we obtain characteristic subgroups ⌅1G; in the first case let
us write G[1] and in the second case G(1). Then [G,G[1]] = G[1], respectively,
[G(1), G(1)] = G(1). It is not clear how these characteristic subgroups should be
characterized in other terms or identified as otherwise well known characteristic
subgroups. In this regard, the situation is better for ⌦1G.
For the following we recall the result in Corollary 1·11.

Lemma 3·2. For a compact group G, the following statements are equivalent:
(i) G is connected and abelian;
(ii) G = ⌦(G).

Proof. (i))(ii). If G is connected and abelian, then G has no homomorphic simple
(non-degenerate) image.

¬(i))¬(ii). If G is not connected then G/G0 is nontrivially profinite and thus
there is a nontrivial epimorphism f :G ! S for some finite simple group S. Hence
⌦G ✓ ker f ⇣ G. If G is connected and not abelian then there is a nontrivial
epimorphism f :G ! S for some compact connected simple Lie group S. Again
⌦G ✓ ker f ⇣G.

Proposition 3·3. For each compact group, ⌦1G is Z0(G0), the identity component
of the centre of the identity component G0 of G.

Proof. IfA is a compact connected abelian normal subgroup ofG and f 2 Epi (G,S)
for some S 2 S, then f (A) is a connected abelian closed normal subgroup of S and
therefore f (A) = {1}. Hence A 2 ker f and it follows that A ✓ ⌦G. Recursively,
it follows that A ✓ ⌦nG. Accordingly, A ✓ ⌦1G. This applies, in particular, to
A = Z0(G0).

Conversely, we claim that Z1
def
= ⌦1G is abelian and connected. Suppose that it is

not. Then by Lemma 3·2, ⌦⇣+1(G) = ⌦(⌦⇣(G))⇣⌦⇣(G) = Z1 which contradicts the
definition of ⇣. Thus the claim is proved. Now Z1 is a connected compact abelian nor-
mal subgroup of G, hence of G0. Since connected compact abelian normal subgroups
of connected groups are central, we conclude Z1 ✓ Z0(G0).

Summarizing the results regarding the strongly characteristic sequence ⌦n we
obtain our main result.

Theorem 3·4 (Countable Layer Theorem). Let G be an arbitrary compact group.

Then the ⌦nG form a descending countable filtration, possibly stationary after a finite

number of steps,

G > ⌦G > ⌦2G > · · · >
1\

n=1

⌦nG = Z0(G0) (8)

of characteristic closed subgroups of G, such that for each n 2 N = {1, 2, . . .} and each
simple compact group S 2S there is a set Jn(G,S) (representing a cardinal) such that

⌦n�1G/⌦nG%
Y

S2S

SJn(G,S) (9)

for all n 2 N. Moreover, the following propositions hold.
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(i) Among all descending filtrations

G > N1 > N2 > · · ·

of closed subgroups Nm which are normal in G and are such that Nm/Nm+1 is

strictly reductive for each m > 1, the sequence (8) descends fastest, that is, ⌦nG =
⌦
�
⌦n�1G

�
for all n 2 N, where ⌦(H) is the common kernel of all morphisms of

H onto some compact simple group.

(ii) For each n 2 N, the assignment H 7! ⌦nH is a functor from the category CSN
of compact groups and morphisms with subnormal image into itself, that is, if

f :H1 ! H2 is a morphism of compact groups and f (H1) // H2, then f
�
⌦nH1

�
✓

⌦nH2 for all n.

Corollary 1·12 now specializes immediately to

Corollary 3·5. In the notation of Theorem 3·4, the group G/Z0(G0) is the countable
projective limit

lim
 
(G/⌦1(G) G/⌦2(G) G/⌦3(G) · · ·). (10)

By the Countable Layer Theorem 3·4, the descending chacarteristic sequence be-
comes stationary at the compact connected groupA

def
= Z0(G0). We remind the reader

that such a group A possesses a closed totally disconnected subgroup D obtained
with the aid of the Axiom of Choice such that A/D is a torus, i.e. a product of circle
groups (see [6, p. 376, 8·15]). Theorem 3·4 applies to D so that we have the following
complement to the Countable Layer Theorem:

Proposition 3·6. Let A be a compact connected abelian group, such as, e.g. A =
Z0(G0) in Theorem 3·4. Then there is a countable sequence of closed subgroups

A > D = ⌦0(D) > ⌦1(D) > ⌦2(D) > · · · >
1\

n=1

⌦n(D) = {1}

such that A/D is a torus and ⌦n�1D/⌦nD is a cartesian product of cyclic groups of

prime order.

