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There are many dimension functions defined on arbitrary topological spaces tak-
ing either a finite value or the value infinity. This paper defines a cardinal valued
dimension function, dim. The Lie algebra ��G� of a compact group G is a weakly
complete topological vector space. Quotient spaces of weakly complete spaces are
weakly complete; the dimension of a weakly complete vector space is the linear
dimension of its dual. Assume that a compact group G acts transitively on a given
space X and that H is the isotropy group of the action at an arbitrary point; let
��G� and ��H� denote the Lie algebras of G, respectively, H. It is shown that
dimX = dim��G�/��H�. Moreover, such an X contains a space homeomorphic to
�0� 1�dimX ; conversely, if X contains a homeomorphic copy of a cube �0� 1�ℵ, then
ℵ ≤ dimX. En route one establishes a good deal of information on the quotient
spaces G/H; such information is of independent interest. Finally, these results are
generalized to quotient spaces of locally compact groups. A generalization of a
theorem of Iwasawa is instrumental; it is of independent interest as well. © 2000
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INTRODUCTION

The dimension of a topological space is an invariant, taking nonnegative
integral values or the value ∞. The dimension is invariant under home-
omorphism; spaces with different dimensions cannot be homeomorphic.
Several definitions for topological dimension are in use; for sufficiently
well behaved classes of topological spaces they agree. Paradigmatically, the
dimension of a cube �X , � def= �0� 1� for a set X is card X if X is finite and ∞
otherwise, regardless of the choice of a traditional topological dimension
function. Another example of a class of spaces having “unique” topolog-
ical dimension is the class of underying spaces of compact groups (cf. [6,
pp. 381ff, 481ff]). Two cubes �X and �Y are homeomorphic iff card X =
card Y . If a cube C is homeomorphic to �X , then card X can be recovered
from C as follows:

cardX =
{

dimC if C is finite dimensional,
w�C� otherwise.

Here w�X� is the weight of a topological space, the smallest of all cardinals
of bases of the topology of X. This suggests that we define a topological
dimension function taking arbitrary cardinals (and not only finite ones)
as values. That this idea works for spaces underlying compact groups was
shown in [6]. For a topological space X we consider the Lebgesgue covering
dimension cdim (see [3, p. 52]; in [6, pp. 386–388] there is a survey on
topological dimension theory in relation to compact groups) and define

dimX =


cdimX if cdimX is finite,
sup	w�Y � 
 Y is a connected

component of X� otherwise.

If X is a connected homogeneous space and cdimX is infinite, then
dimX = w�X�.

In linear algebra there was never any question that the dimension of a
vector space V over a field K takes arbitrary cardinals as values. Indeed
one shows that between any two bases of V there is a bijection and thus
unambiguously one defines dimK V to be the cardinal card B of a basis
of V . The dimension of a K-vector space is in fact the only isomorphy
invariant; indeed V is isomorphic to the direct sum K�dimK V �.

The dual V ∗ = HomK�V�K� of V is isomorphic to the product KdimK V .
If K is the field � of real numbers, then V ∗ is a locally convex topologi-
cal vector space with respect to the topology of pointwise convergence of
functionals. A locally convex topological vector space which arises in this
fashion is called a weakly complete vector space; these vector spaces can be
characterized abstractly without making reference to a predual, i.e., a vec-
tor space whose duals they are. Since weakly complete vector spaces have
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a perfect duality theory (cf. [6, p. 319ff]), the predual and the topological
dual E′ of a weakly complete vector space E are one and the same thing,
and we can define the dimension of a weakly complete vector space E to be
dimE = dim� E′. Then E ∼= �dimE , where ∼= denotes the relation of being
isomorphic as weakly complete vector spaces, and thus w�E� = ℵ0· dimE.
Cleary, �dimE ⊆ �dimE ∼= E. Assume that C ⊆ E and C is cube. If E is
finite dimensional then by invariance of domain, dimC ≤ dimE. If not,
then dimC ≤ w�C� ≤ w�E� = dimE. Thus dimE, an invariant defined via
linear algebra, is a good measurement of a “topological dimension” of E
as well.

The considerable significance of weakly complete vector spaces is due to
the fact that the underlying topological vector space of the Lie algebra ��G�
of a compact (or locally compact) group is weakly complete. Thus weakly
complete vector spaces are basic to the exponential function of locally com-
pact groups (cf. [6, pp. 334ff, 355, 379, 474ff]). In particular, dim��G� is
an isomorphy invariant of G in the spirit of linear algebra, taking cardinals
as values.

In [6] is was shown that for a compact connected group G we have
dimG = dim��G�. (See [6, p. 607, 12.25, p. 483ff]). This equation
expresses the equality of a topological invariant with a linear algebra
invariant. The motivation of this article is the desire to prove a more
general result which applies to homogeneous spaces of compact groups.

It follows from the duality theory of weakly complete vector spaces that
for any closed vector subspace V of a weakly complete vector space W
the topological quotient vector space W/V is also a weakly complete vector
space. Thus if G is a compact group and H is a closed subgroup, we can
associate with the pair �G�H� the linear algebra invariant dim��G�/��H�.

A compact space X is said to be a homogeneous space of a compact group
if there is a compact group G acting transitively on it. If x ∈ X then Gx

denotes the isotropy subgroup 	g ∈ G 
 g·x = x� of G at x (cf., e.g., [6,
pp. 6, 518]). We shall prove the following

Theorem. Let X be a homogeneous space of a compact group. Then

dimX = dim��G�/��Gx�
for any compact group G acting transitively on X and any x ∈ X.
The space X contains a cube of dimension dimX, and if C is a cube

contained in X, then dimC ≤ dimX.

Let us note that this theorem, in the case of infinite dimensions, over-
comes two obstructions. First, unlike the case of homogeneous spaces of
compact Lie groups, where G/Gx is a manifold with a tangent bundle, in
the general case there does not appear to be any natural way to attach a
tangent space to the base point in G/Gx. Second, infinite cardinals cannot
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be subtracted; thus, in the case of a finite dimensional compact group G,
the natural number dimG − dimGx makes perfectly good sense, yielding
dimX (see, e.g., [12, p. 632, 96.10]); in the case of infinitely many dimen-
sions we have to make reference to the weakly complete quotient vector
space ��G�/��Gx� which is well defined and has a well defined dimension.
Finally, let us observe that dimX is a topological invariant of the compact
space X. On the other hand many compact groups G may act transitively
on X; the theorem tells us that the dimension of the weakly complete vec-
tor space ��G�/��Gx� does not depend on G or on x, but only on X.

Our main result is proved for homogeneous spaces of compact groups. It
allows us, however, to extend the result, in a concluding section, to homoge-
neous spaces of locally compact groups. In the process of doing so we had
to extend a classical result of Iwasawa’s; our generalisation is of indepen-
dent interest: every locally compact group is locally isomorphic to the direct
product of a compact group and a Lie group.

Dedication. We dedicate this text to Helmut Wielandt. The first author
is profoundly grateful having had him as a teacher in the years of 1952–1961
and as a coreferee for his Habilitationsschrift in 1962. Wielandt’s influence
on his outlook on mathematics has been profound.

Helmut Wielandt’s group theoretical legacy has greatly influenced the
second author as well; it contributed significantly to the second author’s
continuous attachment to the structure theory of groups.

1. CLOSED SUBGROUPS OF COMPACT GROUPS

Let G be a compact connected group and let ��G� denote the Lie algebra
of G. (See [6, p. 474ff].) Then ��G� is a weakly complete Lie algebra. The
underlying topological vector space of the Lie algebra ��G� of a compact
group G is a weakly complete vector space V . (See [6, Definition 7.27,
p. 323].) The dimension dim V of V as a weakly complete topological vector
space is defined to the the algebraic dimension dim� V ′ of the topological
dual of V (see [6, Definition 9.53(i), p. 483].) We now collect some known
information on weakly complete vector spaces.

Lemma 1.1. (i) The category � of weakly complete vector spaces and
continuous linear maps is dual to the category of vector spaces.

(ii) If W is a closed vector subspace of a weakly complete vector space
V , then V/W is a weakly complete vector space and V ∼= W ⊕ V

W
, where ∼=

denotes isomorphism in the category �, and dim V = dimW + dim V
W
.
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(iii) If 	Vj 
 j ∈ J� is a family of weakly complete nonzero vector spaces
then

dim

(∏
j∈J

Vj

)
=∑

j∈J
dim Vj = sup

{	card J� ∪ 	dim Vj 
 j ∈ J�}�
Proof. (i) See [6, p. 319ff., notably Theorem 7.30 on p. 325].

(ii) This follows from (i), notably loc. cit. 7.30(iv).

(iii) is a consequence of (i) and the definition of the dimension of a
weakly complete vector space.

We shall have occasion to apply these facts to the weakly complete Lie
algebras of a compact connected group G and a closed subgroup H.

If G is a compact connected group, then by [6, p. 458, 9.24] there is
a family 	Sj 
 j ∈ J� of simple, simply connected compact Lie groups Sj
and a quotient morphism µ 
 G∗ def= Z0�G� × ∏

j∈J Sj → G with a totally
disconnected central kernel. Set H∗ = µ−1�H�.

Lemma 1.2. G∗/H∗ ∼= G/H, ��G∗�/��H∗� ∼= ��G�/��H�.

Proof. The morphism ��µ�
 � × ∏
j∈J �j → ��G� with � = ��Z0�G��

and �j = ��Sj� is an isomorphism of weakly complete Lie algebras (see
[6, p. 478, 9.49]). Let µH 
 H∗ → H be the induced morphism. Then
��µH�
 ��H∗� → ��H� is an isomorphism by [6, p. 477, 9.48]. Then
G/H ∼= G∗/H∗ and ��G∗/H∗� ∼= ��G/H� as we deduce from the follow-
ing diagram in which the lines are exact and the two left vertical maps are
isomorphisms:

0 → ��H∗�
��incl�

−−−−−→ ��G∗� quot−−−−−→ ��G∗�/��H∗� → 0
��µH�

 ��µ�
 ∼=

0 → ��H� −−−−−→
��incl�

��G� −−−−−→
quot

��G�/��H� → 0�

Thus � def= ��G� is of the form � ⊕ ∏
j∈J �j , where � = ��Z0�G��, �j =

��Sj�. We set � def= ��H�.

Definition 1.3. In addition we extend the index set J by an element
# /∈ J and set J# = J ∪ 	#�. We define and �#

def= � so that � = ∏
j∈J#

�j .
For j ∈ J# we let pj
 � → �j denote the projection. We allow the abuse of
language involved in identifying �k or any partial product

∏
j∈I �j , I ⊆ J�
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with its canonical isomorphic copy in the product
∏

j∈J �j . Define

J= = 	j ∈ J# 
 pj��� = �j�� (1)

J �= = 	j ∈ J# 
 pj��� �= �j�� (2)

J◦ = 	j ∈ J# 
 �j ⊆ ��� (3)

�p = ∏
j∈J �=

pj���� (4)

�◦ = ∏
j∈J◦

pj��� = ∏
j∈J◦

�j � (5)

We identify the algebra �p with p#��� ⊕∏
j∈J pj���. Obviously, we have

�◦ ⊆ � ⊆ �p ⊆ �� (6)

We write 	 � 
 when 	 is an ideal of 
.

Lemma 1.4. (i) �◦ � �.
(ii) � is a subdirect product in

∏
j∈J#

pj��� = �p.
(iii) �/�p and

∏
j∈J �= �j/pj��� are isomorphic as weakly complete vec-

tor spaces.
(iv) dim �/�p = dim �/p#��� +∑

j∈J �=\	#� dim �j/pj���.
(v) �/� ∼= ��/�◦�/��/�◦�.

(vi) dim �/� = dim��/�◦�/��/�◦� = dim �/�p + dim �p/�.
(vii) If J�= is infinite, then

dim �/�p = max
{

dim
�

p#��� � card J�=

}
�

(viii) If dim �/� is finite, then the following cardinals are finite:

card J�=� dim �/p#���� dim �p/��

Proof. Assertions (i)–(vi) are immediate from the definitions. In view
of the fact that for # �= j ∈ J�=, the cardinal dim �j/pj��� ≤ dim �j is
finite, (vii) follows from (iv) with a simple cardinality calculation; (viii) is
straightforward.

Parallel to the Lie algebra situation we have the group situation. Let
G = Z ×∏

j∈J Sj with a compact connected abelian group Z and simple
simply connected Lie groups Sj , and let H be a closed subgroup of G; then
� = ��H� = ��H0�.

We set S# = Z0�G�, identify G with
∏

j∈J#
Sj , and define Hp =∏

j∈J#
pj�H� and H◦ = ∏

j∈J◦ Sj . From [6, p. 460, 9.26, p. 476, 9.47]
we conclude that pj�H� = Sj iff j ∈ J=. We write A �B when A is a normal
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subgroup of B. In analogy with Lemma 1.4 we have

Lemma 1.5. (i) H◦ �G.
(ii) H is a subdirect product in

∏
j∈J= pj�H� = Hp.

(iii) The homogeneous spaces G/Hp and
∏

j∈J �= Sj/pj�H� are naturally
homeomorphic.

(iv) dim��G�/��Hp� = dim��Z�/��p#�H�� + ∑
j∈J �=\	#� dim Sj/

��pj�H���
(v) dim��G�/��H� = dim��G/H◦�/��H/H◦�.

(vi) dim��G�/��H� = dim��G�/��Hp� + dim��Hp�/��H�.
(vii) If J �= is infinite, then

dim��G�/��Hp� = max
{

dim
��Z�

��p#�H�� � card J�=

}
�

The dimension of G/Hp, if infinite, is controlled by the abelian group
Z/p#�H� and card J �=, whichever is bigger. We therefore turn to the situa-
tion of subdirect products in order to deal with Hp/H and �/�p.

We let � denote a set of representatives of the class of all simple cen-
terfree connected compact Lie groups and let � denote a set of represen-
tatives of the class of all real compact simple Lie algebras.

Lemma 1.6. (i) Let G = A ×∏
S∈� SJ�G�S� be a product of a compact

connected abelian groupA with a product of simple, centerfree connected com-
pact groups S, and assume that H is a connected compact subdirect product
of G. Then H = A×∏

S∈� HS with HS subdirect in GS
def= SJ�G�S�.

(ii) Let � = 	 ⊕∏
�∈� �J��� �� be the direct sum of a weakly complete

abelian Lie algebra and a product of compact simple real Lie algebras. Assume
that � is a closed subalgebra of � which is a subdirect product. Then � =
�	 ⊕∏

�∈� ��� where �� is subdirect in ��
def= �J��� ��.

Proof. (i) Let pX , X ∈ 	A� ∪ � be the projection. Then pA maps H ′

trivially because H ′ ⊆ G′ = kerpA. Each projection onto one of the simple
factors S ∈ � kills the center Z�H� of H by [6, 9.28, p. 461]. Hence the
center is killed by all pS . Since the family of the pX separates the points of
H, and since H = Z�H�H ′ with Z�H ′� ⊆ Z�H� (see [6, p. 458, 9.24]) we
conclude that

H = Z�H� ×H ′ ⊆ Z�G� ×G′ = A×G′�

and that Z�H� = A; furthermore H ′ is subdirect in
∏

S∈� SJ�G�S� = G′ and
is itself centerfree. Then by [6, p. 450, Theorem 9.19], H ′ = ∏

S∈� SJ�H�S�.
The projection pS kills

∏
S �=T∈� TJ�H�T � and maps SJ�H�S� faithfully. We thus

get the assertion of the lemma with HS = SJ�H�S�
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(ii) The proof of (ii) either can be deduced from (i), since for each
� we find G as in (i) with ��G� = �, ��A� = 	, ��S� = �� etc., or else can
be carried out directly in analogy to that of (i).

The subgroups GS in Lemma 1.8 are called the isotypic components of G
(cf. [6, p. 454]).

Lemma 1.7. (i) Let S be a connected simple compact centerfree Lie
group and let J be an arbitrary set. Let H be a connected subdirect product
of G def= SJ .
Then there is a partial product N def= SK ≤ G (in the obvious notation) for

a subset K of J such that G is the semidirect product N �H of the closed
normal subgroup N and the given subgroup H, and that H ∼= SJ\K

(ii) Let � be a real simple compact Lie algebra and let J be an arbitrary
set. Let � be a subdirect product of � def= �J .
Then there is a partial product  def= �K ≤ � (in the obvious notation) for a

subset K of J such that � is the semidirect product � � of the closed ideal 
and the given subalgebra �, and that � ∼= �J\K .