Since D is not canonical in A, the countable sequence descending from A is not a
characteristic sequence; but it shares some features with the sequence in Theorem
3·4. What is unique, however, is dim A/D, the ‘number’ of factors in the torus (see
[6, p. 379, 8·20; p. 384, 8·23]).

4. The Topological Decomposition Theorem

In this section we use the Countable Layer Theorem to establish a result we shall
call the Topological Decomposition Theorem and we illustrate its applicability by
deducing nice standard results on the topology of compact groups.

Lemma 4·1. Assume that we are given an inverse system of compact spaces

X1
p1 ��X2

p2 ��X3 · · ·

and that there are homeomorphisms fn:Xn ! Xn�1 ⇥ Yn, X0 = {1} singleton and
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Y1 = X1, such that the following diagram commutes for n = 1, 2, . . . :

Xn
pn ���� Xn+1

idXn

??y
??yfn+1

Xn  ����
prXn

Xn ⇥ Yn+1.
(11n)

Set X
def
= limn{· · ·Xn

pn �Xn+1 · · ·} and Y
def
=
Q

n Yn.

Then X and Y are homeomorphic.

Proof. Let us recall that the product of a family {Zj : j 2 J} is the set of all
functions ↵: J ! U

def
=

S
j2J Zj such that ↵(j) 2 Xj for all j 2 J . For I ✓ J , the

function ↵ 7! ↵|I:
Q

j2J Zj !
Q

i2I Zi will be denoted pI . We write Nn
def
= {1, . . . , n}.

Claim 1. For each n there is a homeomorphism Fn:Xn !
Q

m2Nn Yn such that the
following diagram commutes

Xn
pn ���� Xn+1

Fn

??y
??yFn+1

Q
m2Nn

Ym  ����
pNn

Q
m2Nn+1

Ym.
(12n)

We prove this claim by induction. Claim (121) is true by (111). Assume that (12n�1)
has been proved for n > 2. We must construct Fn:Xn�1 ⇥ Yn !

Q
m2Nn Ym. By

the induction hypothesis we have a homeomorphism Fn�1:Xn�1 ! Xn�2 ⇥ Yn�1
satisfying (12n�1). We identify

Q
m2Nn�1 Ym⇥Yn and

Q
m2Nn Ym and define Fn to be

the composition

Xn
fn����!Xn�1 ⇥ Yn

Fn�1⇥idYn������!
Y

m2Nn�1
Ym ⇥ Yn =

Y

m2Nn
Ym.

Then we have a commutative diagram

Xn�1
pn ���� Xn

idXn�1

??y (11n)
??yfn

Xn�1  ����
prXn�1

Xn�1 ⇥ Yn
Fn�1

??y
??yFn�1⇥ idYnQ

m2Nn�1
Ym  ����

pNn�1

Q
m2Nn

Ym

after our identification. Since the vertical map on the right is Fn by definition, we
have (12n). This proves Claim 1.

Claim 2. We have a commutative diagram of inverse systems in which the rows
are limit diagrams, where we abbreviate Pn =

Q
m2Nn Ym, and where F :X ! L is

the induced morphism:

X1
p1 ���� X2

p2 ���� X3 · · ·  ���� X

F1

??y F2

??y F3

??y · · ·
??yF

P1  ����
pN1

P2  ����
pN2

P3 · · ·  ���� L.

Since all Fn are homeomorphisms, F is also a homeomorphism.
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Claim 3. L = Y : We may assume that

L =
�
((y(n)m )m2Nn)n2N 2

Q
n2N

Q
m2Nn Yn: pNn((y

(n+1)
m )m2Nn+1 ) = (y

(n)
m )m2Nn

 
.

By induction it follows that y(n)m = y(n+1)m , m 2 Nn. Now let ((y(n)m )m2Nn)n2N 2 L and
m 2 N; then for all n, n0 > m we have ynm = y

n0

m . We set ym = y
(m)
m and thus obtain

((y(n)m )m2Nn)n2N = ((ym)m2Nn)n2N.

Thus the function

(ym)m2N 7! ((ym)m2Nn)n2N:Y ! L

is a homeomorphism.

This completes the proof of the Lemma.

Definition 4·2. For a compact group G and each 1 6 n < ! we recall ⌦0(G) = G
and define the n-th layer of G to be

⇤n(G) = ⌦n�1(G)/⌦n(G). (13)

By definition of ⌦n(G) we know that each layer is a strictly reductive compact group.
We let pn:G/⌦n+1(G)! G/⌦n(G) denote the quotient morphism.