Proof. Again we prove (i) and derive (ii) from (i).
We begin by invoking [6, p. 579, E11.5] in order to find (a) a surjective

function σ 
 J → I and (b) a function j �→ αj
 J → Aut S such that the
morphism

ϕ
 SI → G� ϕ��xi�i∈I� = �αj�xσ�j���j∈J
induces an isomorphism from SI onto H.

Now, using the axiom of choice, we pick an arbitrary cross-section τ
 I →
J for σ and define

N def=
∏
j∈J

Sj� Sj =
{ 	1� if �∃i ∈ I� j = τ�i�,
S otherwise.

We claim that this N , depending on our choice of τ, satisfies the require-
ments. First, N is a partial product and thus is a closed normal subgroup.
We set K = J \ τ�I�. Then I and J \ K have the same cardinality, and
N = SK , H ∼= SI ∼= SJ\K .

Second, we claim N ∩ H = 	1�. Let g = �sj�j∈J ∈ N ∩ H. Then, since
g ∈ H there is a unique �xi�i∈I such that yj = αj�xσ�j�� for all j ∈ J. Since
g ∈ N , for each i ∈ I we have yτ�i� = 1. Hence xi = xσ�τ�i�� = 1 for all i
and thus g = 1

Third, we must show that NS = G, equivalently, that NS/N = G/N .
Let g = �yj�j∈J be given. We must find an element �xi�i∈I ∈ SI such that
gN = �αj�xσ�j���j∈JN; that is, �αj�xσ�j��y−1

j �j∈J ∈ N . By the definition of N
this means precisely that for each i ∈ I we have ατ�i��xσ�τ�i��� = yτ�i�. Thus
if for a given i ∈ I we set xi = α−1

τ�i��yτ�i��, the element �xi�i∈i satisfies the
requirements.
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Lemma 1.8. Assume that the compact group G is a semidirect product
N � αB ( for a morphism α
 B → AutN) and that H is a closed subgroup
containing 	1� × B. Then H is the semidirect product M �αMB with a sub-
group M of N such that αM�b��m� def= α�b��m� ∈ M for all b ∈ B, m ∈ M .
If in addition 	1� × B is the identity component H0 of H, then H and

M × B are isomorphic as topological groups.

Proof. We set M = 	n ∈ N 
 �∃b ∈ B� �n� b� ∈ H�. Since �n� b� =
�n� 1��1� b�, then �n� b�� �1� b� ∈ H implies �n� 1� ∈ H. We know M ×
	1� ⊆ H and thus M × B = �M × 	1���	1� × B� ⊆ H. Conversely, let
�n� b� ∈ H. Then n ∈ M and �1� b� ∈ H, whence �n� b� = �n� 1��1� b� ∈
M × B. Thus H = M × B and M × 	1� = H ∩ �N × 	1�� is a subgroup of
G, whence M is a subgroup of N . If m ∈ M and b ∈ B, then �α�b��m�� 1� =
�1� b��m� 1��1� b�−1 ∈ H ∩ �N × 	1�� = M × 	1�, and thus α�b��m� ∈ M .
The continuous morphism α
 B → AutN induces a continuous morphism
αM 
 B → AutM given by αM�b��m� = α�b��m�, and H is the semidirect
product M �αMB.

Now assume that 	1� × B = H0. Then M is homeomorphic to M×B
	1�×B

∼=
H/H0 under the map m �→ 	m� × H = �m� 1��	1� × B�
 M → H/H0.
Thus, as H/H0 is totally disconnected, M is totally disconnected and thus
AutM is totally disconnected (see [6, p. 505, Theorem 9.82]; the statement
of that theorem erroneously included the word “Lie”). Since B ∼= H0 is
connected, the morphism αM 
 B → AutM is constant, and thus the the
semidirect product M � αM

B is direct.

From the two preceding lemmas we get the following one:

Lemma 1.9. Let S be a connected simple compact centerfree Lie group
and let J be an arbitrary set. Let H be a subdirect product of G def= SJ .
Then there is a partial product N def= SK ≤ G (in the obvious notation) for

a subset K of J such that G is the semidirect product N �H0 of the closed
normal subgroup N and the identity component H0 of the given subgroup
H, and that H ∼= SJ\K . Moreover, N contains a totally disconnected closed
subgroup M such that H = M ×H0.

Proof. This is a direct consequence of Lemmas 1.7 and 1.8.

Proposition 1.10. Let � = ∏
j∈J#

�j as in Definition 1.3 and let � be a
closed subalgebra such that dim �/� < ∞. Then dim �/�◦ < ∞ and thus the
vector space �/� is isomorphic to the quotient vector space space of the two
finite dimensional Lie algebras �/�◦ by �/�◦.

Proof. The last assertion is a consequence of the first by 1.4(iv). In view
of �◦ � � ⊆ �p ⊆ � it suffices to show that dim �p/� < ∞ implies dim �/�◦ <
∞. Therefore, by 1.4(ii) we assume now that � is a subdirect product in
� and by 1.6(ii) we assume � = 	 ⊕ ∏

�∈� �J��� �� and � = 	 ⊕ ∏
�∈� ��,
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where �s is subdirect in �J��� ��. Since dim �/�s = ∑
�∈� dim �J��� ��/�� < ∞

we conclude that �� = �J��� �� for all but finitely many �. So we finally
assume that g = �J and � is a subdirect subalgebra. Then �◦ = �J◦ . Now
we invoke Lemma 1.7(ii) and first conclude from dim �/� < ∞ that K is
finite. Hence the dimensions of  and thus of its derivation algebra Der 
(cf. [6, p. 122]) are finite. Hence the representation ad �� 
 � → Der  has
a finite dimensional image. Hence its kernel is cofinite dimensional in �.
This kernel is an ideal of � and, since it commutes elementwise with , also
an ideal of �; it is therefore a partial product of �J and thus belongs to �◦.
This completes the proof.

For the following Theorem, recall from [6, p. 483ff] the concept of dimen-
sion. In [6] we have defined the dimension of a compact group G to be
dim��G� (see [6, Definition 9.53(ii), p. 483]), and we have shown that this
number, if finite, agrees with the topological dimension of G with respect
to any of the common concepts of dimension (see [6, 9.54, p. 483]).

Theorem 1.11. Let G be a compact group and let H be a closed subgroup
such that dim��G�/��H� < ∞. Let N = ⋂	gHg−1 
 g ∈ G� be the largest
compact normal subgroup of G contained in H. Then dim��G�/��N� < ∞
and G/H ∼= G

N

/
H
N
with both G/N and H/N finite dimensional compact

groups. In particular, G0N/N ∼= G0/�G0 ∩N� is metric.

Proof. Set  def= ��N� = ��N0�. Then  is an ideal of � = ��G� (cf. [6,
p. 476, 9.47]) which is contained in � = ��H�. Let � denote the filter
basis of compact normal subgroups M of G such that G/M is a Lie group.
Then 	��M� 
 M ∈ � � is a filterbasis of ideals of � = ��G� and since
��·� preserves limits, limM∈� �/��M� = � as weakly complete Lie algebras.
Hence lim	��M� 
 M ∈ � � = 0 in �. Recall � = ��H�. Since dim �/� < ∞,
there is an open identity neighborhood U in � such that U + � = U and
U/� has no nonsingleton vector subspaces. Since the filter basis of the ��M�
converges to 0, there is an M ∈ � such that ��M� ⊆ U . Then ��M� ⊆ �
and thus M0 = exp��M� ⊆ exp � = H0 ⊆ H. Since gM0g

−1 = M0 we know
that M0 ⊆ N , and consequently ��M� = ��M0� ⊆ ��N�. Since G/M is a
Lie group, dim �/��M� < ∞ and therefore dim �/��N� < ∞.

Now

��G�/��H� ∼= ��G�
��N�

/
��H�
��N�

∼= ��G/N�/��H/N�

in view of [6, p. 476, 9.47] again. By the remark preceding the theorem,
both G/N and H/N are finite dimensional.

For the fact that every finite dimensional compact connected group is
metric see [6, p. 482, 9.52(vi)].
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Note that any nonmetrizable profinite group G and H = 	1� shows
that G/H need not be metrizable if dim��G�/��H� = 0 < ∞. How-
ever, 1.11 shows that all connected components of G/H are metrizable
if dim��G�/��H� < ∞.

Theorem 1.11 is to be compared with [11, p. 239, Theorem 6.2.2 ff].
The ascent from compact G to locally compact G is rather immaterial.
The claim that G need not be connected, however, is relevant. In [11] it
is postulated that G = limM∈� G/M (plus the additional hypothesis that �
has a countable basis).

2. THE WEIGHT OF A HOMOGENEOUS SPACE

The goal of this section is a proof of the fact that for a compact connected
group G and any closed proper subgroup H we have

w�G/H� = max	ℵ0� dim��G�/��H��� �∗�
(See Theorem 2.6 below.) Therefore, whenever the weight of G/H is
uncountable, dim��G�/��H� = w�G/H�, and thus this cardinal depends
only on the underlying topological space of G/H—given, of course, the
knowledge that the space in question is the homogeneous space of a com-
pact connected group. If G is an arbitrary compact group and H is a proper
subgroup such that G/H is connected, then the natural homeomorphism
g�G0 ∩H� �→ gH
 G0/�G0 ∩H� → G/H reduces the issue to �∗�.
Lemma 2.1. Let X be the projective limit of an infinite inverse system

	fjk
 Xk → Xj � �j� k� ∈ J × J� j ≤ k�
of compact manifolds Xj . Then w�X� ≤ card J.

Proof. Let �j be a countable basis of the topology of Xj and let fj
 X →
Xj denote the limit maps. Then � def= 	f−1

j �U� 
 U ∈ �j� j ∈ J� is a basis for
the topology of X. Since card�j ≤ ℵ0 and J is infinite, w�X� ≤ card� ≤
card J.

Lemma 2.2. Let G be a compact Lie group. Then the set of closed normal
subgroups of G is countable.

Proof. If G is abelian, then the lattice of closed subgroups is antiiso-
morphic to the set of subgroups of the character group Ĝ (cf. [6, p. 353,
7.64(v)]). Since Ĝ is of the form �n ⊕ E with a finite group ([6, p. 50,
2.42]), the assertion is true in this case. Since G0 has finite index in G,
we may assume that G is connected. If N = N �G, then N0, the iden-
tity component, being characteristic in G, is normal in G. Now N/N0 is a
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finite normal subgroup of the connected group G/N0; it is therefore cen-
tral (cf. [6, p. 777, A4.27]). The center of G is a compact abelian Lie group,
and there are therefore at most countably many finite subgroups by the first
part of the proof. Now let N be a connected compact subgroup of G. Then
��N� = 	 ⊕ �, where 	 is a vector subspace of ��Z�G�� such that exp 	 is
a closed subgroup of the center, and where � an ideal of the finite direct
sum �1 ⊕ · · · ⊕ �n of simple real compact Lie algebras �m (cf. [6, p. 479,
9.50, p. 190, 6.4(vii)]). There are only countably many possibilities for 	 and
finitely many possibilities for �.

We note that 2.2 fails in the noncompact case, for instance even for the
abelian Lie group �2; the set of closed connected subgroups consists of
	0�, �2, and all one-dimensional real vector subspaces of �2 and thus has
the cardinality of the continuum 2ℵ0 . If the restriction of the normality of
the subgroups were removed, then 2.2 would break down at once as the
example of the group SO�3� shows in which there are uncountably many
circle groups, since every one-dimensional subspace of ���3� generates a
circle group.

Proposition 2.3. Let G be a compact group and let H be a closed sub-
group. Let � denote the filterbasis of all closed normal subgroups N such that
G/N is a Lie group. Let � denote the filterbasis 	NH 
 N ∈ � �. If G/H is
not a manifold, then w�G/H� = card� .

Proof. The homogeneous space G/H is the projective limit of the mani-
folds G/NH ∼= G

N

/
NH
N

, N ∈ � with respect to the obvious quotient maps.
Since G/H is not a manifold, the inverse system is infinite. Then from 2.1
it follows that w�G/H� ≤ card� .

We have to prove the reverse inequality. Now let � be an open neigh-
borhood filter of H ∈ G/H of cardinality ≤ w�G/H�. Since

⋂
� = H and

since G/H is compact we know that limK∈� K/H = H in G/H. For K ∈ �
let pK �→ G/H → G/K be the quotient map. Then for each U ∈ � we
select a K�U� ∈ � such that we claim that 	K�U� 
 U ∈ �� is cofinal in � .
That is, for each L ∈ � there is a U ∈ � such that K�U� ⊆ L. There is an
N ∈ � such that L = NH. Since G/N is a compact connected Lie group,
there is a V ∈ � such that every subalgebra A of G containing NH such
that A/N ⊆ pL�V � agrees with L/N (for it is contained in a conjugate of
L/N [11], and contains L/N , and G/N is a Lie group). Now let U ∈ �
be such that U ⊆ V . Then pL�K�U�� ⊆ pL�V � and thus K�U�N = L; i.e.,
K�U� ⊆ L, as asserted. Next we claim that for each L ∈ � , the set 	K ∈
� 
 L ⊆ K� is countable. Indeed let L = NH with N ∈ � . Then the set
in question is in bijective correspondence with the set of normal subgroups
M ∈ � containing N such that NH/N ⊆ MH. Since by 2.2 there are count-
ably many closed normal subgroups M containing N (giving closed normal
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subgroups M/N of G/N), the claim follows. Now � contains the cofinal
subset � def= im K�·� and for each L ∈ � the set of predecessors is count-
able. Hence card� ≤ ℵ0· card� ≤ ℵ0· card� ≤ ℵ0·w�G/H� = w�G/H�.
This completes the proof of the proposition.

Corollary 2.4. (i) Let G be a compact group, let H be a closed sub-
group, and let � denote the filter basis of normal subgroups N such that G/N
is a Lie group. Assume that D is a normal subgroup of G such that

card	NDH 
 N ∈ � � = card	NH 
 N ∈ � ��
Then w�G/H� = w�G/DH�.

(ii) If G is a compact connected group and H is a closed subgroup,
and if D is a totally disconnected normal, hence central, subgroup of G then
w�G/H� = w�G/HD�.
Proof. (i) is an immediate consequence of Proposition 1.12

(ii) We claim that the function F �→ FD
 	NH 
 N ∈ � � → 	NHD 

N ∈ � � is injective; since it is clearly surjective, it is bijective, and the
assertion will follow from (i) above. Thus let N1H �= N2H, say n1h /∈ N2H;
that is, n1 /∈ N2H. Then n1N2 /∈ N2H/N2, and since N2HD/N2 is finite and
G/N2 is infinite (by moving n1N2) we find an n′

1 ∈ N1 such that n′
1 /∈ N2HD.

Then N1DH is not contained in N2DH, i.e., N1HD �= N2HD, and this
proves the claim.

Lemma 2.5. In the notation of Lemma 1.5, the following statements hold:

(i) If G �= Hp, then w�G/Hp� = max	ℵ0� dim��Z�/��p#�H���
card J�=�,

(ii) w�G/H� = w�G/Hp� +w�H/Hp�.
Proof. (i) is simply the calculation of the weight of a product∏
j∈J �= Sj/pj�H� in view of [6, p. 764, EA4.3].

(ii) The group H acts on the space G/Hp with stable isotropy Hp

and G/H as orbit space (see [6, p. 519, Definition 10.5]). The assertion
then follows from [7, 4.9].

For a compact group . its dimension is defined to be dim��.� (see [6,
p. 483, Definition 9.53(ii)]).

Lemma 2.6. If H is a closed normal subgroup of a compact group G, then
G/H is a group and

dimG/H = dim��G/H� = dim��G�/��H��
Proof. If H is normal, then ��H� is an ideal, and the weakly complete

factor Lie algebra ��G�/��H� and the Lie algebra ��G/H� are naturally
isomorphic by [6, p. 467, 9.47].
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If, in Lemma 2.6, the group G is abelian, this applies to all closed
subgroups.

We now prove the main theorem of this section as announced in �∗�
Theorem 2.7. Let G be a compact connected group and let H be a proper

closed subgroup. Then

w�G/H� = max	ℵ0� dim��G�/��H��� �∗�
Proof. (a) If H is normal, the claim is a consequence of [6, p. 607,

12.25]. In particular, the assertion is clearly true if G is abelian.