Lemma 4·3. Assume that G is totally disconnected. For each n = 1, 2, . . . there is a
homeomorphism fn:G/⌦n(G)! G/⌦n�1(G)⇥ ⇤n(G) such that

G/⌦n
pn ���� G/⌦n+1

idG/⌦n(G)

??y
??yfn+1

G/⌦n(G)  �����
prG/⌦n(G)

�
G/⌦n(G)

�
⇥ ⇤n+1(G).

(14n)

Proof. Since G is totally disconnected, the subquotient ⇤n(G) = ⌦n�1(G)/⌦n(G)
is totally disconnected. The Lemma therefore follows now from [6, p. 540, theorem
10·36(iii)(c)] with ⌦n�1(G) in place of G and ⌦n(G) in place of H, and where the
action is multiplication on the left.

Theorem 4·4 (Topological Decomposition Theorem). Let G be a compact group.

Then the compact groups G and

G0 ⇥
Y

n2N
⇤n(G/G0)%G0 ⇥

Y

n2N
S2S

SJn(G/G0,S) (15)

are homeomorphic.

Proof. By [6, p. 541, corollary 10·37] the groups G and G0⇥G/G0 are homeomor-
phic. It suffices therefore to consider the case of a totally disconnected group G. For
such a group, G and

Q
n2N⇤n(G) are homeomorphic by Lemmas 4·3 and 4·2.

Definition 4·5. A topological space is called a Cantor cube if it is homeomorphic
to the space 2J for some infinite set J where 2 = {0, 1} is the discrete two element
space.

Every Cantor cube is a topological group, namely, Z(2)J . Let us record the follow-
ing:
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Lemma 4·6. (a) For a compact metric space X the following statements are equivalent:
(i) X is homeomorphic to 2

N;
(ii) X is totally disconnected and has no isolated points.

(b) Every compact metric space is a continuous image of 2N
.

Proof. (a): Cf. [4, p. 370, 6·2·A(c)]. (b): Cf. [4, p. 291, 4·5·9(b)].

It follows that every infinite product of finite sets is homeomorphic to a Cantor
cube. In fact we have:

Lemma 4·7. If {Xj : j 2 J} is an infinite family of finite sets with cardXj > 1 for all
j, then there is a homeomorphism

X
def
=
Y

j2J

Xj ! 2

J = 2w(X).

In particular, every infinite totally disconnected strictly reductive group is a
Cantor cube. Therefore, we obtain

Corollary 4·8 [5, p. 95, theorem 9·15]. Let G be a compact group. Either G0 has

finite index inG orG is homeomorphic to the product ofG0 and the Cantor cube 2
w(G/G0)

.

We say that a group G acts on a space X with stable isotropy if all isotropy groups
Gx are conjugate (cf. [6, p. 519, 10·5]).

Theorem 4·9. Let G be a compact group acting with stable isotropy Gx on an infinite

compact space X. Then w(X) = max{w(G/Gx), w(X/G)}.

Proof. Let H denote a closed subgroup of G to which all isotropy groups Gx are
conjugate. Clearly, the right side is less than or equal to the left side. We have to
show the reverse. If G/H is finite, then the orbit projection is covering map with
finite fibre; the assertion is true in this clase and so we shall assume that G/H is
infinite.
LetU be a a set of open subsets ofG satisfying UH = U such that {U/H:U 2 U} is

a basis of the topology of G/H of cardinality w(G/H). The set of pairs (U1, U2) 2 U2

such that U1 ✓ U2 is still of cardinality w(G/H). For each such pair (U1, U2) 2 P,
intersection of all U1N , where N ranges through the set of all compact normal
subgroups of G such that G/N is a Lie group is U1; hence there is a compact normal
subgroupNP of G such that G/NP is a Lie group and U1NP ✓ U2. If g 2 G and U⇤ is
an open set of G such that U⇤H = U and gH 2 U⇤, then there is a pair (U1, U2) 2 U2

with U1 ✓ U2 such that gH ✓ U1 and U2 ✓ U⇤. Thus there is a set P of pairs (U,N )
such that

(i) N is a normal subgroup of G such that G/N is a Lie group;
(ii) U 2 U;
(iii) card (P) = w(G/H), and that
(iv) {U/H: (9, N ) (U,N ) 2T} is a basis of the topology of G/H.

The set of all (U1 w · · ·wUk, N1 w · · ·wNk) with (U1, N1), . . . , (Uk, Nk) 2 P satisfies

(i), . . . , (iv) as well, and we assume henceforth that N
def
= {N : (9U ) (U,N ) 2 P} is a

filter basis.
Now let V be a basis of the topology of X/G of cardinality w(X/G).
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Assume that M 2 N. Then the Lie group G/M acts with constant isotropy

on X/M via gM⇤(M;x) = M;(g;x) (cf. [6, p. 536, 10·31]). Notice that G/HM %
(G/M ) /(HM/M ) as homogeneous spaces. Let pM :X/M ! X/G% (X/M )/(G/M )
be (essentially) the orbit map. By the Local Cross Section Theorem for Compact Lie
Group Actions ([6, p. 538, 10·34]) there is a subfamily VM ✓V which is still a basis
for the topology of X/G and is such that

(8V 2VM ) p�1M (V )%
G

HM
⇥ V (16)

under a G/M -equivariant homeomorphism (cf. [6, p. 521, 10·9]). Then for V 2VM ,
⇢
UNM

MH
⇥ (V wW ): (U,N ) 2 P and W 2VM

�
(17)

is a basis for the topology of the G/M -space G/MH⇥V % p�1M (V ) whose cardinality
does not exceed max{w(G/H), w(X/G)}. LetBV,M denote its image in p�1M (V ). Since
card (VM ) 6 card (X/G) the set BM =

S
V 2VM

BV,M is a basis of the topology of
X/M whose cardinality does not exceedmax{w(G/H), w(X/G)}. Let qM :X ! X/M

denote the orbit map for the action of M and let p�1M (BM )
def
= {p�1M (B):B 2 BM}.

Since by (iii) above, card (N) 6 w(G/H) the set

B
def
=

[

M2N

p�1M (BM )

is a basis of the topology of X whose cardinality does not exceed max{w(G/H),
w(X/G)}. Hence w(X) 6 max{w(G/H), w(X/G)} as asserted.

Corollary 4·10. Assume that G is an infinite compact group. Then the following

conclusions hold.

(i) Let N 6 G be a closed not necessarily normal subgroup. Then

w(G) = max{w(N ), w(G/N )}.

(ii) Let H be a topological group such that w(G) > w(H) and let f :G ! H be

a morphism of topological groups. Then w(G/ker f ) < w(G) and w(ker f ) =
w(G).

Proof. (i) SinceN acts freely on the left and on the right ofG, this is an immediate
consequence of Theorem 4·9.
(ii) Since G is compact, so is G/ker f and thus this group is embedded into H.

Therefore, w(G/ker f ) 6 w(H) < w(G). By (i) above,

w(G) = max{w(ker f ), w(G/ker f )}.

Thus w(ker f ) = w(G).

Proposition 4·10(i) is [3, lemma 6·1]. Theorem 4·9, however, is more general and
appears to be of independent interest.
Let I = [0, 1] with the euclidean topology.

Corollary 4·11. Let G be an infinite compact group. Then G contains a subspace

homeomorphic to Idim G ⇥ 2w(G/G0)
and thus G contains a Cantor cube 2w(G).
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Proof. By [6, p. 484, line 6], the group G0 contains a subset homeomorphic to

Idim G0 . By definition, dim G0 = dim G (cf. [6, p. 483, 9·53 and 9·54].) Thus Corollary
4·8 implies the first assertion. By Lemma 4·6, the standard Cantor set inside I is
homeomorphic to 2@0 . Thus Idim G contains a set homeomorphic to 2@0· dim G = 2w(G0)

as w(G0) = max{@0,dim G} by [6, p. 607, 12·25]. Thus G contains a Cantor cube
2

w(G0) ⇥ 2w(G/G0)%2

w(G), since w(G) = w(G0) + w(G/G0) by Corollary 4·10.

Corollary 4·12. Every infinite compact group is dyadic, that is, is a continuous im-
age of a Cantor cube. Specifically, if G is an infinite compact group, then it is continuous
image of 2

w(G)
.

Proof. By [6, p. 499, 9·76], G0 is a homomorphic image of a product P whose
factors are isomorphic to Q̂ or are simple simply connected compact Lie groups, and
w(P) = w(G0). Every one of the factors is a continuous image of 2N by Lemma 4·6(b).
Thus G0 is a continuous image of 2w(G0). If G0 has finite index, then G0 ⇥ G/G0 is
a continuous image of 2w(G0) ⇥ 2N. If G/G0 is infinite, then by Corollary 4·8, G is a
continuous image of 2w(G0) ⇥ 2w(G/G0) = 2w(G).

For the history of the above result see [2, p. 93, 3·6·1].