(b) By Lemma 1.2. we may assume G = A × P̃ , P̃ = ∏
S∈� S̃J�G�S�

with a compact connected abelian group A and the universal covering group
S̃ of S. Accordingly, � = 	 ⊕∏

�∈� �J��� ��� where J��� �� = J�G�S�.
(c) Let D = ∏

S∈� Z�S̃�J�G�S�. Then 	1� ×D is a totally disconnected
central subgroup of G and thus

w�G/H� = w�G/HD� = w

(
G

D

/
HD

D

)
�

Because ��HD� = ��H� we have

dim��G�/��H� = dim��G�/��HD� = dim�

(
G

D

)/
�

(
HD

D

)
�

We may therefore assume that G = A× P , P = ∏
S∈� S̃J�G�S�.

(d) Assume H = Hp; that is, H = ∏
j∈J#

Hj , Hj
def= pj�H�. Then by

1.5(iii) we know

G/H = ∏
j∈J#

Sj/Hj = A/Z�H� ×∏
j∈J

Sj/Hj�

(Here we have identified H#
∼= Z�H� with Z�H�.) Then in view of [6,

p. 607, 12.25]

w�G/H� = w�A/Z�H�� + max	ℵ0� card J�
= max	ℵ0� dimA/Z�H�� card J��

We note that by 1.5(iv) and 2.6 we have

dim��G�/��H� = dimA/Z�H� +∑
j∈J

dim��Sj�/��Hj��

and thus

max	ℵ0� dim��G�/��H�� = max	ℵ0� dimA/Z�H�� card J��
Thus the theorem holds in the present case.
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(e) By 1.5(v) and 2.5(ii) the assertion of the theorem holds for the
pair �G�H� if it holds for both of the pairs �G/Hp� and �Hp/H�. Since it
holds for �G�Hp� by (d) above, we must now establish it in the case that
H is a subdirect product of

∏
j∈J#

Sj .
Then Lemma 1.6(i) permits us to assume that G is either abelian or is of

the form SJ with a simple centerfree compact connected Lie group. Since
for abelian G the Theorem is true, we are left with the latter case. This
allows us to apply Lemma 1.9. Then G = SK

�H0 and H = M ×H0 with
a totally disconnected subgroup M of SK . Then G/H ∼= SK/M as homoge-
neous spaces. Thus w�G/H� = w�SK/M�. Now let � be the set of cofinite
partial products of SK . Then N �→ NM
 � → 	NM
 ∈ � � is a bijection
by an argument emulating that of the proof of 2.4(ii). Hence by 2.4(i)
we have w�SK� = w�SK/M� and if G/H is not singleton, then w�SK� =
max	ℵ0� cardK�. Also dim SK/M = dim��SK�/��M� = dim��SK� =
dim �K = �cardK�· dim � since M is totally disconnected (cf. [6, p. 477,
9.48]). Hence max	ℵ0� dim��SM�/��M�� = max	ℵ0� cardK�. There-
fore w�G/H� = max	ℵ0� cardK�. But by Lemma 1.9, in the cate-
gory of weakly complete Lie algebras, � is a retract of �; that is,
� =  ⊕ � as weakly complete vector spaces, where  = �K . Hence
dim��G�/��H� ∼=  = �K = �cardK� × dim �. Therefore the theorem
holds in this case and the proof is complete.

3. THE DIMENSION OF A HOMOGENEOUS SPACE

We need the following lemma in various parts of this article.

Lemma 3.1. Let G be a compact group acting on a compact space X with
stable isotropy, and let p
 X → X/G be the orbit projection.

(i) If C is a contractible subspace of the orbit space X/G, and p�x0� ∈
C, then the arc component of x0 in X contains a subspace C ′ such that p
maps C ′ homeomorphically onto C.

(ii) If C is a neighborhood of p�x0�, then C ′ is a local cross-section. If
the action is free, then �g� c′� �→ g·c′
 G × C ′ → G·C ′ is a homeomorphism
onto a neighborhood of p−1�p�x0��.

(iii) Conclusions (i) and (ii) apply, in particular, to any C which is
homeomorphic to a cube �A, � = �0� 1�.

Proof. If C is a compact contractible subspace of X/G (e.g., a cube),
then we consider the space X ′ = p−1�C� and the action of X ′ on X which
has stable isotropy. The space C is the orbit space X ′/G. The orbit map
p′
 X ′ → X ′/G = C then has a cross section s
 X ′/G → X ′ by Theo-
rem 10.42. Since G acts transitively on the orbit G·x0, we may assume
s�p�x0�� = x0. Then C ′ def= s�C� satisfies the requirement.
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More general sufficient conditions in statement (ii) are available in [6,
p. 539ff].

Definition 3.2. We say that a function DIM on the class of locally com-
pact Hausdorff spaces with values in 	0� 1� � � �� ∪ 	∞� is an admissible topo-
logical dimension function if it satisfies the [6, axioms (Da), (Db), (Db∗),
(Dc), (Dd), p. 385, 8.25, p. 483, 9.54].

In [6, p. 386ff]. it is shown that the standard topological dimensions,
the small inductive dimension, local large inductive dimension, Lebesque
covering dimension, cohomological dimension, sheaf theoretical dimension,
are admissible topological dimension functions.

If DIM is an admissible topological dimension, then the series of conclu-
sions in 3.1 can be complemented by the following one

(iv) If C is as in 3.1(ii), (iii) and DIM denotes an admissible topo-
logical dimension, then DIM X = DIM G+ DIM �A.

Lemma 3.1 applies, in particular, in the following situation.

Proposition 3.3. Let G be a compact connected group and let H be a
closed subgroup such that dim��G�/��H� < ∞. Then the following conclu-
sions hold:

(i) If the largest normal subgroup
⋂

g∈G gHg−1 of G contained in H is
trivial, then there is a totally disconnected central subgroup D of G such that
G/D is a Lie group and that the base point H of G/H has a neighborhood
homeomorphic to D× ��G�/��H�.

(ii) Let DIM denote any admissible topological dimension function on
the class of locally compact spaces. Then

DIM�G/H� = dim��G�/��H� (7)

Proof. Assume the hypothesis of (i). Then by Theorem 1.11 we know
that dim��G� is finite. Then by [6, the structure theorem of finite dimen-
sional compact groups, p. 481] the group D exists as asserted. Since G/D
is a Lie group, and HD/D is a closed subgroup, G/HD ∼= G

D

/
HD
D

is a man-
ifold of dimension

dim��G/D�/��HD/D� def= m�

Thus there is a neighborhood C of HD ∈ G/HD which is homeomor-
phic to �m. Now the group D/D ∩H acts on G/H via �d�D ∩H�� gH� �→
dgH
 D

D∩H ×G/H → G/H. The isotropy group at H is 	d�D∩H� 
 d ∈ D 

dH = H� = D∩H; therefore the action is free. The orbit of gH is DgH =
gDH; thus the orbit space is G/DH ∼= G

D

/
HD
D

. Let C be a cube neighbor-
hood of DH ∈ G/DH of dimension ��G/D�/��HD/D� ∼= ��G�/��H�.
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Now from 3.1 we know that H ∈ G/H has a neighborhood homeomor-
phic to D/�D∩H� ×C. The interior of C is homeomorphic to ��G�/��H�,
and thus (i) is proved.

(ii) Let N = ⋂
g∈G gHg−1. If DIM is any admissible topological

dimension function we apply (i) to G
N

/
H
N

. Since this homogeneous space is
naturally homeomorphic to G/H and

��G�/��H� ∼= ��G/N�/��H/N��
conclusion (ii) follows from (i) and [6, axioms (Db), (Dc), (Dd)] for an
admissible topological dimension function.

Before we formulate the following definition, we note the following facts:
The cube �ℵ0 of dimension ℵ0 is homogeneous in the sense that its home-
omorphism group acts transitively. (See [1, p. 104, Theorem 4.1; 4; 10].)
On the other hand, if X = G/H for a compact group G and a closed sub-
group H and if X is cohomologically acyclic over � and over �/2�, then
X is singleton. (See [8, p. 310, 4.3.]) Therefore, no compact group can act
transitively on the cube of dimension ℵ0 (also called the Hilbert cube). In
any homogeneous space, all connected components of X are translates of
a fixed one, say X0.

Definition 3.4. (i) A compact Hausdorff space X is said to be a
homogeneous space of a compact group if there is a compact group act-
ing transitively on X.

(ii) For such a homogeneous space X we let cdim denote the
Lebesgue covering dimension (see [3, p. 52]), fix an arbitrary connected
component X0� and set

dimX =
{

cdimX if cdimX < ∞,
w�X0� if cdimX = ∞.

Obviously, dimX is a topological invariant. If X is a homogeneous space
of a compact group, by 3.3, any admissible topological dimension funcion
on the class of locally compact spaces in place of cdim yields the same
function dim.

As before we shall write � def= �0� 1�. If ℵ is any (finite or infinite) cardinal
we say that a space C homeomorphic to �ℵ is a cube of dimension ℵ and
write dimC = ℵ.

Proposition 3.5. If a homogeneous space X of a compact group contains
a cube of a dimension ℵ, then ℵ ≤ dimX.

Proof. Let C ⊆ X be a cube of dimension ℵ.
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(i) Case cdimX < ∞. By [6, axiom (Dc) p. 385] we know cdimC ≤
cdimX. Since cdimC = ℵ by [6, Axiom (Db)], we have ℵ ≤ cdimX =
dimX.

(ii) cdim X = ∞. Then w�C� ≤ w�X� by the monotonicity of the
weight. Now ℵ ≤ max	ℵ0�ℵ� = w�C�. Since X is infinite dimensional, by
the definition of dimX we have w�X� = dimX. Thus ℵ ≤ dimX.

Theorem 3.6. Assume that G is a compact group and H is a closed
subgroup. Then G contains a cube of dimension dim��G�/��H� which is
mapped homeomorphically under the quotient map G → G/H.

Proof. (i) First reduction: Any cube containing the identity will have
to be in G0. After replacing G by G0, and H by G0 ∩H, since G0H/H ∼=
G0/�G0 ∩ H� and ��G� = ��G0� as well as ��H� = ��H0� = ��G0 ∩ H�
we may assume that G is connected.

(ii) Second reduction: There is a central totally disconnected
subgroup D of G such that G/D ∼= �J�G/D��� × ∏

S S
J�G/D� S� where

the product ranges through a set of representatives of all simple cen-
terfree compact connected Lie groups S and where the exponents
J�G/D��� and J�G/D� S� are suitable cardinals. (See [6, p. 376, 8.15,
p. 459, 9.25].) Then �G/H�/�HD/H� ∼= G/HD ∼= �G/D�/�HD/D�
and G/H → �G/H�/�HD/H� is the orbit map of the action of the
compact group HD/H on G/H. Note that ��G� ∼= ��G/D� and
��HD/D� ∼= ��H/�H ∩ D�� ∼= ��H� (see [6, p. 476, Proposition 9.47]).
Lemma 3.1 then shows that if �G/D�/�HD/H� contains a cube of dimen-
sion ��G/D�/��HD/H� ∼= ��G�/��H�, then G/H contains a homeomor-
phic copy of this cube. We may therefore assume that G = ∏

j∈J Sj where
Sj is either a circle group or a simple centerfree compact connected Lie
group. If I ⊆ J and j ∈ J, we shall identify

∏
j∈I Sj , respectively, Sj in a

natural fashion with a subgroup of G.
(iii) Third reduction: Let pj
 G → Sj denote the projection and set

Gj = pj�G�. Then H is a subdirect product of . def=
∏

j∈J Gj . The group G/.
is isomorphic to

∏
j∈I Sj/Gj . Set I = 	j ∈ J 
 Gj �= Sj�. Since Sj/Gj for

j ∈ I is a nondegenerate manifold of dimension dj
def= ��Sj�/��Gj� and thus

contains a cube of dimension dj , we have in G/. a subspace homeomorphic
to
∏

i∈I �
dj , i.e., a cube of dimension dim��G�/��.�, and thus by Lemma 3

we find a cube C1 of this dimension in G which is mapped faithfully into
G/.. If we find a cube C2 in . of dimension dim��.�/��H� being mapped
faithfully into ./H, then C1C2

∼= C1 × C2 is a cube in G of dimension
��G�/��H� mapped faithfully into G/H. Therefore we may now assume
that H is a subdirect product in G.

(iv) Fourth reduction: Let pS
 G → SJ�G�S� be the projection onto
the isotypic components GS of G (cf. [6, p. 454]) and set HS = pS�H�;
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then pS�H0� = �HS�0 by [6, 9.26(i)]. Also, H0 is subdirect in G by 9.26(i),
and thus H0 = ∏

S∈� �H0�S with �H0�S being subdirect in GS = SJ�G�S�

by Lemma 4. Set H∗ def=
∏

S pS�H�; since pS�H�0 = pS�H0� = �H0�S by [6,
p. 460, 9.26], we get H∗

0 = H0. From H0 ⊆ H ⊆ H∗ we get ��H� = ��H0� =
��H∗�; thus by Lemma 3.1, if G contains a cube of the appropriate size
mapping homeomorphically onto G/H∗, then it maps homeomorphically
into G/H. Thus we may assume that H = H∗; this allows us to assume
that G is of the form G = SJ and H is subdirect. If S = �, then we are in
the abelian case and the theorem is true by [6, p. 382, 8.21].

Now we prove the theorem in the case that G = SJ , S is centerfree simple
connected compact, and H is a subdirect product. Since the theorem is true
for Lie groups we shall assume that J is infinite.

First, by Lemma 1.7 there is a closed normal subgroup N ∼= SK for some
subset K ⊆ J such that G = NH0 is a semidirect product. By Lemma 1.9
we know that N contains a totally disconnected subgroup M such that
H = MH0 and this product is direct. Now G/H = NH0/MH0

∼= N/M and
dim��G�/��H� = dim��M�.

Thus in order to simplify notation once more, we assume that G = SJ

and H is totally disconnected. If pj is the projection on any factor S of the
power, then pj�H� is a compact totally disconnected (cf. [6, p. 460, 9.26(i)])
subgroup of the Lie group S and is therefore finite. Then H∗ def=

∏
j∈J pj�H�

is a totally disconnected subgroup containing H. By Lemma 3.1, if we find
a cube of dimension dim��G� in G mapping faithfully into G/H∗ then
we find a cube of the same dimension in G mapping faithfully into G/H.
Therefore we assume a final time that H = ∏

j∈J Hj for Hj a finite sub-
group of S for each j. Then G/H ∼= ∏

j∈J S/Hj as homogeneous spaces.
Since Sj/Hj is a manifold of dimension dim S this product contains a cube∏

j∈J �dim��S� which is a cube of dimension dim��G�. In view of Lemma 3.1
again, this completes the proof of the theorem.

Several of our results such as 2.7, 3.3 are proved under the hypothesis
that G is a connected compact group. We want to free ourselves from the
assumption that the compact homogeneous space X is connected. We first
note that a relatively small modification of [6, proof of Theorem 10.35,
p. 539] yields the following sharper result.

Theorem 3.7. Let G be a compact group acting on a compact space X
with stable isotropy such that the orbit space X/G is totally disconnected. Then
the action is trivial.

If a group G acts on X and Y then a function f 
 X → Y is called
equivariant if f �g · x� = g · f �x� for all g ∈ G and x ∈ X (cf.[6, p. 521,
Definition 10.8]).
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Corollary 3.8. Let G be a compact group and let H be a closed sub-
group. Then there is a G0-equivariant homeomorphism

G0

G0 ∩H
× G

G0H
→ G

H
�

where G0 acts on G0/�G0 ∩ H� and on G/H by multiplication on the left.
The space G/G0H is totally disconnected compact.

Proof. Since G acts transitively on X, all connected components are
homeomorphic under actions from G. Since the quotient map G → G/H
is continuous, open and closed, clopen sets go to clopen sets. The inter-
section of all clopen neighborhoods of 1 in G is G0. Since G is compact,
X0

def= G0H/H is the intersection of all clopen neighborhoods of H in X and
thus is the component of H in X.