Lemma 4·13. Let G be an infinite compact group. Then

w(G) = max{@0, w(⌦1G), sup
n2N

w(⌦n�1G/⌦nG)}. (18)

Proof. Clearly, the right side is less than or equal to the left side. We have to show
the reverse. By induction we conclude from Corollary 4·10(i) that

w(G/⌦nG) 6 max{@0, w(⌦m�1G/⌦mG);m = 1, 2, . . . , n}. (19)

Now let fn:G/⌦1G ! G/⌦nG be the natural quotient map and let Vn denote a
basis for the identity neighbourhoods of G/⌦nG of cardinality w

�
G/⌦nG

�
. Then by

Corollary 3·5 and [6, proposition 1·33, p. 22], the set

{f�1n (U ):U 2Vn, n 2 N} (20)

is a basis of the identity of G/⌦1G and, by (19), the cardinality of this set does not
exceed

max{@0, sup
n2N

w(⌦n�1G/⌦nG)}. (21)

Since w(G) = max{w(G/⌦1G), w(⌦1G)} by Corollary 4·10(i), the assertion of the
Lemma follows.

Theorem 4·14 (Computation of the Weight of a Compact Group). Let G be an in-
finite compact group. Let the cardinals Jn(G,S) be as in the Countable Layer Theorem
3·4. Then

w(G) = max{@0, w(Z0(G0)), sup{Jn(G,S):n 2 N; S 2S}} (22)

= max{w(G0), sup{Jn(G/G0, S):n 2 N; S 2S, S finite}. (23)

Proof. In Proposition 3·3 we showed that ⌦1G = Z0(G0). By Proposition 2·8 we
have max{@0, w(⌦n�1G/⌦nG)} = max{@0, supS2S JnG,S)}. Therefore (19) implies
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(22). The Topological Decomposition Theorem 4·4, gives us

w(G) = max

8
<

:w(G0), w

0

@
Y

n2N
S2S

SJn(G/G0,S)

1

A

9
=

; .

If the first cardinal is not smaller than the second, then (23) follows. If the second
cardinal is bigger than the first, then it is infinite and equal to sup{Jn(G/G0, S):n 2
N; S 2S, S finite} by Proposition 2·8. Therefore (23) follows again.

We conclude by establishing an upper bound for the generating degree of a compact
group. For the details and the notation we refer to [6, chapter 10, pp. 596ff].

Lemma 4·15. (i) Let S 2 S and let J be infinite. Then SJ has a suitable set of
cardinality card J and s(SJ ) = card J .
(ii) If G is strictly reductive, G =

Q
S2S SJ(G,S), then s(G) =

P
S2S J(G,S).

Proof. (i) Note 1 6 s(S) < !. The union in SJ of a suitable set if each factor is
suitable, and its cardinal does not exceed card J . We note that a set of cardinality
< card J cannot topologically generate SJ . The proof of (ii) is analogous.

A slightly stronger assertion than the one appearing in Lemma 4·16 below is es-
tablished in the proof of lemma 12·9 on p. 599 of [6].

Lemma 4·16. If G is a compact totally disconnected group, then

s(G) 6
1X

n=1

s(⇤nG).

Proposition 4·17. Let G be a compact group such that at least one of the cardinalsP
S2S Jn(G/G0, S), n = 1, 2, . . ., is infinite, then

s(G) 6 max

(
s(G0), sup

n2N

X

S2S

Jn(G/G0, S)

)
.

Proof. We note that for a closed normal subgroup N of a compact group G we
have s(G/N ) 6 s(N ) + s(G/N ) (see [6, 12·20, p. 604]). Applying this with N = G0

we get s(G) 6 s(G0) + s(G/G0). From the Countable Layer Theorem 3·4 and from
Lemma 4·16 above we get s(G/G0) 6 P1

n=1 s(⇤n(G/G0)). Using Lemma 4·15 we get
s(⇤n(G/G0)) =

P
S2S Jn(G,S) and since at least one of the sums

P
S2S Jm(G,S) is

infinite, we have
1X

n=1

X

S2S

Jn(G,S) = sup
n2N

X

S2S

Jn(G,S).

Since this cardinal is infinite, we also get

s(G0) + sup
m2N

X

S2S

Jm(G,S) = max

(
s(G0), sup

m2N

X

S2S

Jm(G,S)

)
.

For an explicit formula of the generating degree of any compact connected
group – such as for instance s(G0) – see [6, p. 605, theorem 12·22].
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The Countable Layer Theorem is amenable, as we have seen, to proofs by induction.

This newly observed phenomenon will be exploited elsewhere by the authors in the
investigation of abelian subgroups of arbitrary compact groups.
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