The group G0 acts on X under the restriction of the action of G on
X. The orbit of H ∈ X is G0·H = G0H/H = X0. The element g0 ∈ G0
is in the isotropy group �G0�gH iff g0gH = gH iff g0 ∈ gHg−1 ∩ G0 =
g�H ∩ G0�g−1. Thus this action of G0 on X has stable isotropy, and the
orbit space is X/G0 = 	G0gH/H = gG0H 
 g ∈ G� = G/G0H, a compact
totally disconnected space. Hence by Theorem 10.35, the action is trivial;
that is, X is G0-equivariantly homeomorphic to G0/G0 ∩H ×G/G0H.

From this corollary it follows that for every admissible topological dimen-
sion DIM we have

dimG/H = dimG0H/H = dimG0/�G0 ∩H�� (8)

Let us summarize our results in the following main theorem, where for
any group G acting on a space X the isotropy subgroup of G at x is
denoted Gx:

Theorem 3.9 (Dimension Theorem for Homogeneous Spaces). Let X
be a homogeneous space of a compact group. Then for any compact group G
acting transitively on X, and for any x ∈ X,

dimX = dim��G�/��Gx�� (9)

The homogeneous space X contains a cube of dimension dimX, and the
dimension of any cube contained in X does not exceed dimX.

Proof. Set H = Gx. Note that ��G� = ��G0� = ��G0H�, whence

��G0H/H�/��H� = ��G�/��H��
If we set X0 = G0/�G0 ∩ H� ∼= G0H/H then dimX = dimX0 by Def-
inition 3.4(ii) and Corollary 3.8. Recall ��G0 ∩ H� = ��G0� ∩ ��H�,
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��H� = ��H0� ⊆ ��G0�, whence ��G0H� = ��G0� = ��G0� + ��H�. If
dimX < ∞, then Proposition 3.3(ii) shows

dimX = dimX0 = dim
��G0�

��G0 ∩H� = dim
��G0H�
��H� = dim

��G�
��H� �

This proves (9) in the present case. If dimX is infinite, then by the defini-
tion of dim we have dimX = w�X0�. Now Theorem 2.7(∗) proves

w�X0� = dim��G0�/��G0 ∩H� = dim��G0H�/��H� = dim��G�/��H�
and this proves (8) in the present case. The remainder of the theorem
pertains to the component X0 = G0/�G0 ∩ H� and thus follows from
Theorem 3.6 and Proposition 3.5.

By our main Theorem 3.9 we have for homogeneous spaces of a com-
pact group a transfinite topological invariant dimX which agrees with the
“linear algebra” invariant dim��G�/��Gx� for any compact group G act-
ing transitively on X. In view of Theorem 3.6, it reflects the geometrically
intuitive property of such homogeneous spaces as to the containment of
cubes of the right dimension. Whereas topological dimension in general is
a complicated matter, the dimension of a cube is of exemplary simplicity.

4. THE LOCALLY COMPACT CASE

In [9, p. 547, Theorem 11], Iwasawa proved

Iwasawa’s Local Splitting Theorem. Let G be a locally compact con-
nected group. Then G has arbitrarily small neighbohoods which are of the
form NC such that N is a compact normal subgroup and C is an open n-cell
which is a local Lie group commuting elementwise with N and is such that
�n� c� �→ NC
 N × C → NC is a homeomorphism.

Iwasawa had to assume that G is a projective limit of Lie groups. How-
ever, in the process of settling Hilbert’s Fifth Problem (see [11, p. 184]),
Yamabe showed that every locally compact group has an open subgroup
which is a projective limit of Lie groups (see [11, p. 175]). Thus if G is
an arbitrary locally compact connected group we may apply Iwasawa’s local
splitting theorem. We now show how to extend Iwasawa’s splitting theorem
to not necessarily connected locally compact groups.

Theorem 4.1. Let G be a locally compact group. Then for every identity
neighborhood U there is a compact subgroup N contained in U , a (simply)
connected Lie group L, and an open and continuous morphism ϕ
 N ×L →
G with discrete kernel such that ϕ�n� 1� = n for all n ∈ N .
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Proof. (a) First assume that G is connected. We apply Iwasawa’s local
splitting theorem. The fact that C is a local Lie group on an open n-cell
means that there is a Lie group L, an n-cell identity neighborhood W of L,
and a homeomorphism f 
 W → C for which x� y� xy ∈ W implies f �xy� =
f �x�f �y�. We may assume L to be simply connected. Then f extends to a
unique morphism of groups F 
 L → G (see [6, Corollary A2.26]). Since C is
in the centralizer of N so is the subgroup F�L� generated by C. Hence the
definition ϕ
 N × L → G, ϕ�n� x� = nF�x� yields a continuous morphism
which maps N ×W homeomorphically onto the the identity neighborhood
NC of G. Thus kerϕ is discrete and ϕ is locally open and hence open.
Clearly ϕ�n� 1� = n. The assertion follows in this special case.

(b) Now let G be an arbitrary locally compact group and let U be
an identity neighborhood. Let G1 be an open subgroup of G which has
arbitrarily small compact normal subgroups N1 such that G1/N1 is a Lie
group. Since it obviously suffices to prove the theorem for G1, we may
assume that G = G1.

By (a) let G0 have an open identity neighborhood NC ∼= N × C with
a compact normal subgroup N of G0 contained in U and an open n-cell
local Lie group C, and let ϕ0
 N × L → G0 be the surjective mor-
phism guaranteed by part (a) of the proof. We may and will assume
that C = C−1. Let � be the filter basis of compact normal subgroups
M of G such that G/M is a Lie group. Since the filter basis � con-
verges to 1, there is an M ∈ � such that M ⊆ U and M ∩ G0 ⊆ NC.
Since N is the unique largest compact normal subgroup of G0 contained
in NC we conclude M ∩ G0 ⊆ N . Since G/M is a Lie group, G/MG0
is finite. Thus MG0 is open in G, and we may as well assume that
G = MG0.

Now there is a morphism α
 L → AutM , α�x��m� = F�x�mF�x�−1

with F�x� = ϕ0�1� x�. We form the semidirect product G̃ def= M �αL and
define ϕ
 G̃ → G by ϕ�m�x� = mF�x�. Then ϕ is a morphism of topolog-
ical groups. Its image contains M and the group generated by C = F�W �,
that is, F�L�. Hence it contains NF�L� = G0 and thus MG0 = G. Hence
ϕ is surjective. Since G̃ is the countable union of compact subsets and G is
locally compact, by the open mapping theorem for locally compact groups
(see, e.g., [6, p. 650]), ϕ is open. Now let �m�x� ∈ �M ×U� ∩ ker ϕ. Then
1 = mF�x� and F�x� ∈ C, whence m = F�x�−1 ∈ M ∩G0 ∩C−1 ⊆ N ∩C =
	1�. Since �n� c� �→ nc
 N × C → NC is a homeomorphism, we have
m = F�x� = 1. Thus x ∈ ker F . Hence �M × U� ∩ ker ϕ ⊆ 	1� × ker F

which is a discrete subgroup of G̃. Thus kerϕ itself is a discrete subgroup
of G̃. Since M0 ⊆ M ∩G0 ⊆ N and N centralizes C and thus  C! = F�L�,
the subgroup M0 × L ⊆ G̃ is a direct product. In particular, M0 and L
commute elementwise.
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(c) We will finish the proof by showing that in semidirect products
like M �αL the semidirect factor L can actually be replaced by a direct
factor which is isomorphic to L.

The following lemma emulates an argument from [9, p. 515].

Lemma A. Let G be a locally compact group which is of the form G =
MG0 with a compact normal subgroupM . Let Z�M�G� denote the centralizer
of M in G. Then G0 = M0Z�M�G�0 and G = MZ�M�G�0.

Proof. Let the morphism π
 G0 → AutM be defined by π�g��x� =
gxg−1. Then π�G0� ⊆ �AutG�0. Now �AutG�0 is the group of inner auto-
morphisms of M implemented by elements of M0 ⊆ M ∩G0 = N (see [9,
p. 514, Theorem 1′; 6, p. 505, Theorem 9.82], in whose formulation the
word “Lie” should be omitted). Accordingly, for every g ∈ G0 there is an
m0 ∈ M0 such that gmg−1 = m−1

0 mm0 for all m ∈ M; thus the element
m0g is in the centralizer H def= Z�M�G� that is, G0 ⊆ M0H. We claim that
G0 = M0H0. Since M0 is connected, we have M0 ⊆ G0 and thus the com-
pact normal subgroup N def= M0 ∩H of M0H is contained in G0 = �M0H�0.
Now the group G/N is algebraically the direct product �M0/N��H/N� and
since M0/N is compact, G/N and �M0/N� × �H/N� are isomorphic as
topological groups. It follows that G0/N = �G/N�0 = �M0/N��H/N�0.
Since G is locally compact, so is H. Hence p
 H → H/N is a quotient
morphism of locally compact groups, and therefore p�H�/p�H0�, as a quo-
tient of the totally disconnected locally compact group H/H0, is totally
disconnected. Hence �NH0�/N = p�H0� ⊆ �H/N�0 ⊆ p�H0� = NH0/N .
But since N is compact, NH0 = NH0, and thus �H/N�0 = NH0/N , whence
G0/N = �M0/N��NH0/N� = M0H0/N . This establishes the claim G0 =
M0H0. Therefore, G = MG0 ⊆ MM0H0 = MH0.

Note that local compactness of G was only used in the last part of the
proof when we argued that the quotient group of a totally disconnected
locally compact group is still totally disconnected.

Now we apply this lemma to prove

Lemma B. Let G = ML be a locally compact group with a compact nor-
mal subgroupM and a closed simply connected subgroup L that is a Lie group
such that M ∩ L = 	1�. Assume that the identity component M0 of M and L
commute elementwise. Then there is a closed Lie subgroup L∗ ∼= L commut-
ing elementwise with M such that M ∩ L∗ = 	1� and G = ML∗. That is, G
is the direct product of M and L∗.

Proof. We apply Lemma A and set H = Z�M�G�. Then G0 = M0H0.
The projection of H0 along M into L is surjective. Since H0 ⊆ G0 = M0L
and this product is direct, and since H0 and M0 commute elementwise,
the projection of H0 into M0 is in the identity component A def= Z0�M0�



compact groups 477

of the center of M0. Thus H0 ⊆ AL. Hence H ′
0 = L′ ⊆ L. Since L is

simply connected, we have L/L′ ∼= �n; set D def= H0/L
′. Then we may write

D ⊆ A × �n where D projects onto �n. On the level of Lie algebras we
get ��D� ⊆ ��A� × �n (where we have identified �n with its own Lie
algebra). The weakly complete vector space ��D� projects onto �n. Hence
we find a linear map λ
 �n → ��A� such that the graph 	�λ�v�� v� 
 v ∈ �n�
is contained in ��D�. Since �n is simply connected we get a morphism
5
 �n → A such that 	�5�v�� v� 
 v ∈ �n� is contained in D. Denote the
composition

L
quot−−→L/L′ ∼=−−→�n

5−−→A

by β and consider the graph L∗ def= 	β�x�x ∈ AL 
 x ∈ L�. Now β�x�xL′ ∈
H0/L

′, whence β�x�x ∈ H0. Clearly L∗ ∼= L, and β�x�x ∈ M means x ∈
β�x�−1M = M; since also x ∈ L and M ∩ L = 	1� we note x = 1. Also
ML∗ = ML = G. Since M and L∗ ⊆ H commute elementwise, the product
ML∗ is direct.

Now we apply Lemma B to G̃ = M � αL and conclude that G̃ is the
direct product of M × 	1� and a Lie subgroup L∗ of G̃ which is isomorphic
to L. This completes the proof of Theorem 4.1.

Observe that the normalizer of N contains the open subgroup ϕ�N ×L�
of G and thus is open; we do not say that N is normal in G.

With the aid of results like this one it is frequently possible to general-
ize results on compact groups to locally compact groups. This applies, in
particular, to our main dimension theorem for homogeneous spaces 3.9.

Theorem 4.2. LetG be a locally compact group andH a closed subgroup.
Then

dimG/H = dim��G�/��H�� �9′�
The homogeneous space G/H contains a cube of dimension dimG/H, and
the dimension of any cube contained in G/H does not exceed dimG/H.

Proof. We achieve the proof by various reductions. Let U denote be
any open subgroup of G. We consider the continuous open map p
 U/�U ∩
H� → UH/H, p�u�U ∩H�� = uH. Assume that p�u�U ∩H�� = p�u′�U ∩
H��. Then uH = u′H, that is, u′ = uh for some h ∈ H. Then h ∈ U ∩H,
and u′�U ∩H� = uh�U ∩H� = u�U ∩H�. This means that p is a homeo-
mophism. In particular dimU/�U ∩H� = dimUH/H. On the homogenous
space G/H dimension is local; that is, it agrees with the dimension of any
open subset such as UH/H. Hence we have dimG/H = dimU/�U ∩ H�.
Any cube of G/H containing H lifts to a cube of G containing 1 and thus
is contained in G0H/H; it therefore is the image under p of a cube in
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G0�U ∩ H�/�U ∩ H�. Therefore, if U is any open subgroup of G, it suf-
fices to prove Theorem 4.2 with U in place of G. As a first reduction, it is
therefore no loss to assume that G = U .

Next we let ϕ
 N × L → G be the morphism whose existence is guaran-
teed by Theorem 4.1. Now we take U = ϕ�N × L� and set H∗ = ϕ−1�H�.
Then H∗ is a closed subgroup of N ×L such that the homogeneous spaces
�N × L�/H∗ and G/H are naturally homeomorphic. We may therefore
assume that G = N × L.

Since N is compact, the subgroup G1 = �N × 	1��H is closed. Now any
element of G1 is of the form �n� g� = �n′� 1�h, where h = �n′′� g′′� ∈ H;
thus n = n′n′′ and g = g′′. Thus if HL is the projection of H into L then
G1 = N ×HL. The following diagram describes the situation:

N × L ∼= G∣∣∣ } ∼= L/HL

N ×HL
∼= G1∣∣∣ } ∼= G1/H

H


∼= G/H

Since L is a Lie group, the quotient G/G1
∼= L/HL is a locally trivial princi-

pal bundle. In particular, the identity in G has a neighborhood of the form
G1 × B, where B is a cell homeomorphic to �dimG/G1 . Also dimG/G1 =
dimL/HL = dim��L� − dimHL, and because ��G� = ��N� ⊕ ��L� and
��G1� = ��N� ⊕ ��HL�, this number equals dim��G�/��G1�. Since H ⊆
G1 we conclude that G/H is locally homeomorphic to �G1/H� × B and
thus dim�G/H� = dimG1/H + dimG/G1. If we know that dimG1/H =
dim��G1�/��H�, the claim dimG/H = dim��G�/��H� follows. If G1/H
contains a cube of dimension dim��G1�/��H�, then G1/H × B and thus
G/H contains a cube of dimension dim��G�/��H�. Conversely, if C is a
cube in G/H we may assume that C is homeomorphic to �−1� 1�ℵ, the mid-
point corresponding to the base point H ∈ G/H. The sequence of cubes
Cn corresponding to �− 1

n
� 1
n
�ℵ converges to H and thus eventually “is con-

tained in” G1/H × B. If G1/H is finite dimensional then H has in G1/H a
neighborhood which is homeomorphic to a Cantor space and a dimG1/H-
cell B1, and we may assume that Cn is contained in B1 × B and thus has
a dimension ≤ dimG1/H + dimG/G1 = dim��G�/��H�. If G1/H fails to
be finite dimensional, then let �G1/H�0 denote the connected component
of H in G1/H and observe dimC = dimCn ≤ w�Cn� ≤ w��G1/H�0 ×B� =
w��G1/H�0� = dimG1/H ≤ dimG/H.

Thus the assertion of the theorem is true if it is true for G1/H. We
may therefore assume G = G1; that is, G contains a compact normal sub-
group N such that G = NH. The canonical bijective continuous function
α
 N/�H ∩N� → G/H, α�n�H ∩N�� = nH is a homeomorphism because
N is compact. Now our dimension theorem for homogeneous spaces 3.9
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applies to N/�N ∩H� and shows that

dimG/H = dimN/�N ∩H� = dim��N�/��N ∩H�
= dim��N�/���N� ∩ ��H�� = dim���N� + ��H��/��H�
= dim��NH�/��H� = dim��G�/��H��

The assertions about the cubes apply to N/�N ∩H� by 3.9.

ACKNOWLEDGMENT

We thank Dr. Harald Biller for getting this investigation started by posing questions he
encountered in preparing [2] and for his very helpful comments on the first preliminary
manuscript.

REFERENCES
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